
Average Case Complexity Theory

Sriram Venkatesh
sriramvenkatesh739@gmail.com

July 17, 2023

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 1 / 24

sriramvenkatesh739@gmail.com

What We Will Cover

1 Computational problems

2 Standard definitions and theorems of worst case complexity theory

3 Distributional problems

4 Reductions between distributional problems

5 distNP completeness

6 Bounded halting in distNP complete

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 2 / 24

What is Complexity Theory?

Classifying computational problems according to their resource usage into
problem classes.

Examples:

1 Check if a list is sorted.

2 Add two numbers together.

3 Find the shortest path between two nodes in a graph.

4 Given a graph, check if it is two colorable.

5 Given a graph, check if it is three colorable.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 3 / 24

Turing Machines

The fundamental model of computation we use to solve problems.

A Turing machine consists of an infinite tape and a tape head, which
can read, write, and move along the tape.

σ. . .1 . . . 0

q

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 4 / 24

Turing Machines

Given an n bit string, check if the number of 1 bits are even.

even odd

Yes No

11

0 0

1 1 0 1 0 · · ·

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 5 / 24

Types of Turing Machines

Definition

In a deterministic Turing machine, the set of rules prescribes at most one
action to be performed for any given situation.

Definition

In a nondeterministic Turing machine, the set of rules may prescribe more
than one action to be performed for any given situation.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 6 / 24

Types of Turing Machines

Definition

In a deterministic Turing machine, the set of rules prescribes at most one
action to be performed for any given situation.

Definition

In a nondeterministic Turing machine, the set of rules may prescribe more
than one action to be performed for any given situation.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 6 / 24

Nondeterministic Turing Machines

a

b

accept reject

c

reject accept

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 7 / 24

Classes P vs NP

Definition

The class P consists of all computational problems that can be solved by a
deterministic Turing machine in polynomial time.

Definition

The class NP consists of all computational problems that can be solved by
a nondeterministic Turing machine in polynomial time.

P vs NP problem.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 8 / 24

Problems in class P

Connected graph

Three sum

Two colorable

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 9 / 24

Boolean Satisfiability Problem

Definition

A boolean formula is built from boolean variables, operators AND (∧), OR
(∨), NOT (negation, ¬), and parentheses. A formula is said to be
satisfiable if it can be made TRUE by assigning boolean values to its
variables. The Boolean satisfiability problem (SAT) is, given a formula, to
check whether it is satisfiable.

Example formula: (x1 ∨ x2) ∧ (¬x1 ∧ x3)
Assignment: x1 : False; x2 : True; x3 : True

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 10 / 24

Boolean Satisfiability Problem

x1: True

x2: True

x3: True x3: False

x2: False

x3: True x3: False

x1: False

x2: True

x3: True x3: False

x2: False

x3: True x3: False

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 11 / 24

Polynomial Time Reductions

Definition

Problem A is reducible to problem B if an algorithm for solving problem B
efficiently could also be used as a subroutine to solve problem A efficiently.

Used to establish relationships between computational problems.

We can now solve one problem by solving another problem.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 12 / 24

Polynomial Time Reductions

Definition

Problem A is reducible to problem B if an algorithm for solving problem B
efficiently could also be used as a subroutine to solve problem A efficiently.

Used to establish relationships between computational problems.

We can now solve one problem by solving another problem.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 12 / 24

NP complete problems

Definition

A problem is NP complete if it is in NP and every other NP problem is
reducible to it.

Theorem

Cook Levin Theorem: The boolean satisfiability problem is NP complete.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 13 / 24

NP complete problems

Definition

A problem is NP complete if it is in NP and every other NP problem is
reducible to it.

Theorem

Cook Levin Theorem: The boolean satisfiability problem is NP complete.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 13 / 24

Average Case Complexity Problems

Definition

An average case complexity problem consists of a problem D and a
probability distribution µ, written as (D, µ).

µ′(x) = µ(x)− µ(x − 1)

Inputs to distributional problems are always binary numbers. Any
efficient ordering of binary numbers is viable, although we will use
standard lexicographic ordering of binary numbers.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 14 / 24

Average Case Complexity Problems

Definition

An average case complexity problem consists of a problem D and a
probability distribution µ, written as (D, µ).

µ′(x) = µ(x)− µ(x − 1)

Inputs to distributional problems are always binary numbers. Any
efficient ordering of binary numbers is viable, although we will use
standard lexicographic ordering of binary numbers.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 14 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 15 / 24

Levin’s Definition of Efficient on Average

Definition

An algorithm is said to have running time polynomial on the average if∑
x∈{0,1}∗

µ′(x)
t(x)ε

|x |
= k ,

where t(x) represents the running time of the algorithm.

E(ta(x)
ε

|x |) = k

E(tb(x)
ε
2

|x |) = E((ta(x)
2)

ε
2

|x |) = k

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 16 / 24

Levin’s Definition of Efficient on Average

Definition

An algorithm is said to have running time polynomial on the average if∑
x∈{0,1}∗

µ′(x)
t(x)ε

|x |
= k ,

where t(x) represents the running time of the algorithm.

E(ta(x)
ε

|x |) = k

E(tb(x)
ε
2

|x |) = E((ta(x)
2)

ε
2

|x |) = k

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 16 / 24

Levin’s Definition of Efficient on Average

Definition

An algorithm is said to have running time polynomial on the average if∑
x∈{0,1}∗

µ′(x)
t(x)ε

|x |
= k ,

where t(x) represents the running time of the algorithm.

E(ta(x)
ε

|x |) = k

E(tb(x)
ε
2

|x |) = E((ta(x)
2)

ε
2

|x |) = k

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 16 / 24

Reductions Between Distributional Problems

We reduce problem (D1, µ1) to (D2, µ2).

Input x for D1 is mapped to input M(x) for D2.

What happens if µ′
1(x) >> µ′

2(M(x))?

Solving (D2, µ2) does not mean we can solve (D1, µ1).

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 17 / 24

Reductions Between Distributional Problems

Efficiency, Validity, and Domination

Domination: High probability inputs map to high probability inputs,
and low probability inputs map to low probability inputs.∑

x∈{0,1}∗
P[M(x) = y] · µ′

1(x) ≤ µ′
2(y) · |y |c ,

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 18 / 24

Reductions Between Distributional Problems

Efficiency, Validity, and Domination

Domination: High probability inputs map to high probability inputs,
and low probability inputs map to low probability inputs.∑

x∈{0,1}∗
P[M(x) = y] · µ′

1(x) ≤ µ′
2(y) · |y |c ,

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 18 / 24

Usefulness of Reductions

Theorem

If (D1, µ1) is reducible to (D2, µ2) through a deterministic polynomial time
oracle Turing machine and (D2, µ2) is solvable by a deterministic Turing
machine with a polynomial on average running time, then so is (D1, µ1).

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 19 / 24

Bounded Halting Problem

Halting Problem

Given a program and an input, will the program terminate?

Bounded Halting Problem

Given a program, an input, and k , will the program halt within k steps?

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 20 / 24

Bounded Halting Problem

Halting Problem

Given a program and an input, will the program terminate?

Bounded Halting Problem

Given a program, an input, and k , will the program halt within k steps?

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 20 / 24

Bounded Halting Problem

Theorem

Bounded halting problem(BH) is NP complete.

Proof.

A generic NP problem asks whether a nondeterministic Turing machine M
accepts an input x in polynomial time. Pass in (M, x , |x |k) for some
arbitrarily large constant k as input into bounded halting problem to solve
the generic NP problem. ■

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 21 / 24

Bounded Halting Problem

Theorem

Bounded halting problem(BH) is NP complete.

Proof.

A generic NP problem asks whether a nondeterministic Turing machine M
accepts an input x in polynomial time. Pass in (M, x , |x |k) for some
arbitrarily large constant k as input into bounded halting problem to solve
the generic NP problem. ■

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 21 / 24

Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 22 / 24

Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 22 / 24

Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 22 / 24

Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 22 / 24

Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 22 / 24

Bounded Halting Problem

Proof.

The size of c(x) is at most log2

(
1

µ′(x)

)
. The reduction from x to c(x) is

efficient due to the distributions being polynomially computable. The
reduction is valid as well. For the domination condition, we have

µ′
BH(M

′, c(x), 1|x |
k
) =

1

|M ′|2 · 2|M′| ·
1

|c(x)|2 · 2|c(x)|
· 1

|x |k2

≤ k · 1

c(x)2
· 1

|x |k2
· µ′(x)

≤ 1

poly(|(M, c(x), 1|x |k)
· µ′(x).

■

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 23 / 24

Things We Don’t Know

Completeness of classical NP complete problems i.e. interesting
problems under interesting distributions

Reductions between classical problems extended to their distributional
analogues.

Sriram Venkatesh Average Case Complexity Theory July 17, 2023 24 / 24

