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What is Complexity Theory?

Classifying computational problems according to their resource usage into
problem classes.

Examples:

1 Check if a list is sorted.

2 Add two numbers together.

3 Find the shortest path between two nodes in a graph.

4 Given a graph, check if it is two colorable.

5 Given a graph, check if it is three colorable.
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Turing Machines

The fundamental model of computation we use to solve problems.

A Turing machine consists of an infinite tape and a tape head, which
can read, write, and move along the tape.

σ. . .1 . . . 0

q
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Turing Machines

Given an n bit string, check if the number of 1 bits are even.

even odd

Yes No

11

0 0

1 1 0 1 0 · · ·
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Types of Turing Machines

Definition

In a deterministic Turing machine, the set of rules prescribes at most one
action to be performed for any given situation.

Definition

In a nondeterministic Turing machine, the set of rules may prescribe more
than one action to be performed for any given situation.
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Nondeterministic Turing Machines

a

b

accept reject

c

reject accept
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Classes P vs NP

Definition

The class P consists of all computational problems that can be solved by a
deterministic Turing machine in polynomial time.

Definition

The class NP consists of all computational problems that can be solved by
a nondeterministic Turing machine in polynomial time.

P vs NP problem.
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Problems in class P

Connected graph

Three sum

Two colorable
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Boolean Satisfiability Problem

Definition

A boolean formula is built from boolean variables, operators AND (∧), OR
(∨), NOT (negation, ¬), and parentheses. A formula is said to be
satisfiable if it can be made TRUE by assigning boolean values to its
variables. The Boolean satisfiability problem (SAT) is, given a formula, to
check whether it is satisfiable.

Example formula: (x1 ∨ x2) ∧ (¬x1 ∧ x3)
Assignment: x1 : False; x2 : True; x3 : True
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Boolean Satisfiability Problem

x1: True

x2: True

x3: True x3: False

x2: False

x3: True x3: False

x1: False

x2: True

x3: True x3: False

x2: False

x3: True x3: False
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Polynomial Time Reductions

Definition

Problem A is reducible to problem B if an algorithm for solving problem B
efficiently could also be used as a subroutine to solve problem A efficiently.

Used to establish relationships between computational problems.

We can now solve one problem by solving another problem.
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NP complete problems

Definition

A problem is NP complete if it is in NP and every other NP problem is
reducible to it.

Theorem

Cook Levin Theorem: The boolean satisfiability problem is NP complete.
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Average Case Complexity Problems

Definition

An average case complexity problem consists of a problem D and a
probability distribution µ, written as (D, µ).

µ′(x) = µ(x)− µ(x − 1)

Inputs to distributional problems are always binary numbers. Any
efficient ordering of binary numbers is viable, although we will use
standard lexicographic ordering of binary numbers.
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A Problem with Traditional Definitions

Let us say an algorithm is efficient if it runs in expected polynomial time.

Let algorithm A run in time O(2n) on 1
2n of the inputs, and run in

O(n2) on 1− 1
2n of the inputs.

Let problem B have running time ta(x)
2. i.e. O(22n) on 1

2n of the
inputs and O(n4) on 1− 1

2n of the inputs.

E(ta(x)) = O(n2).

E(tb(x)) = O(2n).

This is a problem!
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Levin’s Definition of Efficient on Average

Definition

An algorithm is said to have running time polynomial on the average if∑
x∈{0,1}∗

µ′(x)
t(x)ε

|x |
= k ,

where t(x) represents the running time of the algorithm.

E( ta(x)
ε

|x | ) = k

E( tb(x)
ε
2

|x | ) = E( (ta(x)
2)

ε
2

|x | ) = k
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Reductions Between Distributional Problems

We reduce problem (D1, µ1) to (D2, µ2).

Input x for D1 is mapped to input M(x) for D2.

What happens if µ′
1(x) >> µ′

2(M(x))?

Solving (D2, µ2) does not mean we can solve (D1, µ1).
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Reductions Between Distributional Problems

Efficiency, Validity, and Domination

Domination: High probability inputs map to high probability inputs,
and low probability inputs map to low probability inputs.∑

x∈{0,1}∗
P[M(x) = y ] · µ′

1(x) ≤ µ′
2(y) · |y |c ,
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Usefulness of Reductions

Theorem

If (D1, µ1) is reducible to (D2, µ2) through a deterministic polynomial time
oracle Turing machine and (D2, µ2) is solvable by a deterministic Turing
machine with a polynomial on average running time, then so is (D1, µ1).
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Bounded Halting Problem

Halting Problem

Given a program and an input, will the program terminate?

Bounded Halting Problem

Given a program, an input, and k , will the program halt within k steps?
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Bounded Halting Problem

Theorem

Bounded halting problem(BH) is NP complete.

Proof.

A generic NP problem asks whether a nondeterministic Turing machine M
accepts an input x in polynomial time. Pass in (M, x , |x |k) for some
arbitrarily large constant k as input into bounded halting problem to solve
the generic NP problem. ■
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Bounded Halting Problem

Theorem

Bounded halting problem is distributional NP complete.

µ′
BH(M, x , 1k) = 1

|M|2·2|M| · 1
|x |2·2|x| ·

1
k2

Given an input x to a generic NP problem, we need to compress x
into c(x) such that the domination condition is satisfied

Compression c(x) is the prefix of µ(x) which differentiates µ(x) from
µ(x − 1).

µ(x − 1) = 0.101101010010

µ(x) = 0.101101011110

µ(x + 1) = 0.101101101010

Pass in (M ′, c(x), |x |k) as input to BH.
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Bounded Halting Problem

Proof.

The size of c(x) is at most log2

(
1

µ′(x)

)
. The reduction from x to c(x) is

efficient due to the distributions being polynomially computable. The
reduction is valid as well. For the domination condition, we have

µ′
BH(M

′, c(x), 1|x |
k
) =

1

|M ′|2 · 2|M′| ·
1

|c(x)|2 · 2|c(x)|
· 1

|x |k2

≤ k · 1

c(x)2
· 1

|x |k2
· µ′(x)

≤ 1

poly(|(M, c(x), 1|x |k )
· µ′(x).

■
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Things We Don’t Know

Completeness of classical NP complete problems i.e. interesting
problems under interesting distributions

Reductions between classical problems extended to their distributional
analogues.
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