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Abstract

Quaternions are numbers composed of a real part an an imaginary part, similar to com-
plex numbers. The imaginary part uses 3 imaginary units, i, j, and k, which satisfy the
equation i2 = j2 = k2 = ijk = −1. First discovered by William Rowan Hamilton in 1843,
quaternions have formed the foundation of a new algebra over the real numbers. This paper
will discuss quaternion algebras, quadratic forms, and applications of quaternions in the real
world.

Contents

1 Introduction 2

2 Quaternion algebras 2
2.1 Groups, rings, and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quaternion algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Involutions 4
3.1 Definition of an involution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Properties of involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Quadratic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Quadratic forms 6

5 Ternary quadratic forms 8
5.1 More quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 What if charF = 2? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Simple algebras 9
6.1 Motives and introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Simple modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3 Semisimple Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



7 Hurwitz integral quaternions 11
7.1 Hurwitz units and primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.2 Factoring a rational prime over quaternions . . . . . . . . . . . . . . . . . . 12
7.3 Factoring the Lipschitz integers . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Proof of the main theorem 13
8.1 Multiplication laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8.2 Conjugation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 Doubling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.4 Completing Hurwitz’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.5 Other properties of the algebras . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.6 Left-sided, right-sided, and both-sided multiplication . . . . . . . . . . . . . 17
8.7 Coordinates of quaternions and octonions . . . . . . . . . . . . . . . . . . . . 17
8.8 N -square identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Applications of quaternions 18
9.1 Hamilton’s quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.2 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.3 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.4 Other areas in physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction

Section 2 will introduce quaternion algebras and connections to ring theory. Section 3
will discuss involutions and opposite algebras. The next two sections will discuss quadratic
forms, with section 5 diving more into ternary quadratic forms. This section will also discuss
a special case of the characteristic of the field where the algebra is based. Section 6 will
discuss simple algebras and simple modules. Finally, in section 7, we prove that the only
composition algebras over R are R, C, H, the set of all quaternions, and O, the set of all
octonions. In section 9, we uncover a couple of applications of quaternions in the real world.

2 Quaternion algebras

First, we must define the new number systems of quaternions and octonions:

Definition 2.1. A quaternion is a number of the form t + xi + yj + zk for t, x, y, z ∈ R,

with i2 = j2 = k2 = ijk = −1. An octonion is a number of the form x∞ +
6∑

n=0

xnin where

the in satisfy i2n = −1 and
in+1in+2 = in+4 = −in+2in+1

in+2in+4 = in+1 = −in+4in+2

in+4in+1 = in+2 = −in+1in+4

with indices taken modulo 7.
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2.1 Groups, rings, and fields

An introduction to ring theory is required for the study of quaternion algebras and
quadratic forms. The basic definitions are given below:

Definition 2.2. A group G is a set with binary operation ∗ with the following properties:

• For a, b, c ∈ G, ∗ satisfies (a ∗ b) ∈ G and (a ∗ b) ∗ c = a ∗ (b ∗ c);

• There exists e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G; and

• For all a ∈ G, there exists b ∈ G such that a ∗ b = b ∗ a = e.

A group is abelian if a ∗ b = b ∗ a for all a, b ∈ G.

Definition 2.3. A ring R is a set with two binary operations, + and × such that:

• R is an abelian group under + with additive identity 0;

• For a, b, c ∈ R, × satisfies (a× b) ∈ R and (a× b)× c = a× (b× c); and

• For all a, b, c ∈ R, we have a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

Definition 2.4. A field F is a set with operations + and × such that F is abelian under +,
and F \{0} is abelian under ×. The characteristic of F is how many times the multiplicative
identity must be added to get the additive identity. If this cannot be done, then charF = 0.

Throughout the paper, let F be a commutative field with an algebraic closure. Assume
that all rings are associative, not necessarily commutative, and have multiplicative identity
1.

2.2 Quaternion algebras

Below is the definition of an algebra provided on page 21 of [Voi21]:

Definition 2.5. An algebra over a field F is a ring B with homomorphism F → B such
that the image of F lies in the center Z(B) of B, defined by

Z(B) := {α ∈ B : αβ = βα ∀β ∈ B}.

Definition 2.6. A homomorphism of F -algebras is a ring homomorphism which restricts
to the identity on F . Such homomorphism is necessarily F -linear. An endomorphism is a
homomorphism of B → B. An isomorphism is an invertible F -algebra homomorphism, and
an invertible endomorphism is an automorphism.

Definition 2.7. An algebra B is a quaternion algebra if there exist i, j ∈ B such that
1, i, j, ij is an F -basis for B and

i2 = a, j2 = b, and ji = −ij.
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A division ring is a ring D such that D \ {0} is a group under multiplication. A division
algebra is an algebra that is also a division ring.

Lemma 2.8. An F -algebra B is a quaternion algebra if and only if there exist nonzero
i, j ∈ B that generate B as an F -algebra and satisfy

i2 = a, j2 = b, and ji = −ij.

with a, b ∈ F×.

Proof. It is necessary and sufficient to show that 1, i, j, ij are linearly independent. Suppose
that α = t+ xi+ yj + zij = 0 with t, x, y, z ∈ F . Using the relations given, we find that

0 = i(αi+ iα) = 2a(t+ xi).

Since charF ̸= 2 and a ̸= 0, we conclude that t + xi = 0. Similarly, we have t + yj =
t+ zij = 0. Thus,

α− (t+ xi)− (t+ yj)− (t− zij) = −2t = 0.

Since i, j are nonzero and B is not the zero ring, we have 1 ̸= 0, so t = 0. If x ̸= 0, we have
i2 = 02 = a = 0, which is impossible, so x is zero. Similarly, y and z are zero.

We define conjugation as we do for complex numbers: just negate the imaginary part.
We can also represent Hamilton’s quaternions in matrix form. We have

t+ xi+ yj + zk = u+ jv 7→
[
u −v
v u

]
with u := w + xi and v := y + zi.

Denote by H0 the set of quaternions with imaginary part 0. Then vw = −v · w + v × w
where · is the dot product and × is the cross product. Two vectors are orthogonal when
their dot product is 0.

Lemma 2.9. For all v, w ∈ H0, we have the following:

1. vw ∈ H0 if and only if v, w are orthogonal.

2. v2 = −||v||2 ∈ R

3. wv = −vw if and only if v, w are orthogonal.

Proof. Direct application of the equation vw = −v · w + v × w.

3 Involutions

3.1 Definition of an involution

Definition 3.1. An involution : B → B is an F -linear map that satisfies:

1. 1 = 1, where 1 is the multiplicative identity;

2. α = α for all α ∈ B; and

3. αβ = βα for all α, β ∈ B.
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3.2 Properties of involutions

Definition 3.2. An involution is standard if αα ∈ F for all α ∈ B.

Examples of standard involutions include the identity map on F as an F -algebra, and
the R-algebra C.

Lemma 3.3. Suppose that charF ̸= 2, and let B =

(
a, b

F

)
. The map

α = t+ xi+ yj + zij 7→ α = t− xi− yj − zij

is a standard involution on B.

Proof. The first two properties are satisfied as 1 = 1 and α = α. For the third property, we
only need to verify for a basis due to F -linearity:

ij = −ij = ji = (−j)(−i) = j̄ ī.

The other multiplications can be proven similarly. Finally, we have

αᾱ = (t+ xi+ yj + zij)(t− xi− yj − zij) = t2 − ax2 − by2 + abz2 ∈ F.

We now move to reduced trace and reduced norm. We define the reduce trace as

trd : B → F, α 7→ α + α (3.1)

and similarly the reduced norm

nrd : B → F, α 7→ αα (3.2)

3.3 Quadratic fields

We next explore the degree of an algebra. The degree is the smallest nonnegative integer
m such that every element α ∈ B satisfies a monic polynomial of degree m, if such an integer
exists; otherwise, the degree is ∞.

We now state the following theorem:

Theorem 3.4. Suppose charF ̸= 2 and let B be a division F -algebra. Then B has degree
at most 2 if and only if one of the following holds:

1. B = F ;

2. B = K is a quadratic field extension of F ; or

3. B is a division quaternion algebra over F .

The proof is given on page 41 on [Voi21].

Corollary 3.5 (Frobenius). Let B be a division algebra of finite degree over R. Then either
B = R or B ≃ C or B ≃ H as R-algebras.
Proof. Suppose α ∈ B \ R. Then we know that R(α) ≃ C, so α satisfies a polynomial of
degree 2. If B ̸= R, then B has degree 2, so B ≃ C or B is a division quaternion algebra
over R, meaning B ≃ H.
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4 Quadratic forms

From Equation 3.2, we know that a quaternion algebra B has a reduced norm map, which
defines a quadratic form, a homogeneous polynomial of degree 2 in F [t, x, y, z].

Let Q : V → F be a quadratic form. Then Q can be diagonalized by a change of variables:
there is a basis e1, . . . , en of V such that

Q(x1e1 + x2e2 + · · ·+ xnen) = Q(x1, x2, . . . , xn) = a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n (4.1)

with ai ∈ F . The discriminant is defined by disc(Q) := a1a2 · · · an/2n ∈ F/F×2. A quadratic
form is nondegenerate if the discriminant is nonzero. Now we explore the orthogonal group
of a quadratic form:

Definition 4.1. A similarity from Q to another quadratic form Q′ : V ′ → F is a pair (f, u)
where f : V →̃V ′ is an F -linear isomorphism and u ∈ F× satisfy Q′(f(x)) = uQ(x) for all
x ∈ V . An isometry is a similarity with u = 1.

Definition 4.2. The orthogonal group of Q is the group of self-isometries of Q. In other
words,

O(Q)(F ) := {f ∈ AutF (V ) : Q(f(x)) = Q(x) ∀x ∈ V }.

[Voi21] states the following main result about quadratic forms and quaternion algebras:

Theorem 4.3. Let B be an F -algebra. Then B has a nondegenerate standard involution if
and only if one of the following holds:

1. B = F ;

2. B = K has dimF K = 2 and either K ≃ F × F or K is a field; or

3. B is a quaternion algebra over F .

Now, we are ready to define a quadratic form:

Definition 4.4. A quadratic form is a map Q : V → F on an F -vector space V satisfying:

1. Q(ax) = a2Q(x) for all a ∈ F and x ∈ V ; and

2. The map T : V × V → F defined by

T (x, y) = Q(x+ y)−Q(x)−Q(y)

is F -bilinear.

Definition 4.4 can help us verify the statement in Equation 4.1. Let e1, e2, . . . , en be a
basis for V with finite dimension. Then we have

Q(x1e1 + x2e2 + · · ·+ xnen) =
∑
i

Q(ei)x
2
i +

∑
i<j

T (ei, ej)xixj ∈ F [x1, x2, . . . , xn].
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The diagonalization makes the second sum above equal to 0, thus making the above have
the same form as Equation 4.1. In matrix form, we have

[T ] := (T (ei, ej))i,j ∈ Mn(F )

where Mn(F ) is the algebra of n× n matrices with entries in F . [T ] is known as the Gram
matrix of Q. This allows for a new way of viewing orthogonal vectors in a vector space: x
and y in V are orthogonal if T (x, y) = 0.

Lemma 4.5. Let B be an F -algebra with a standard involution. Then nrd : B → F is a
quadratic form on B. Indeed, nrd(aα) = a2α for all α ∈ B, and we have

T (α, β) = (α + β)(α + β)− αα− ββ = αβ + βα = αβ + αβ = trd(αβ).

We then have

trd(αβ = trd(α(trd(β)− β)) = trd(α) trd(β)− trd(αβ).

This means that α and β are orthogonal if and only if trd(αβ) = αβ + βα = 0 if and only if
trd(αβ) = trd(α) trd(β).

Definition 4.6 (Discriminant in matrix form). The discriminant of a quadratic form Q is
disc(Q) := 2−n detT where T is the Grammatrix. The signed discriminant is (−1)n(n−1)/2 disc(Q).

We are now ready to prove Theorem 4.3:

Proof. If B = F , then the standard involution is the identity and nrd is nondegenerate. If
dimF K = 2, then after completing the square, we have K ≃ F [x]/(x2 − a) and in the basis
1, x we find nrd ≃ ⟨1, a⟩. Thus, nrd is nondegenerate if and only if a ∈ F× if and only if
K ≃ F × F .

Now suppose dimF B > 2. Let 1, i, j be part of a normalized basis for B with respect
to the quadratic form nrd. Then T (1, i) = 0, so i2 = a ∈ F× since nrd is nondegenerate.
Similarly, j2 = b ∈ F×, so we have ij + ji = 0. We have T (1, ij) = trd(ij) = 0 and
T (ij, i) = trd(̄i(ij)) = −a trd(j) = 0 and similarly T (ij, j) = 0. Thus, ij is orthogonal to
1, i, and j. If ij = 0, then i(ij) = aj = 0, meaning j = 0, contradiction. Since nrd is
nondegenerate, it follows that the set {1, i, j, ij} is linearly independent.

Therefore, the subalgebra A of B generated by i and j satisfies A ≃
(
a, b

F

)
. If dimF B =

4, we are done. So let k ∈ A⊥; then trd(k) = 0 and k2 = c ∈ F×. Thus, k ∈ B×, with
k−1 = c−1k. By Lemma 4.5, we have kα = αk for any α ∈ A since k̄ = −k. But then

k(ij) = (ij)k = j̄ īk = j̄ki = k(ji),

meaning ij = ji = −ij since k ∈ B×, which is a contradiction.

Theorem 4.7 (Cartan-Dieudonné). Let (V,Q) be a nondegenerate quadratic space with
dimF V = n. Then every isometry f ∈ O(Q)(F ) is a product of at most n reflections.

Proof. See the references given in [Voi21]. The proof uses induction on n.
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5 Ternary quadratic forms

5.1 More quadratic forms

We begin the section with a proposition relating quadratic spaces and quaternion alge-
bras:

Proposition 5.1. Let B and B′ be quaternion algebras over F . Then the following are
equivalent:

1. B ≃ B′ are isomorphic as F -algebras;

2. B ≃ (B′)op are isomorphic as F -algebras;

3. B ≃ B′ are isometric as quadratic spaces; and

4. B0 ≃ (B′)0 are isometric as quadratic spaces.

An isometry f : B0→̃(B′)0 extends uniquely to an isomorphism for B→̃B′ or B→̃(B′)op.

Proof. See page 67 of [Voi21].

The ternary quadratic forms are those of quaternions whose real part is 0. This quadratic
forms carries the same information as a quadratic form for all quaternions. Next, we explore
the Clifford algebra of a quadratic form Q:

Proposition 5.2. Let Q : V → F be a quadratic form where F has finite dimension and
arbitrary characteristic. Then there exists an F -algebra Clf Q such that:

1. There is an F -linear map ι : V → Clf Q such that ι(x)2 = Q(x) for all x ∈ V ; and

2. Clf Q has the following universal property: if A is an F -algebra and ιA : V → A is
a map such that ιA(x)

2 = Q(x) for all x ∈ V , then there exists a unique F -algebra
homomorphism ϕ : Clf Q → A such that the diagram

V Clf Q

A

ι

ιA
ϕ

commutes.

Proof. See page 69 of [Voi21].

8



5.2 What if charF = 2?

The theorems in the previous sections assumed that charF ̸= 2. Here, we explore this
special case. First, we define the basis of a quaternion algebra B over F with charF = 2:

Definition 5.3. A quaternion algebra B over F with charF = 2 has a basis 1, i, j, k such
that

i2 + i = a, j2 = b, and k = ij = j(i+ 1).

We now prove the following theorem:

Theorem 5.4. Let B be a division F -algebra with a standard involution that is not the
identity. Then either B is a separable quadratic field extension of F or B is a quaternion
algebra over F .

To prove this theorem, we first prove the following:

Theorem 5.5. Let B be an F -algebra with charF = 2. Then B has a nondegenerate
standard involution if and only if one of the following holds:

1. B = F ;

2. B = K is a separable quadratic F -algebra; or

3. B is a quaternion algebra over F .

Proof of Theorem 5.5. If B = F , then the standard involution is the identity.
If dimF B = 2, then B = K has a unique standard involution. This involution is

nondegenerate if and only if K is separable.
So suppose dimF B = 2. Since B has a nondegenerate standard involution, there exists

an element i ∈ B such that T (i, 1) = trd(i) ̸= 0. i is not in F since the reduced trace of
elements in F is 0. Without loss of generality, suppose that trd(i) = 1, whence i2 = i + a
for a ∈ F , and nrd ∥F+Fi = [1, a].

By nondegeneracy, there exists j orthogonal to 1 and i such that nrd j = b ̸= 0. Thus,
trd(j) = 0 so j̄ = j and j2 = b ∈ F×. Furthermore,

0 = trd(ij) = ij + jī = ij + j(i+ 1)

meaning ij = j(i+1). The remainder of the proof finishes as in the proof of Theorem 4.3.

Now, Theorem 5.4 can be proven using the above proof.

6 Simple algebras

6.1 Motives and introduction

Among the set of all algebras are the simple algebras, ones that cannot be broken down
further. A ring A is simple if it has no nontrivial two-sided ideals, meaning that the only
two-sided ideals are {0} and A. If ϕ : A → A′ is a ring homomorphism and A is simple, then
ϕ is either injective or the zero map. The main result we wish to prove is:
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Theorem 6.1 (Wedderburn-Artin). Let F be a field and B be a finite-dimensional F -algebra.
Then B is simple if and only if B ≃ Mn(D) where n is a positive integer and D is finite-
dimensional division F -algebra.

It is also convenient to work with semisimple algebras, which are finite direct products of
simple algebras. The second main result concerns with simple subalgebras of simple algebras:

Theorem 6.2 (Skolem-Noether). Let A,B be simple F -algebras and suppose that B is cen-
tral. Suppose that f, g : A → B are homomorphisms. Then there exists β ∈ B such that
f(α) = β−1g(α)β for all α ∈ A.

6.2 Simple modules

Throughout this section, let B be a finite-dimensional F -algebra.
A representation of B over F is a vector space V over F together with an F -algebra

homomorphism B → EndF (V ). For example, the space of column vectors F n is a left
module of Mn(F ) and the space of row vectors is a right Mn(F )-module.

Definition 6.3. Let V be a left B-module. V is simple if V ̸= {0} and the only B-
submodules of V are {0} and V .

Lemma 6.4. A finite-dimensional left B module V admits a filtration

V = V0 ⊋ V1 ⊋ · · · ⊋ Vr = {0}

such that Vi/Vi+1 is simple for each i.

Lemma 6.5 (Schur). Let B be an F -algebra, and V1, V2 be simple B-modules. Then any
homomorphism ϕ : V1 → V2 is either zero or an isomorphism.

Proof. We have that kerϕ and img ϕ are B-submodules of V1 and V2, respectively, so either
ϕ = 0 or kerϕ = {0} and img ϕ = V2, hence, V1 ≃ V2.

One point to take away is that endomorphisms of a left module act on the right, but
the more common convention is that endomorphisms act on the left. This is where opposite
algebras are involved.

Lemma 6.6. Let B be a finite-dimensional simple F -algebra. Then there exists a simple left
B-module that is unique up to isomorphism.

Proof. Since B is finite-dimensional over F , there exists a nonzero left ideal I of B of
minimal dimension, and such an ideal I is necessarily simple. Moreover, if v ∈ I is nonzero
then Bv = I, since Bv ⊆ I is nonzero and I is simple. Let I = Bv with v ∈ I.

Now let V be any simple B-module; we will show I ≃ V as B-modules. Since B is
simple, the natural map B → EndF (V ) is injective (since it is nonzero). Therefore, there
exists x ∈ V such that vx ̸= 0, so Ix ̸= {0}. Thus, the map I → V by β 7→ βx is a nonzero
B-module homomorphism, so it is an isomorphism by Lemma 6.5.

10



6.3 Semisimple Modules

Assume that B is an F -algebra of finite dimension, and V is a B-module of finite dimen-
sion.

Definition 6.7. A B-module V is semisimple if V is isomorphic to a finite direct sum of
simple B-modules V ≃

⊕
i Vi. B is a semisimple F -algebra if B is semisimple as a left

B-module.

Lemma 6.8. The following statements are always true:

1. A B-module V is semisimple if and only if it is the sum of simple B-modules.

2. A submodule or quotient module of a semisimple B-module is semisimple.

3. If B is a semisimple F -algebra, then every B-module is semisimple.

Proof. For item 1, let V =
∑

i Vi be the sum of simple B-modules. Since V is finite-
dimensional, we can rewrite it as an irredundant finite sum; and then since each Vi is simple,
the intersection of any two distinct summands is {0}, so the sum is direct.

For item 2, Let W be a submodule of semisimple B-module V . Every x ∈ W with
x ̸= 0 is contained in a simple B-module of W by minimality, so W =

∑
i Wi is a sum of

B-modules. The result now follows from item 1 for submodules. For quotient modules, let
ϕ : V → Z be a surjective B-module homomorphism, and ϕ−1(Z) =

∑
i Wi is a sum of

simple B-modules. The proof finishes by Schur’s Lemma.
For item 3, let V be a B-module. Since V is finitely generated, there is a surjective

homomorphism Br → V . for some r ≥ 1. Since Br is semisimple, so is V .

7 Hurwitz integral quaternions

We must define the set of quaternions that are integral. One obvious choice is to let
t + xi + yj + zk be integral when t, x, y, z ∈ Z. These numbers are known as the Lipschitz
integers (L). However, Hurwitz found an alternate definition with nicer properties:

Definition 7.1. A quaternion t + xi + yj + zk is integral when t, x, y, z ∈ 1
2
Z, where 1

2
Z

denotes the set of all integers and half-integers. Denote the set of Hurwitz integers by H.

The reason that this definition is more suitable is because it satisfies the “division with
small remainder” property.

7.1 Hurwitz units and primes

In integers, p = 1× p = p× 1. Similarly, in Hurwitz integers, we have

P = P ′ × U = V × P ′′

We must now find the Hurwitz units, namely the Hurwitz integers of norm 1:
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Theorem 7.2. There are precisely 24 Hurwitz units. They are ±1,±i,±j,±k, and the 16
others ±1

2
± 1

2
i± 1

2
j ± 1

2
k.

Proof. For a Lipschitz unit, we must have |t|, |x|, |y|, |z| ≥ 1 and t2 + x2 + y2 + z2 = 1,
so we get that one of the variables is ±1 and the rest are 0. For the other units, we have
|t|, |x|, |y|, |z| ≥ 1/2, so all the variables are 1/2.

This means that the only factorizations of a prime P into two Hurwitz integers are
P = PU−1 × U and P = V × V −1P , as U and V run across the 24 Hurwitz units.

Theorem 7.3. Let Q be a primitive Hurwitz integer with norm q. Suppose q = p0p1 · · · pk is
a factorization of q into rational primes. Let the factorization Q = P0P1 · · ·Pk be modelled
on q = p0p1 · · · pk if the norm of Pi is pi. The other factorizations of Q modelled over the
factorization of q are of the form

Q = P0U1 · U−1
1 P1U2 · · · · · U−1

k Pk.

Proof. The ideal p0H +QH must be principal, so that we have p0H +QH = P0H for some
P0. Here, [P0] must divide [p0] = p20. so it is one of 1, p0, or p

2
0.

However, if [P0] = 1, then p0H+QH would be all of H, since its typical element p0a+Qb
has norm

[p0a] + 2[p0a,Qb] + [Qb] = p20[a] + 2p0[a,Qb] + p0 · · · pk[b],
which is divisible by p0. We also cannot have [P0] = p20; this would mean that p0 = P0U for
a Hurwitz unit U . The only possibility is that [P0] = p0, showing that P0 is a Hurwitz prime
dividing Q.

Thus, we have Q = P0Q1 with [Q1] = p1 · · · pk and P0 is unique up to right-multiplication
by a unit. Similarly, we have

Q1 = P1Q2, Q2 = P2Q3, . . .

with Pi a Hurwitz prime of norm pi. This gives Q = P0P1 · · ·PkQ
′ for a unit Q′, but this

can be absorbed with Pk. Thus, prime factorization is unique up to unit-migration.

7.2 Factoring a rational prime over quaternions

Next, we dive into the quaternionic factorizations of rational integers, especially rational
primes.

Definition 7.4. A quadratic residue r satisfies r ≡ a2 (mod p) for some a ̸= 0. The
quadratic non-residues are the numbers that cannot be represented in this form.

Lemma 7.5. Each quadratic non-residue n satisfies n ≡ a2 + b2 (mod p) for a, b ̸= 0, and

Lemma 7.6. 0 ≡ a2 + b2 + c2 (mod p) for a, b, c ̸= 0.

Proof of Lemmas 7.5 and 7.6. Note that the non-residues are quadratic residue multiples of
one of the non-residues. We also know that there exists a non-residue that is one more than
a residue, so for this choice of non-residue n, we have n = a2 + 12. Therefore, −1 ≡ x2 + y2

for x, y ̸= 0, so 0 ≡ x2 + y2 + 12 (mod p).
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Theorem 7.7. Each rational prime p can be factored into p = P0P0.

Proof. Since x2 ≡ (p − x)2, we can assume in Lemma 7.6 that 0 ≤ a, b, c ≤ p/2. Thus,
a2 + b2 + c2 = mp for 0 < m < p, so we have a quaternion Q = a + bi + cj with norm mp.
Therefore, if pH+QH = P0H, then [P0] = p.

In fact, p has as many factorizations as a quaternion P of norm p. It can be shown that
the number of factorizations is 24 when p = 2 and 24(p+ 1) otherwise.

7.3 Factoring the Lipschitz integers

Geometrically, the Lipschitz integers L form a 4-dimensional hypercube I4. The Hurwitz
integers are formed by three copies of this hypercube; they are L = I4, ωL, and ωL where
ω = −1+i+j+k

2
. We attempt to count Lipschitzian factorizations.

Lemma 7.8. Any factorization of a Lipschitzian into Hurwitzians is equivalent by unit-
migration to one into Lipschitzians.

Proof. We study the effect of ω migration:

α = βγ → α = βω · ωγ.

Since α is in [0] of [1], the diagram on page 63 of [CS03] includes all possibilities for the cosets
of β and γ, and there is a factorization in each triple where both factors are Lipschitzian.

In fact, the number of Lipschitzian factorizations equivalent to P1P2 · · ·Pk is 8k−13l−1

where l is the number of factors of even norm.
Between pi and pi+1 · · · pk, we can always transfer the eight Lipschitzian units and the

three powers of ω when the factors have even norm.

8 Proof of the main theorem

We are now ready to prove the main theorem explained in the introduction:

Theorem 8.1 (Hurwitz). The only composition algebras with identity on a real Euclidean
space are R, C, H, and O.

The proof will follow the outline in [CS03]. Each subsection will prove an important
lemma or set of laws that will contribute to the final proof of the theorem. Let [a, b] denote
the inner product of a and b.

8.1 Multiplication laws

We first deduce some consequences of

Law 8.2 (Composition Law). [xy] = [x][y].

Law 8.3 (Scaling Laws). [xy, xz] = [x][y, z] (and [xz, yz] = [x, y][z]).

13



Proof. Replace y with y + z in Law 8.2 to get

[xy] + [xz] + 2[xy, xz] = [x]([y] + 2[y, z] + [z]),

from which we cancel some terms and divide by 2.

Law 8.4 (Exchange Law). [xy, uz] = 2[x, u][y, z]− [xz, uy].

Proof. Replace x with x+ u in Law 8.3 to get

[xy, xz] + [xy, uz] + [uy, xz] + [uy, uz] = ([x] + 2[x, u] + [u])[y, z],

from which we cancel some terms and rearrange.

8.2 Conjugation laws

Now, we prove three laws involving the conjugation x̄ = 2[x, 1]− x.

Law 8.5 (Braid Laws). [xy, z] = [y, x̄z] (and [xy, z] = [x, zȳ]).

Proof. Substitute u = 1 in Law 8.4 to get

2[x, 1][y, z]− [xz, y] = [y, (2[x, 1]− x)z].

Remark 8.6. Six inner products can be equated in a cycle with the Braid Laws:

[xy, z] = [y, x̄z] = [yz̄, x̄] = [z̄, ȳx̄] = [z̄x, ȳ] = [x, zȳ] = [xy, z].

Law 8.7 (Biconjugation). x = x.

Proof. Substitute y = 1 and z = t and use Law 8.5 twice to get

[x, t] = [1, x̄t] = [x, t],

which holds for all t.

Law 8.8 (Product Conjugation). xy = ȳx̄.

Proof. Repeated use of Law 8.5 gives

[ȳx̄, t] = [x̄, yt] = [x̄t̄, y] = [t̄, xy] = [t̄xy, 1] = [xy, t].

This conforms to the properties of an involution.
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8.3 Doubling laws

Before introducing the three laws that follow, we must first know how to construct a
Dickson double. Let H be an n-dimensional subalgebra containing 1, let i be a unit vector
orthogonal to H, and let a, b, c, . . . denote elements of H. Then ī = −i and [i, a] = 0. This
will cause the 2[x, u][y, z] term to vanish when applying the Exchange Law. The next three
laws investigate inner product, conjugation, and product on the Dickson double algebra
H + iH in terms of those on H.

Law 8.9 (Inner Product Doubling). [a+ ib, c+ id] = [a, c] + [b, d].

Proof. To prove this law, we use these three equations:

[a, id] = [ad̄, i] = 0, [ib, c] = [i, cb̄] = 0, [ib, id] = [i][b, d] = [b, d].

The inner product is distributive over addition, so the proof is complete.

Law 8.10 (Conjugation Doubling). a+ ib = ā− ib.

Proof. ib = 2[ib, 1]− ib = −ib. Add ā to both sides. Note that ib = −ib = −b̄̄i = b̄i.

Law 8.11 (Composition Doubling). (a+ ib)(c+ id) = (ac− db̄) + i(cb+ ād).

Proof. We use the following three equations:

[a(id), t] = [id, āt] = 0− [it, ād] = [t, i(ād)], (8.1)

[(ib)c, t] = [ib, tc̄] = [b̄i, tc̄] = 0− [b̄c̄, ti] = [(cb)i, t] = [i(cb), t], (8.2)

[(ib)(id), t] = −[ib, t(id)] = 0 + [i(id), tb] = −[id, i(tb)] = −[i][d, tb] = [−db̄, t]. (8.3)

Equation 8.1 results from using Laws 8.5, 8.4, and 8.5 in that order. Equation 8.2 results
from using Laws 8.5, 8.10, 8.4, 8.5, and 8.10 in that order. Equation 8.3 results from using
Laws 8.5, 8.4, 8.5, 8.3, and 8.5 in that order. We finish using distributive properties.

8.4 Completing Hurwitz’s Theorem

We have shown that a composition algebra Z that has a proper subalgebra contains its
Dickson double. Therefore, if Z is finite-dimensional, then it must be the result of repeated
doubling of its smallest subalgebra R. We now show that the composition property can last
for only three doubling operations.

Lemma 8.12. Z = Y + iZY is a composition algebra when Y is an associative composition
algebra.
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Proof. For a, b, c, d ∈ Y , we have

[a+ iZb, c+ iZd] = [(ac− db̄) + iZ(cb+ ād)]

= [a][c] + [a][d] + [b][c] + [b][d]

= [ac]− 2[ac, db̄] + [db̄] + [cb] + 2[cb, ād] + [ād]

Therefore, [ac, db̄] = [cb, ād], so (ac)b = a(cb).

Lemma 8.13. Y = X+iYX is an associative composition algebra when X is a commutative
associative composition algebra.

Proof. Since (iY b)c = iY (cb), we must have bc = cb due to the associative property that X
has due to Y ’s associative property.

Lemma 8.14. X = W + iXW is a commutative associative composition algebra when W is
a commutative associative composition algebra with trivial conjugation.

Proof. We have ix = x̄i for all x ∈ W . Since X has commutative properties, W must have
commutative properties as well, so x = x̄.

We have proven Theorem 8.1. Now we extend up to isotopy for algebras without identi-
ties.

Let u and v be elements in an arbitrary composition algebra of norm 1. Then x → xv
and y → uy are orthogonal maps, so they have inverses α and β, respectively. Now, define
a new multiplication by x ⋆ y = xαyβ. Then

[x ⋆ y] = [xαyβ] = [xα][yβ] = [x][y],

showing that ⋆ still gives a composition algebra; and

uv ⋆ uy = (uv)α(uy)beta = uy

xv ⋆ uv = (xv)α(uv)β = xv,

showing that uv is a two-sided identity for the new multiplication.

Remark 8.15. Any norm 1 element can be converted into an identity element by applying
an isotopy, so that the monotopies are transitive on such elements.

8.5 Other properties of the algebras

We define x−1 = x̄/[x] for x ̸= 0.

Law 8.16 (Inverse Laws). x̄(xy) = [x]y = yx(x̄)

Proof. [x̄(xy), t] = [xy, xt] = [x][y, t] = [[x]y, t].

Law 8.17 (Alternative Laws). x(xy) = x2y and (yx)x = yx2

Proof. Substitute x̄ = 2[x, 1]− x in x̄(xy) = (x̄x)y.
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Law 8.18 (Moufang Laws). (xy)(zx) = (x(yz))x = x((yz)x).

Proof.

[(xy)(zx), t] = [xy, t(x̄z̄)] = 2[x, t][y, x̄z̄]− [x(x̄z̄), ty]

= 2[x, t][yz, x̄]− [x̄z̄, x̄(ty)]

= 2[yz, x̄][x, t]− [x][z̄ȳ, t]

= 2[x, yz][x, t]− [x][yz, t].

Thus, (xy)(zx) is a function in x and yz only. We can replace y and z with any two elements
with the same product, and so deduce that (xy)(zx) = (x(yz))(1x) = (x(yz))x and similarly
on the other side. The third alternative law results from plugging in z = 1.

8.6 Left-sided, right-sided, and both-sided multiplication

The breakdown of the associative law motivates us to study multiplicative operators. We
define left-multiplication, right-multiplication, and bi-multiplication as follows:

Definition 8.19. Lx : y → xy, Rx : y → yx, Bx : y → xyx.

The third alternative law shows that Bx can be obtained by multiplying Lx and Rx in
either order. We will create a geometrical link between Bx and reflections:

Definition 8.20. ref(x) : t → t− 2[x,t]
[x]

x represents a reflection in a vector x.

We see that (xy)(zx) = −[x]yzref(x) = [x](yz)ref(1)·ref(x).

8.7 Coordinates of quaternions and octonions

We now recover our original definitions of quaternions and octonions in Definition 2.1. Let
i be the unit that extends R to C; this is the well-known square root of −1. If we let j be the
unit that extends C to H, we have Hamilton’s equations for quaternions: i2 = j2 = k2 = −1
and ij = k, etc.

Finally, we extend H to O. We do this by letting i = i1, j = i2, and k = i4. The unit
that extends the quaternions to the octonions is i0, and the seven imaginary units i0, . . . , i6
satisfy i0in = i3n, with indices taken modulo 7.

8.8 N-square identities

By Theorem 8.1, the identity

(x2
1 + x2

2 + · · ·x2
N)(y

2
1 + y22 + · · · y2N) = z21 + z22 + · · · z2N

holds when N = 1, 2, 4, 8. However, A. Pfister proved that in 1967 that the N -square identity
holds when N = 2n for a nonnegative integer n. Please see reference 34 in [CS03] for more
details.
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9 Applications of quaternions

Several applications of quaternions exist in the real world. Hamilton created his quater-
nions to model three-dimensional rotations, which are used in computer graphics, robotics,
navigation systems, and many areas of physics.

9.1 Hamilton’s quaternions

Hamilton created his quaternions in order to mathematically describe three-dimensional
rotation about an axis through some angle.

Theorem 9.1. The map [q] : v → q−1vq is a congruence of Euclidean space.

This map is a simple rotation, which is a rotation in n dimensions that fixes an (n− 2)-
dimensional subspace. Additionally, the product of simple rotations x → q−1

1 xq1 and x →
q−1
2 xq2 is x → (q1q2)

−1x(q1q2) due to the fact that q−1
2 q−1

1 = (q1q2)
−1.

However, this method of modeling rotations has been phased out due to other methods
using linear algebra being used instead of quaternions. However, quaternions are used in
computer graphics due to the smaller amount of memory required to store quaternions
versus a rotation matrix.

9.2 Computer Graphics

Two rotations in 3D space can be modeled using linear interpolation between the Euler
angles. However, this method can lead to gimbal lock, which can severely affect the smooth-
ness of an animation. Using quaternions leads to a more realistic animation. A technique
that is gaining popularity is spherical linear interpolation, which relies on the fact that the
set of all unit quaternions form a unit sphere in 4D hyperspace.

9.3 Aerodynamics

Gimbal lock is caused when two of the rotation axes in a set of three rotations overlap.
This phenomenon was encountered during the Apollo 11 mission on the inertial measurement
unit of the lunar module.

Quaternions provide an axis of rotation and a size (angle) of rotation, which makes them
more efficient to use than using a set of three rotations along the three coordinate axes.

9.4 Other areas in physics

Rotation with quaternionic models spinors very well due to the property that you only
need to rotate a point two full revolutions to get to the original, which is what happens with
particles of spin 1/2.

Additionally, quaternions can be used to express the Lorentz transform, which makes it
useful for Special and General Theories of Relativity. They can also be used in scattering
experiments such as crystallography.
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