
Bubbles and Area-Minimizing Currents

Bubbles and Area-Minimizing Currents

Sieon (Sean) Kim
seankim146@gmail.com

Euler Circle

Summer 2023

seankim146@gmail.com


Bubbles and Area-Minimizing Currents

What is Geometric Measure Theory?

Differential Geometry + Measure Theory

We study “generalized submanifolds” of Rn, standard analysis
of smooth surfaces is inadequate due to their lack of
compactness properties.

Currents!
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Plateau’s Problem

GMT rose to prominence during the mid 1900s with the efforts of
early pioneers such as H. Federer and W.H. Fleming to solve
Plateau’s problem, named after the Belgian physicist Joseph
Plateau who related the original mathematical problem posed by J.
Lagrange in 1760 to the geometry of soap films and soap bubbles.
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Statement of Plateau’s Problem

Conjecture

For every smooth closed curve Γ in R3, there is a surface of least
area among all surfaces which have Γ as their boundary.
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Plateau and Bubbles

Plateau showed that via physical arguments about the surface
tension of soap films, they mimic area-minimizing surfaces
spanning a given boundary, namely, a piece of wire to act as the
perimeter.
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Currents

Definition

An m-current in Rn is an element of (Dm(U))∗, the (continuous)
dual space of the space of smooth, compactly supported
differential m-forms on Rn.

This may seem like (and is) a very technical definition. However,
currents may intuitively be understood as a kind of “smooth”
surface that satisfies certain extra properties that ensure
compactness properties.
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Mass of Currents

We now define a notion of “surface-area” for currents, in order to
define the idea of area-minimizing currents.

Definition

The mass of a current T is defined by

M(T ) := sup
|ω|≤1

T (ω).

Those familiar with a bit of analysis will recognize that the mass is
analogous to the operator norm. Now, it is clear that we may call
a current T area-minimizing if

M(T ) ≤ M(R)

for any other current R. (Of course, there must be certain
restrictions)
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Federer-Fleming Compactness Theorem

Theorem (Federer-Fleming Compactness Theorem)

If {Tj} is a sequence of integer-rectifiable m-currents with

sup
j≥1

M(Tj) < ∞, sup
j≥1

M(∂Tj) < ∞,

then there is a subsequence {Tj ′} that (weakly) converges to some
integer-rectifiable current T in U.
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Utility of Compactness

It is a standard fact that the mass M of currents is
lower-semicontinuous. This means that for every sequence of
currents {Tj} converging weakly to some T , we have

M(T ) ≤ lim inf
j→∞

M(Tj).

The proof is almost trivial, yet this result shows the value in
considering a sequence of currents in minimization problems such
as that of Plateau’s problem as guaranteed in the Compactness
Theorem: essentially, if one considers a sequence of
area-minimizing currents, then the limit will be the global
minimizer.
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Proving the Compactness Theorem

1 Existence: a simple consequence of the Banach-Alaoglu
Theorem.

2 Closure: a much more difficult proof, involving a myriad of
technical results and machinery.

Slicing: intersecting a current with the level set of a Lipshitz
map to obtain a lower dimensional current.
The Deformation Theorem: allows one to approximate an
integer-multiplicity current with currents with more structure
by deforming it onto a grid mesh.
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Solution to Plateau’s Problem

Theorem

We work in Rm+k . Let S be an integer multiplicity (m− 1)-current
with compact support and ∂S = 0. Then there is an integer
multiplicity m-current T with compact support, ∂T = S , and

M(T ) ≤ M(R)

for every integer multiplicity m-current with compact support and
∂R = S .
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Proof of the Solution

Proof.

We consider a sequence {Rj} of integer multiplicity currents with
compact support that span the given boundary such that

lim
j→∞

M(Rj) = inf
R∈IS

M(R),

IS := {Z-multiplicity, compactly supported R with ∂R = S}.

We then take a Lipschitz map f : Rm+k → BR(0), and construct a
new sequence with the Rj . We then apply the Compactness
Theorem to extract a subsequence that converges to a current T
such that

M(T ) ≤ inf
R∈IS

M(R).

■
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A Regularity Result

Theorem

A rectifiable, area-minimizing 2-current T ∈ R3 is a smooth,
embedded manifold on the interior, that is, suppT − supp ∂T is an
embedded C∞ submanifold of R3.

The proof was by Fleming in 1962.
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Isoperimetric Inequality

Theorem (Isoperimetric Inequality)

Let m ≥ 2, and suppose that T is an integer-rectifiable
(m − 1)-current with compact support and ∂T = 0. Then there is
a compactly supported, integer-rectifiable m-current R such that
∂R = T and

(M(R))(m−1)/m ≤ cM(T ),

where c ∈ R is some constant.
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Further Applications of Currents

It is clear from this that currents have a wide variety of
applications, owing to their “nice” compactness properties. Some
of the notable current uses of currents include their application in
the fields of partial differential equations and dynamical systems,
calculus of variations and its applications to optimal transport, and
the study of analytic varieties in complex (algebraic) geometry.


