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Abstract

This expository paper will explore the theory of currents and their properties in
view of Plateau’s problem, while providing a brief introduction to geometric measure
theory. We present the Deformation Theorem and the theory of slicing to culminate
in a proof for the Federer-Fleming Compactness Theorem for integer-rectifiable
currents. The Compactness Theorem will then be applied to provide a solution to
Plateau’s problem.
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1 Introduction

Geometric Measure Theory (henceforth abbreviated GMT) is a field of mathematics
drawing from the tools of measure theory to investigate the geometry of subsets of
Euclidean space. It rose to prominence during the mid 1900s with the efforts of early
pioneers such as H. Federer and W.H. Fleming to solve Plateau’s problem, named after
the Belgian physicist Joseph Plateau who related the original mathematical problem
posed by J. Lagrange in 1760 to the geometry of soap films and soap bubbles. It states:

Conjecture 1.0.1 (Plateau’s Problem). For every smooth closed curve Γ in R3, there
is a surface of least area among all surfaces which have Γ as their boundary.

Plateau showed that via physical arguments about the surface tension of soap films,
they mimic area-minimizing surfaces spanning a given boundary, namely, a piece of wire
to act as the perimeter, as seen in Figure 1. Standard differential geometric arguments
considering submanifolds of Euclidean space failed to solve this problem due to their
lack of compactness properties, which led to the development of currents, which indeed
possess the desirable properties yet still resemble such submanifolds.

Figure 1: Soap film is the surface of minimal surface area given a wire boundary.
https://commons.wikimedia.org/wiki/File:Minimal surfaces. Plateau%27s problem 07.jpg

This expository paper aims to present the highlights of GMT and develop an
introduction to currents that requires only a basic real analysis and point-set topology
background. Our efforts shall culminate in the Compactness Theorem for integer-
rectifiable currents, first proven by Federer and Fleming and published in [FF60]. Then,
we shall solve Plateau’s problem and state a regularity result attributed to Fleming,
first proved in 1962 in [Fle62]. The main texts of reference for this paper are [KP08]
and [Sim14], and those desiring a rigorous and detailed development of GMT without
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omissions should consult Federer’s excellent reference text, [Fed69].

2 Preliminaries

In this section, we introduce the preliminary measure theory necessary for geometric mea-
sure theory and currents in particular. Those interested in a more detailed development
of the theory of measures and integration may consult [Fol94].

2.1 Measures and σ-Algebras

The theory of measures arises from one wanting to develop a rigorous method of assigning
a “volume” or “mass” to subsets of a set X (take R3 for example). We call a map that
performs such designations a measure, which is canonically denoted µ. Unfortunately,
the intuitive path of considering the measure as a map µ : P(X) → [0,∞] (where P(X)
is the set of all subsets of X), as in attempting to assign a volume to every single
subset of X while retaining fundamental properties such as being able to decompose a
set into a finite number of subsets and evaluate an equivalent total volume sometimes
turns out problematic. Supposing that µ satisfies certain physically expected properties
such as invariance under rigid transformations, even in the most applicable case of R3,
considering the domain of µ to be the power set P(R3) leads to impossibilities, such as
the Banach-Tarski Paradox, due to the collection of subsets simply being too complicated
or fine. We are hence led to the notion of a σ-algebra, a collection of subsets of X which
shall serve as an appropriate domain for the measure µ.

Definition 2.1.1 (σ-Algebras). A σ-algebra A on a given set X is a collection of subsets
of X that satisfies

1. ∅ and X are elements of A;

2. (Closure under complements) If A ∈ A, then AC ∈ A;

3. (Closure under countable unions) If {Ej} is a countable collection of subsets such
that Ej ∈ A for each positive integer j, then

⋃
j Ej is also in A.

It is worth noting that A may be the set of all subsets of X, and it is easy to
verify that the power set P(X) is indeed a σ-algebra on X. The most common type of
σ-algebra is the Borel σ-algebra on a topological space, the smallest σ-algebra containing
all open sets.

We call the pair (X,A) a measurable space, and we are now ready to define measures.

Definition 2.1.2 (Measures). A measure on a measurable space (X,A) is a map
µ : A → [0,∞] that satisfies

1. µ(∅) = 0;
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2. (σ-Additivity) For a countable pairwise-disjoint collection of sets {Sj} ⊂ A, µ
satisfies

µ

 ∞⋃
j=1

Sj

 =
∞∑
j=1

µ(Sj).

A triple (X,A, µ) is called a measure space. On a measure space (X,A, µ), we say
that a statement about x ∈ X true except for on a set N such that µ(N) = 0, then we
say that the statement is satisfied µ-almost everywhere, or more concisely, µ-a.e. The µ
may be dropped when the context is clear.

We call µ finite if µ(X) <∞. Of course, measures may take on non-finite values,
but in practice mostly measures that are “reasonably finite” encountered. This notion
of reasonable finiteness is quantified as the property of σ-finiteness.

Definition 2.1.3 (σ-Finiteness). Given a measure space (X,A, µ), we say that µ is a
σ-finite measure on X (or just σ-finite) if there are sets Ej ∈ A with

X =
∞⋃
j=1

Ej

and µ(Ej) <∞ for each j.

It turns out that relaxing the σ-additivity condition in the definition of measures
to a condition known as σ-subadditivity defined below gives rise to the notion of an
outer measure, which allows us to consider the domain as the power set with some slight
changes to the definition.

Definition 2.1.4 (Outer Measures). An outer measure on X is a map µ∗ : P(X) →
[0,∞] that satisfies

1. µ∗(∅) = 0;

2. (Monotonicity) For subsets A,B ⊂ X with A ⊂ B, we have µ∗(A) ≤ µ∗(B);

3. (σ-Subadditivity) For {Sj} ⊂ P(X), µ∗ satisfies

µ∗

 ∞⋃
j=1

Sj

 ≤
∞∑
j=1

µ∗(Sj).

Outer measures may always be restricted to a smaller domain to become a proper
measure on this restriction, and it turns out this domain is the collection of sets S ⊂ X
such that

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ SC)
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for every A ∈ X, and this collection turns out to be a σ-algebra. This result is known as
Caratheódory’s Theorem and such sets in the σ-algebra are called µ∗-measurable sets.

We shall restrict our attention to the case where X = Rn in this paper. Though
there exist a multitude of distinct (outer) measures on Rn, the two most significant to
our development of currents and GMT are the Lebesgue measure and Hausdorff measure,
with the former being a measure induced from restricting an outer measure, while the
latter is an outer measure.

Definition 2.1.5 (Lebesgue Measure). We define the n-dimensional Lebesgue outer
measure (Ln)∗ : P(Rn) → [0,∞] first, then restrict the domain to the appropriate
σ-algebra to obtain a measure. For each interval I = (a, b) (it may or may not contain
its endpoints), define its length to be ℓ(I) := b − a. For any n-dimensional rectangle
R =

∏n
1 Ij that is the product of n open intervals, define

vol(R) =

n∏
j=1

ℓ(Ij).

Then for any S ⊂ Rn, the n-dimensional Lebesgue outer measure is defined to be

(Ln)∗(S) = inf


∞∑
j=1

vol(Rj) : each Rj is an n-rectangle and S ⊂
∞⋃
j=1

Rj

 .

We now restrict (Ln)∗ to

Mn := {S ⊂ Rn : (Ln)∗(A) = (Ln)∗(A ∩ S) + (Ln)∗(A ∩ SC), A ∈ Rn},

and define (Ln)∗|Mn := Ln, the n-dimensional Lebesgue measure.

A basic measure theoretic result is that Mn is strictly larger than the Borel σ-algebra
on Rn, meaning that most, if not all, the sets that one encounters naturally (open, closed,
and unions/intersections thereof) will be (Ln)∗-measurable.

Definition 2.1.6 (Hausdorff Measure). For a set U ⊂ Rn, we define its diameter by

diamU := sup{∥x− y∥ : x, y ∈ U},

where the empty set has 0 diameter and ∥·∥ denotes the usual Euclidean norm. Further-
more, let

Ωm =
πm/2

Γ(m2 + 1)
,
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the volume of them-dimensional unit ball in Rm, except we allowm to take on non-integer
values. Let S ∈ P(Rn) and let δ > 0. We define the auxiliary measure

Hm
δ (S) = inf

Ωm

∞∑
j=1

(
diamUi

2
)m : S ⊂

∞⋃
j=1

Uj ,diamUj < δ

 ,

which is clearly monotonically decreasing as we take smaller δ. Hence, limδ→0H
m
δ (S)

exists (though may not be finite), and we define the m-dimensional Hausdorff measure
on Rn as

Hm(S) := sup
δ>0

Hm
δ (S) = lim

δ→0
Hm

δ (S).

Note that m does not need to equal n, yet when this equality does occur, the
n-dimensional Hausdorff measure and Lebesgue measure coincide on an appropriate
domain.

We may want to “restrict” measures to certain sets, which motivates the following
notation. If (X,A, µ) is a measure space and A ∈ A, then we define the restriction of µ
to A to be the measure µ A on A such that

(µ A)(S) = µ(A ∩ S)

for all S ∈ A.

2.2 Density of Measures

We briefly discuss the density of measures in this subsection.

Definition 2.2.1 (Borel Regular Measures). Let µ be an outer measure on Rm. We say
that µ is Borel regular if every Borel set is µ-measurable and for every S ⊂ Rm, there
exists a Borel B ⊂ S such that µ(B) = µ(S).

Definition 2.2.2 (Upper Density of Measures). Let µ be a Borel regular measure on
Rm+k, and let S ⊂ Rm+k, x ∈ Rm+k. The upper density of µ is defined to be

Θm∗(µ, S, x) := lim sup
r→0

µ(S ∩B(x, r))

Ωmrm
,

where B(x, r) is the open ball of radius r centered at x, and Ωm is as Definition 2.1.6.

The lower density Θm
∗ is defined similarly with lim inf instead of lim sup. We present

the two following facts about densities without proof.

Proposition 2.2.1. If µ is a Borel regular measure on Rm+k, then the following are
satisfied:
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1. µ(S) ≥ δHm({x ∈ S : Θ∗(µ,Rm+k, x) ≥ δ}) if S is open;

2. Θm∗(Hm, S, x) ≤ 1 for Hm-almost every x ∈ S if Hm(S) <∞.

2.3 Integration

We shall now discuss the integration of measurable functions with respect to measures.
For a function f : X → Y and a collection of subsets B ⊂ P(Y ), we define

f−1(B) := {A ⊂ X : there is a B ∈ B with f(A) = B}

Definition 2.3.1 (Measurable Functions). For two given measurable spaces (X,A) and
(Y,B), a map f : X → Y is (A;B)-measurable (or just measurable if the context is
understood) if

f−1(B) ⊂ A.

Remark 2.3.1. Note that most measurable functions that one will encounter will map
into R with its Borel σ-algebra BR. For such functions f : (X,A) → (R,BR, we write
that they are A-measurable.

Readers familiar with topology will notice the resemblance of this definition with
that of a continuous map between topological spaces (the latter replaces the σ-algebras
with the respective topologies on the (co)domain), yet measurability is a significantly
weaker condition. This can be seen by the following basic result, which says that the
pointwise limit of a sequence of real measurable functions is measurable, contrasted to
the falsehood of the statement with measurability replaced with continuity.

Theorem 2.3.1. If {fn} is a sequence of measurable functions with fn : X → R for
each n, (R is equipped with its Borel σ-algebra) and there is a function f : X → R such
that

fn(x) = f(x)

for all x ∈ X, i.e. fn → f pointwise, then f is measurable.

Before defining integration for general measurable functions with real codomain, we
define simple functions and their integrals, then extend to the general case.

Definition 2.3.2 (Characteristic Functions). Given a set X and a subset S ⊂ X, the
characteristic function of S is χS : X → {0, 1} defined by

χS(x) :=

{
0 when x /∈ S,

1 when x ∈ S.

Definition 2.3.3 (Simple Functions). A function is simple if its range is a finite set.
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Clearly, we may always represent a simple function φ : X → R with a linear
combination of characteristic functions, namely

φ =
n∑

j=1

ajχEj ,

where aj are the distinct values that φ takes on and each Ej = φ−1({aj}) ⊂ X. This
is called the standard representation of φ. Conversely, any such linear combination
of characteristic functions also defines a simple function. Let R+ denote the set of
non-negative real numbers. Note that simple functions with codomain R+ (and also
those with any general measurable space as the codomain) are always measurable with
respect to the trace σ-algebra of R+ induced by the Borel σ-algebra on R, the collection
of all Borel sets intersected with R+. We first define the integral of non-negative real
simple functions.

Definition 2.3.4. Let (X,A, µ) be a measure space and let φ : X → R+ be simple with
φ =

∑n
1 ajχEj . We define the integral of φ with respect to µ as∫

X
φdµ =

n∑
j=1

ajµ(Ej).

When there is no confusion, we may omit the X and/or dµ and write
∫
φ, or specify

a ”variable” and write
∫
φ(x) dµ to mean the same thing. We may also integrate over

certain measurable subsets A ⊂ X in A by defining∫
A
φdµ =

∫
φχA dµ =

n∑
j=1

ajµ(Ej ∩A).

We are now equipped to extend the integral to all (X;R+)-measurable functions.

Definition 2.3.5. For a measurable f : X → R+, we define∫
f dµ := sup

{∫
φdµ : 0 ≤ φ ≤ f, φ simple

}
.

We now finally arrive at the definition of the integral for general measurable functions.

Definition 2.3.6 (Integration of Measurable Functions). For a measurable f : X → R,
we define ∫

f dµ :=

∫
f+ dµ−

∫
f− dµ ,

where
f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).

We call f+ and f− the positive and negative parts of f respectively.
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The measurability of the positive and negative parts of f is easy to verify due to
the measurability of functions composed with the max function, and we call functions
with both

∫
f+ and

∫
f− finite to be µ-integrable (we may sometimes omit the µ). Since

f+ + f− = |f |, f is integrable iff
∫
|f | <∞, and we write f ∈ L1(µ), recalling that µ is

the measure on (X,A). Furthermore, we say that f is locally µ-integrable if∫
K
|f | dµ <∞

for all compact K ⊂ X.

This integral satisfies all of the properties that is expected from acquaintance with
the Riemann integral, namely, that of linearity and monotonicity, and is called the
Lebesgue integral for functions with domain (R,M,L1). Furthermore, a theorem due to
Lebesgue states that a bounded function f : R → R is Riemann integrable on a closed,
bounded interval [a, b] if and only if it is continuous L1-a.e. on [a, b], where L1 is the
one-dimensional Lebesgue measure.

2.4 Measures and Representations

We shall now discuss two theorems that demonstrate the utility of measures in repre-
senting certain operations: the Radon-Nikodym Theorem and the Riesz Representation
Theorem (also known as the Riesz-Markov-Kakutani Theorem).

The former is a foundational result that allows one measure to be represented
as integration with respect to another measure, given that they satisfy the following
condition (and are σ-finite.

Definition 2.4.1 (Absolute Continuity). Let (X,A) be a measurable space equipped
with measures µ and ν. We say that a measure ν is absolutely continuous with respect
to µ and write ν ≪ µ if ν is 0 on every set S such that µ(S) = 0.

Theorem 2.4.1 (Radon-Nikodym). Suppose (X,A) is a measurable space on which
the σ-finite measures µ and ν are defined. If ν ≪ µ then there exists an A-measurable
function f : X → R+ such that for each S ∈ A,

ν(S) =

∫
S
f dµ .

This function f is called the Radon-Nikodym derivative of ν with respect to µ, and
is sometimes denoted dν

dµ . The proof may be found in any introductory text on measure
theory, such as [Fol94].

We now discuss a version of the Riesz Representation Theorem that will later be
utilized in representing currents through integration.
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Remark 2.4.1. When talking about vector spaces and elements thereof, we may sometimes
use a bold font such as in v to emphasize that these objects are in fact vectors.

Definition 2.4.2 (Support). Let (X, τ) be a topological space and V a vector space
over the field F = R or C. For a function f : X → V , we define its support to be

supp f := {x ∈ X : f(x) ̸= 0}.

We say that f has compact support (or is compactly supported) if supp f is compact
in X. The most common case is when f maps into R as its codomain.

We now introduce the idea of locally-compact Hausdorff spaces, which are topological
spaces with enough structure to allow “nice” regularity properties. We adopt the
convention of defining a neighborhood about a point to be any open set containing the
point.

Definition 2.4.3 (LCH Spaces). Let (X, τ) be a topological space. X is called locally-
compact (and) Hausdorff (abbreviated LCH) if

1. (Locally-compact) Each point x ∈ X has a neighborhood Nx such that Nx is
compact;

2. (Hausdorff) For every two distinct points x, y ∈ X, there are neighborhoods Nx

and Ny about x and y respectively such that Nx ∩Ny = ∅.

Many of the measures of interest on LCH spaces satisfy certain regularity properties,
two of which are outer regularity and inner regularity. The former states that for a Borel
measure µ on an LCH (X, τ), if

µ(S) = inf{µ(U) : U ⊃ S,U ∈ τ}

for some Borel measurable S, then µ is inner regular on S, while inner regularity on S
means

µ(S) = sup{µ(K) : K ⊂ S,K compact}.

Radon measures are a certain family of measures which are not overly restrictive, yet
“nice enough” such that one may derive representation theorems such as Theorem 2.3.2

Definition 2.4.4 (Radon Measures). A measure µ on an LCH space X with its Borel
σ-algbera is a Borel measure that is finite on all compact sets, outer regular on all Borel
sets, and inner regular on all open sets.

We are now ready to present the Riesz Representation Theorem in the form stated
in [Sim14], which says that a continuous linear functional may be represented through
integration.
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Theorem 2.4.2 (Riesz-Markov-Kakutani). Let H be a given finite-dimensional real
complete inner product space (with inner product ⟨·, ·⟩H and induced norm ∥·∥H) and let
Cc(X,H) denote the space of continuous functions f : X → H with compact support.
Suppose X is a locally-compact Hausdorff space equipped with its Borel σ-algebra BX ,
and let L : Cc(X,H) → R be linear with

sup
∥f∥≤1,supp f⊂K

L(f) <∞

for every compact K ⊂ X. Then there is a Radon measure µ on X and µ-measurable
ν : X → H with ∥ν(x)∥H = 1 µ-a.e. and

L(f) =

∫
X
⟨f(x), ν(x)⟩H dµ(x)

for any f ∈ Cc(X,H).

The proof is technical and omitted, yet may be found following [Sim14] Theorem
1.4.14.

3 Differential Forms, Distributions, and Currents

The purpose of this section is to introduce the material necessary to define and understand
currents. A current is essentially merely a differential form with distribution coefficients,
a notion which shall be formalized below.

3.1 Differential Forms

Remark 3.1.1. Throughout the section, U will be understood to be an open subset of
Rn.

We shall define two different types of spaces on Rn, the first being the space
∧

m(Rn)
of m-vectors on Rn, and its dual

∧m(Rn) consisting of the m-covectors on Rn. Our
approach to defining these spaces will be analogous to that in [KP08], with little to no
manifold theory being a pre-requisite to our development.

Let e1, . . . , en denote the standard basis for Rn.

Definition 3.1.1. Let ∼ be an equivalence relation on (Rn)m defined by

1. (u1, . . . , αui, . . . , uj , . . . , um) ∼ (u1, . . . , uj , . . . , αui, . . . , um);

2. (u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . , ui + αuj , . . . , uj , . . . , um);

3. (u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . ,−uj , . . . , ui, . . . , um),

10



for all α ∈ R and 1 ≤ i < j ≤ m, and extending the relation to be symmetric and
transitive.

We denote by u1 ∧ · · · ∧ um the equivalence class of (u1, . . . , um) under ∼, and call
the former a simple m-vector. We now consider the vector space of linear combinations
of these simple m-vectors under the equivalence relation ≈ defined by

1. α(u1 ∧ · · · ∧ um) ≈ (αu1) ∧ · · · ∧ um;

2. (u1 ∧ u2 ∧ · · · ∧ um) + (v1 ∧ u2 ∧ · · · ∧ um) ≈ (u1 + v1) ∧ u2 ∧ · · · ∧ um.

Finally, we consider the equivalence classes of linear combinations of simple m-vectors
under ≈, which is called the vector space of m-vectors in Rn and denoted

∧
m(Rn).

Clearly
∧

1(Rn) = Rn and when m > n,
∧

m(Rn) is the trivial vector space containing
only the zero vector.

We may define the wedge product (also referred to as the exterior product), which is
a map

∧ :
∧

ℓ
(Rn).×

∧
m
(Rn) →

∧
ℓ+m

(Rn)

and is an anticommutative and associative multiplication-type operation. One may
notice that since each m-vector can be represented as a linear combination of simple
m-vectors, we may form a basis for

∧
m(Rn) by considering m-vectors of the form

ej1 ∧ ej2 ∧ · · · ∧ ejm , 1 ≤ j1 < · · · < jm ≤ n.

Before discussing
∧m(Rn), we introduce some convenient notation.

Definition 3.1.2 (Multi-index). A multi-index α is an n-tuple of non-negative integers,
i.e. an element of Nn. We adopt the convection that N contains 0.

We are now ready to discuss the space
∧m(Rn) of alternating m-linear functions on

(Rn)m.

Definition 3.1.3 (Multilinear Maps). We say that a function f : (Rn)m → R is
multilinear or m-linear if it is linear in each of its m arguments.

Definition 3.1.4 (Alternating Maps). An m-linear function f is said to be alternating
if

f(u1, . . . , ui, . . . , uj , . . . , um) = −f(u1, . . . , uj , . . . , ui, . . . um)

for all 1 ≤ i < j ≤ m.

We call the alternating m-linear functions ω ∈
∧m(Rn) to be the m-covectors on

Rn.
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Clearly,
∧1(Rn) is merely the dual space of Rn since all functions of one variable

are trivially alternating. Let us denote by dx1, . . . , dxn ∈
∧1(Rn) the dual basis with

respect to e1, . . . , en ∈ Rn defined by

dxi(ej) = δij =

{
0 i ̸= j

1 i = j
,

where δij is the Kronecker delta.

Similar to the wedge product we defined on
∧

m(Rn), a notion of a “multiplication”
of covectors may be explored.

Definition 3.1.5 (Wedge Product of Covectors). We define the wedge product of
ω1, . . . , ωm ∈

∧1(Rn) by

(ω1 ∧ · · ·ωm)(u1, . . . , um) :=
∑
σ∈Sn

sgn(σ)

m∏
j=1

ωσ(j)(uj) = det([ωi(uj)]),

where Sn is the set of all permutations of {1, . . . , n} (bijections onto itself).

Analogous to how the wedge product of standard basis vectors eji formed the basis
for

∧
m(Rn), the set of m-covectors of the form

dxj1 ∧ · · · ∧ dxjm

form a basis for
∧m(Rn) since any ω ∈

∧m(Rn) may be represented as

ω =
∑

1≤j1<···<jm≤n

ωj1,...,jmdx
j1 ∧ · · · ∧ dxjm ,

=
∑

α∈Im,n

ωαdx
α

where
Im,n := {α = (j1, . . . , jm) ∈ Nm : 1 ≤ j1 < · · · < jm ≤ n}.

The utility of the multi-indices α is seen here, where we understand

ωα = ωj1,...,jm = ω(ej1 , . . . , ejm)

and
dxα = dxj1 ∧ · · · ∧ dxjm .

Likewise, the m-vectors ξ may be represented in the form

ξ =
∑

α∈Im,n

ξαeα,
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where each component is defined analogously.

We are interested in the interactions between the spaces
∧

m(Rn) and
∧m(Rn). The

latter turns out to be the dual of the former, meaning that we may introduce a dual
pairing between an m-covector ω and an m-vector ξ.

Definition 3.1.6 (Dual Pairing). For ω ∈
∧m(Rn) and ξ ∈

∧
m(Rn), the dual pairing

⟨·, ·⟩ :
∧m(Rn)×

∧
m(Rn) → R (not to be confused with the inner product) is defined by

⟨ω, ξ⟩ =

〈 ∑
α∈Im,n

ωαdx
α,

∑
α∈Im,n

ξαeα

〉
=

∑
α∈Im,n

ωαξ
α.

Note that the dual pairing is a more general concept that may be applied to a
F-vector space V and its dual V ∗, where ⟨·, ·⟩ : V ∗ × V → F defined by

⟨L, u⟩ = L(u)

for all L ∈ V ∗ and u ∈ V .

We are now ready to define differential forms on Rn.

Definition 3.1.7 (Differential Forms). Recalling that U is an open subset of Rn, a map
φ : U →

∧m(Rn) is a differential m-form on Rn.

We may represent any differential form φ in terms of a linear combination of basis
elements of

∧m(Rn) by defining the functions

φα(p) = ⟨φ(p), eα⟩,

noticing this is a dual pairing between φ(p) ∈
∧m(Rn) and the basis m-vector eα, where

α is a multi-index. Then, we may write

φ =
∑

α∈Im,n

φαdx
α.

Let us define Em(U) := C∞(U,
∧m(Rn)). The elements φ of Em(U) are called the

smooth m-forms on U , and are differential forms with smooth coefficient functions φα. We
may define a derivative operator known as the exterior derivative d : Em(U) → Em+1(U)
by

dφ :=
n∑

j=1

∑
α∈Im,n

∂φα

∂xj
dxj ∧ dxα,

given that φ =
∑
φαdx

α. A surprising property of the exterior derivative is that

d2φ = 0
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for all φ ∈ Em(U), which may be verified through tedious calculation.

The most fundamental theorem to calculus on manifolds is a generalization of the
Fundamental Theorem of Calculus to manifolds, known as the Generalized Stokes’s
Theorem. We state it without proof, but the interested reader may explore its background
in [Tu11]

Theorem 3.1.1 (Generalized Stokes’s Theorem). Let φ be a smooth (m− 1)-form with
compact support on an oriented, m-dimensional manifold with boundary M , where the
boundary ∂M is given the induced orientation. Then, we have∫

M
dφ =

∫
∂M

φ.

We now consider the space Dm(U) ⊂ Em(U) consisting of all differential forms φ
such that its component functions φα have compact support contained in U . We equip
Dm(U) with the locally-convex Hausdorff topology described in Appendix A. We include
the following lemma without proof.

Lemma 3.1.2. The space Dm(U) is separable, meaning that there is a countable sequence
{φj} ⊂ Dm(U) that is dense in Dm(U).

Finally, we define a norm on Dm(U).

Definition 3.1.8. Let φ ∈ Dm(U). We define the norm of φ as

∥φ∥ := sup
x∈U

√
φ(x) · φ(x).

Note that the φ(x) · φ(x) term in the definition refers to the induced inner product
on

∧m(Rn) by the Euclidean dot product. More precisely, for ω, η ∈
∧m(Rn),

ω · η =

 ∑
α∈Im,n

ωαdx
α

 ·

 ∑
α∈Im,n

ηαdx
α

 =
∑

α∈Im,n

ωαηα,

so √
φ(x) · φ(x) =

√ ∑
α∈Im,n

φ2
α,

clearly resembling the Euclidean norm.

3.2 Currents

We are finally equipped with sufficient machinery to define and understand currents.

First, we introduce some notation.
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Definition 3.2.1. We write W ⊂⊂ U for W ⊂ Rn if W ⊂ U and the closure of W ,
namely W , is compact and contained within U .

Definition 3.2.2 (Currents). We define

Dm(U) = (Dm(U))∗,

where the right is the space of continuous maps T : Dm(U) → R, i.e. the dual space of
Dm(U). We call an element T ∈ Dm(U) an m-current.

Much like in Definition 2.3.2, we want to speak of the support of a current T ∈ Dm(U).

Definition 3.2.3 (Support of a Current). Support T ∈ Dm(U). We define the support
of T to be the (relatively) closed subset of U defined by

suppT := U \
(⋃

W
)
,

where we apply the union over all open W ⊂⊂ U with

φ ∈ Dm(U), suppφ ⊂W =⇒ T (φ) = 0.

To speak of the “finiteness” of a current, we introduce a (family of) seminorms on
the space of currents, known as the mass of a current.

Definition 3.2.4 (Mass). We define the mass of a current T ∈ Dm(U), denoted M(T ),
by

M(T ) := sup
∥ω∥≤1

T (ω)

where ω ∈ Dm(U). Furthermore, for any open set W ⊂ U , we define

MW (T ) := sup
∥ω∥≤1,suppω⊂W

T (ω).

Currents are of interest due to their compactness and convergence properties, which
leads us to define the weak convergence of currents.

Definition 3.2.5 (Weak Convergence). A sequence {Tj} ⊂ Dm(U) is said to converge
weakly to T ∈ Dm(U) if

lim
j→∞

Tj(ω) = T (ω)

for all ω ∈ Dm(U).

The following lemma follows easily from standard analysis arguments, yet shows the
value in considering a sequence of currents in minimization problems such as that of
Plateau’s problem: essentially, if one considers a sequence of area-minimizing currents,
then the limit will be the global minimizer.
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Lemma 3.2.1 (Lower-semicontinuity of Mass). The mass function is lower-semicontinuous
on the space of currents, meaning that for a sequence {Tj} ⊂ Dm(U) weakly converging
to some T ∈ Dm(U), we have

MW (T ) ≤ lim inf
j→∞

MW (Tj)

for all open W ⊂ U .

Proof. Since
Tj(φ) ≤ sup

∥φ∥≤1
Tj(φ),

we take the limit on the left side to obtain

T (φ) ≤ sup
∥φ∥≤1

Tj(φ).

Since this holds for all φ ∈ Dm(U), we take the supremum over all φ with norm less
than or equal to 1 on the left and the lim inf on the right to see that by the definition of
the mass seminorm, we have the result.

Often, it is useful to represent currents through the integration of a Radon measure,
which is the content of Lemma 3.2.2.

Lemma 3.2.2 (Representation of Currents). Suppose T ∈ Dm(U) has finite mass
MW (T ) for every open W ⊂⊂ U . There exists a Radon measure µT on U ⊂ Rn and
µT -measurable map T̃ : U →

∧
m(Rn) satisfying ∥T (φ)∥ = 1 µT -a.e., such that

T (φ) =

∫
U
⟨φ(x), T̃ (x)⟩dµT (x) .

Proof. This is a direct application of Theorem 2.3.2.

Furthermore, with this integral representation, we may define a new current T A ∈
Dm(U) where A ⊂ U is some µT -measurable set defined by

(T A)(φ) :=

∫
A
⟨φ, T̃ ⟩ dµT .

Likewise, if ζ is some locally µT -integrable function on U , then we define T ζ ∈ Dm(U)
by

(T ζ)(φ) :=

∫
⟨φ, T̃ ⟩ζ dµT .

Knowing that currents with finite mass may be represented through integration,
we are motivated by the Generalized Stokes’s Theorem (Theorem 3.1.1) to define the
boundary of a current according to its exterior derivative.
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Definition 3.2.6 (Boundary of a Current). Let T ∈ Dm(U). We define the boundary
of T to be the (m− 1)-current ∂T according to

∂T (φ) = T (dφ)

for all φ ∈ Dm(U).

By the fact that d2 = 0, we have that ∂(∂T ) = ∂2T = 0, meaning that the boundary
of a boundary vanishes.

We now introduce the family of currents that will be of most interest throughout
the rest of the paper. The definition will require the knowledge of rectifiable sets and
approximate tangent spaces.

Definition 3.2.7 (Countably Rectifiable Sets). Let 1 ≤ m ≤ n. A set S ⊂ Rn is
countably m-rectifiable if

S ⊂ S0 ∪

 ∞⋃
j=1

Fj(Rm)

 ,

where

1. Hm(S0) = 0;

2. Fj : Rm → Rn are Lipschitz functions, meaning that for each j = 1, 2, . . ., there
exists a constant Lip(Fj) ∈ R+ such that

∥Fj(x)− Fj(y)∥ ≤ Lip(Fj)∥x− y∥.

Definition 3.2.8 (Approximate Tangent Space). Let S ⊂ Rn be Hm-measurable with
Hm(S ∩K) < ∞ for each compact K and θ : S → R+ be locally Hm-integrable. An
m-dimensional linear subspace W ⊂ Rn is the approximate tangent space to S at x ∈ Rn

with multiplicity θ if

lim
λ→0+

∫
λ−1(S−x)

f(y) dHm(y) = θ(x)

∫
W
f(y) dHm(y)

for all continuous f : Rn → R with compact support, where λ−1(S − x) consists of
y = λ−1(z − x) for some z ∈ S. We shall write TxS :=W when W exists.

Remark 3.2.1. If S is an m-dimensional C1 submanifold of Rn (see definition 4.1.1), then
the tangent space arising from the smooth structure and the approximate tangent space
are equivalent notions. Hence, we may use the notation TxS for both without confusion
when the context is understood.
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Remark 3.2.2. It turns out that for every Hm-measurable and countably rectifiable S,
the approximate tangent space TxS exists Hm-a.e. In fact, the converse is also true,
given some locally Hm-integrable θ : S → R+ such that the tangent plane TxS exists
Hm-a.e. with respect to theta.

Definition 3.2.9 (Integer-Multiplicity Rectifiable Currents). Let T ∈ Dm(U) and
1 ≤ m ≤ n. We say that T is an integer-rectifiable rectifiable m-current (or just an
integer-rectifiable current) if there exist S, θ, and ξ such that:

1. S is Hm-measurable and a countablym-rectifiable subset of U such that Hm(S∩K)
is finite for each compact K ⊂ U ;

2. θ : U → N is locally Hm-integrable;

3. ξ : S →
∧m(Rn) is Hm-measurable and ξ(x) is a simple unit m-vector in TxS

Hm-a.e.;

4. T may be written as

T (φ) =

∫
S
⟨φ(x), ξ(x)⟩θ(x) dHm(x)

for each φ ∈ Dm(U).

We call θ and ξ the multiplicity and orientation of T respectively.

4 The Theory of Currents

We present Brian White’s 1989 proof of the Compactness Theorem in [Whi89], introducing
a series of preliminary theorems and lemmas to finally culminate in the result. Due to
the highly technical nature of the full proof (including all the intermediary lemmas),
certain proofs will be omitted or merely sketched and the curious reader will be directed
to an appropriate reference when necessary. We now state the Compactness Theorem.

Theorem 4.0.1 (Federer-Fleming Compactness Theorem). If {Tj} is a sequence of
integer-rectifiable m-currents with

sup
j≥1

(MW (Tj) +MW (∂Tj)) <∞

for each W ⊂⊂ U , then there is a subsequence {Tj′} that weakly converges to some
integer-rectifiable T ∈ Dm(U) in U .

4.1 Slicing

The first tool that will be used to prove 4.0.1 is the slicing of currents. Slicing theory
arises from the difficulty that it is impossible to define the “intersection” of two currents
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that satisfies the usual expected properties of submanifolds of Rn. Instead, given an
m-current T ∈ Dm(U), we may intersect T with the level set f−1(y) of a desired Lipschitz
function f to obtain a lower dimensional current.

The theory of slicing is very closely related to the coarea formula, which requires
the notion of the approximate gradient of a function.

We first handle the case where we want to differentiate a function f relative to S
where S is an m-dimensional C1 submanifold of Rn.

Definition 4.1.1. We call S an m-dimensional C1 submanifold of Rm+k if S ⊂ Rm+k

is a set where each x ∈ S has an open neighborhood W ⊂ Rm+k such that there exists
an bijective, C1 map ϕ : V ⊂ Rm →W , where V is open with

1. Dϕ is of (maximal) rank m for all x ∈ V ;

2. ϕ is proper, meaning that for every compact K ⊂W , ϕ−1(K) is compact in V ;

3. ϕ(V ) =W ∩ S.

The idea behind ϕ above is to provide an appropriate parameterization between Rm

and the m-dimensional S embedded in Rm+k. ϕ is not only a homeomorphism but is in
fact a C1 diffeomorphism, meaning that it has C1 inverse. This can be deduced by the
full rank assumption and the Inverse Function Theorem.

Definition 4.1.2. We define the tangent space to S at x = ϕ(u) to be Dϕ(V ). We
denote this space by TxS.

Definition 4.1.3. Suppose x ∈ S and f :W → Rℓ where W contains a neighborhood
of x in S. f is differentiable relative to S at x if there is f̃ : W̃ → Rℓ such that

1. W̃ is a neighborhood of x in Rn;

2. f |
S∩W̃ = f̃ |

S∩W̃ ;

3. f̃ is differentiable at x.

When these conditions are satisfied, then we have the map DSf : TxS → Rℓ defined by

DSf(x) := Df̃(x)|TxS

and call this the differential of f relative to S at x.

Definition 4.1.4. When ℓ = 1 in Definition 4.1.3, the gradient of f relative to S at x is
defined to be ∇Sf(x) ∈ TxS such that

⟨DSf, u⟩ = ∇Sf(x) · u

for all u ∈ TxS, where the left side is a dual pairing.
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For the following discussion, let S be Hm-measurable and countably rectifiable with
S ⊂ Rm+k. Recalling 3.2.7, we present a preliminary result on the representation of S.

Lemma 4.1.1. We may write S =
⋃∞

j=0 Sj where

1. Hm(S0) = 0;

2. Si ∩ Sj = ∅ if i ̸= j;

3. for j ≥ 1, Sj ⊂ Tj where Tj is an m-dimensional, embedded C1 submanifold of Rn.

Proof. See Proposition 5.4.3 of [KP08].

Using this lemma, we are now equipped to define the approximate gradient.

Definition 4.1.5 (Approximate Gradient). Suppose that S is as defined above with
Hm(S∩K) <∞ for each compact k ⊂ Rn. Representing S as

⋃∞
j=0 Sj as in Lemma 4.1.1,

we define the approximate gradient of f relative to S to be the map ∇Sf :
⋃∞

j=1 Sj → TxS
defined by

∇Sf(x) := ∇Sjf(x), j ≥ 1

for x ∈ Sj , whenever the right side makes sense.

The utility of having f : Rm+k → R be Lipschitz is revealed in Rademacher’s
Theorem, which is stated without proof.

Theorem 4.1.2 (Rademacher’s Theorem). If f : Rn → Rn′
is Lipschitz, then f is

differentiable Ln-a.e. and the differential of f is measurable.

Lemma 4.1.3. Let S ⊂ Rm+k be Hm measurable and countably rectifiable and let
f : Rm+k → R be Lipschitz. Then the approximate gradient ∇Sf :

⋃∞
1 Sj → TxS exists

Hm-a.e.

Proof. Let x ∈ S and consider the C1 parameterization ϕ : V ⊂ Rm → Rm+k with the
properties described in Definition 4.1.1, namely ϕ(V ) = S ∩W . By Theorem 4.1.2,
f ◦ ϕ : Rm → R is differentiable Lm-a.e., yet Lm = Hm on Rm, so it is also true Hm-a.e.
Composing with the C1 inverse ϕ−1, we see that (f ◦ ϕ) ◦ ϕ−1 = f , yet the composition
of two differentiable a.e. maps is differentiable so f must be differentiable Hm-a.e. We
then merely take f̃ = f to obtain the existence of the approximate gradient Hm-a.e.

We may now define the slice of T by some Lipschitz f .

Definition 4.1.6 (Slice of a Current). Let T ∈ Dm(U) and

MW (T ) +MW (∂T ) <∞
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for every open W ⊂⊂ U . If f : U → R is Lipschitz, the slice of T by f at r is defined to
be the current ⟨T, f, r⟩ ∈ Dm−1(U)

⟨T, f, r⟩ := ∂(T {f < r})− (∂T ) {f < r}.

Remark 4.1.1. This definition is defined almost everywhere, except for at the countable
set at which

(µT + µ∂T ){f = r} = 0,

where the measures are as in Lemma 3.2.2.

The relationship between slicing and the approximate gradient is provided by a
special case of the coarea formula, and is demonstrated below.

Proposition 4.1.1. Let T be an integer-rectifiable current in Dm(U) with multiplicity θ.
For all openW ⊂ U and if Hm-measurable S is countably m-rectifiable and f : Rm+k → R
is Lipschitz, then∫ ∞

−∞
MW (⟨T, f, r⟩) dr =

∫
S∩W

|∇Sf(x)|θ(x) dHm(x) ≤
(
ess sup
x∈S∩W

|∇Sf(x)|
)
MW (T ).

We shall use the two following results about slices of currents in our proof of the
Compactness Theorem.

Lemma 4.1.4. If T is an integer-rectifiable current, then so is ⟨T, f, r⟩ for L1-almost
every r ∈ R.

Theorem 4.1.5 (Slicing Lemma). Suppose f : U ⊂ Rn → R is Lipschitz and {Tj} is a
sequence of m-currents that weakly converge to T ∈ Dm(U) with

sup
j≥1

(MW (Tj) +MW (∂Tj)) <∞

for each W ⊂⊂ U . Then,

1. For L1-almost every r, there is a subsequence {Tj′} such that

⟨Tj′ , f, r⟩ → ⟨T, f, r⟩

and
sup
j≥1

(MW (⟨Tj′ , f, r⟩) +MW (∂⟨Tj′ , f, r⟩) <∞;

2. if for some W0 ⊂⊂ U , we have

lim
j→∞

(MW0(Tj) +MW0(∂Tj)) = 0,

then there is some subsequence such that

lim(MW0(⟨Tj′ , f, r⟩) +MW0(∂⟨Tj′ , f, r⟩) = 0.
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Proof. To prove (1), we consider a subsequence {Tj′} such that the sum of the associated
Radon measures µTj′ + µ∂Tj′ converges to another Radon measure µ. One then proves
that this Radon measure is associated with the slice ⟨T, f, r⟩ to show weak convergence
a.e. Considering further subsequences and using the facts that∫ b

a
MW (⟨Tj , f, r⟩) dr ≤ Lip(f)MW (Tj {a < r < b}),

where ∫
f dµ := inf

{∫
ψ dµ : 0 ≤ f ≤ ψ, ψ is µ-measurable

}
,

and
∂⟨Tj , f, r⟩ = −⟨∂Tj , f, r⟩.

For a more detailed proof, consult Lemma 8.1.16 of [KP08].

4.2 The Deformation Theorem

Let us consider the (m+k)-dimensional integer lattice Zm+k where m and k are positive
integers. Let C = [0, 1]m+k denote the (m+ k)-dimensional unit cube. For j a positive
integer such that 1 ≤ j ≤ m+ k, we denote by Lj the set of all j-dimensional faces of
the m+ k dimensional cubes

tz(C) :=
m+k∏
i=1

[zi, zi + 1]

with z = (z1, . . . , zm+k ∈ Zm+k ranging over the (m+ k)-dimensional integer lattice. For
each m-dimensional face F ∈ Lm, there is a corresponding integer-rectifiable m-current
JF K ∈ Dm(Rm+k) defined by

JF K(φ) =
∫
F
⟨φ(x), ξ(x)⟩ dHm(x) ,

given that we have made a choice of orientation ξ(x) = ±τ1∧· · ·∧τm+k where τ1, · · · , τm+k

is an orthonormal basis for TxRm+k.

The Deformation Theorem allows one to approximate a current with finite mass and
boundary with finite mass with a linear combination of currents JF K, F ∈ Lm. There
are two versions of the Deformation Theorem: the scaled version and the unscaled
version. The former is a direct consequence of the latter and is presented below, while
the unscaled version is not necessary for our purposes.
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We denote by ηt : Rm+k → Rm+k the map defined by

ηt = tx,

a homothety.

Definition 4.2.1 (Pullback). Given a linear f : Rn → Rn′
, the pullback f# :

∧m(Rn′
) →∧m(Rn) is defined for φ ∈

∧m(Rn′
)

f#φ(u1, . . . , um) = φ(f(u1), . . . , f(um)), u1, . . . , um ∈ Rn.

Definition 4.2.2 (Push-forward of a Current). Let f be a smooth map between open
sets U ⊂ Rn and V ⊂ Rn′

. Let φ ∈ Dm(V ), T ∈ Dm(U) and f |suppT be proper, meaning
that f−1(K) ∩ suppT is compact for all compact K ⊂ V . The push-forward f#T under
f of T is defined by

f#T (φ) = T (ζf#φ),

where ζ is any function in C∞
c (U) that is equal to one in a neighborhood of the compact

suppT ∩ supp f#φ.

Note that the choice of ζ is independent of f#T . A notable property of the push-
forward is that it commutes with the boundary of a current. That is,

∂f#T = f#∂T

for T ∈ Dm(U) and ∂T ∈ Dm−1(U).

We may now state the Scaled Deformation Theorem.

Theorem 4.2.1 (Scaled Deformation Theorem). Suppose T ∈ Dm(Rm+k) with

M(T ) +M(∂T ) <∞

and ρ > 0 is fixed. Then
T − P = ∂R+ S

where P ∈ Dm(Rm+k), R ∈ Dm+1(Rm+k), S ∈ Dm(Rm+k) and satisfy

1.
P =

∑
F∈Lm

pF ηρ#JF K

for F ∈ LM where pF ∈ R;

2.
M(P ) ≤ cM(T ), M(∂P ) ≤ cM(∂T ),

M(R) ≤ cρM(T ), M(S) ≤ cρM(∂T ),

where the constant c ∈ R only depends on m and k;
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3.
suppP ∪ suppR ⊂

{
x ∈ R : dist(x, suppT ) < 2ρ

√
m+ k

}
supp ∂P ∪ suppS ⊂

{
x ∈ R : dist(x, supp ∂T ) < 2ρ

√
m+ k

}
.

When T is an integer-rectifiable current, then P and R are also, while if ∂T is of
integer-rectifiable, then so is S.

The theorem is named after its proof, which deforms the given current T onto a
square grid by projecting the surface onto the square faces then estimating the error by
analyzing the area swept out by the boundary ∂T during the deformation. A detailed,
rigorous proof may be found in [Sim14] or [KP08], yet must be relegated in this paper
to put our focus on the Compactness Theorem.

The most important corollary of 4.1.1 for our purposes is the Weak Polyhedral
Approximation Theorem.

Theorem 4.2.2 (Weak Polyhedral Approximation Theorem). Let T ∈ Dm(U) be an
integer-rectifiable current with MW (∂T ) <∞ for all W ⊂⊂ U . There is a sequence of
currents {Pj} of the form

Pj =
∑

F∈Lm

pjF ηρ#JF K

for pjF ∈ Z and ρj ↓ 0 with Pj → T weakly in U .

Proof. Directly applying 4.1.1. onto T and sequence ρj ↓ 0 with ρ = ρj for each positive
integer j, we obtain currents Pj , Rj , Sj such that

T − Pj = ∂Rj + Sj

and
M(Rj) ≤ cρjM(T ) → 0 as j → ∞,

M(Sj) ≤ cρjM(∂T ) → 0 as j → ∞.

On the other hand, we also have

M(Pj) ≤ cM(T ) and M(∂Pj) ≤ cM(∂T ).

From the inequalities above applied onto the top equation, we see that the right side
vanishes (as ∂Rj(φ) = Rj(dφ) implies that ∂Rj vanishes), and hence we obtain that
T−Pj → 0, meaning that Pj → T weakly. Hence, we have proved the case for U = Rm+k

and finite mass for T and ∂T .

When U is not the whole space, we take a Lipschitz ϕ : Rm+k → R such that ϕ > 0
on U while ϕ = 0 on UC . Assuming that {x ∈ Rm+k : ϕ(x) > λ} ⊂⊂ U for all λ > 0.
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For L1-almost every λ > 0, by Proposition 4.1.1, the currents Tλ := T {x : ϕ(x) > λ}
satisfy M(∂Tλ) <∞. Note that suppTλ ⊂⊂ U , and we use the argument in the previous
paragraph to approximate Tλ with a sequence of currents Pj for any λ. We then take a
sequence λi ↓ 0 to conclude that we may approximate T on U .

The Weak Polyhedral Approximation Theorem sees immediate use in conjunction
with the m− 1 case of the Compactness Theorem. Since our proof of 4.0.1 is inductive,
we may assume this case and deduce the m-dimensional case (proving the base case as
well of course).

Theorem 4.2.3 (Boundary Rectifiability Theorem). Let T ∈ Dm(U) be an integer-
rectifiable current with M(∂T ) < ∞ for all W ⊂⊂ U . Then ∂T ∈ Dm−1(U) is an
integer-rectifiable current.

Proof. We apply Theorem 4.2.2 to ∂T to find a sequence of integer-rectifiable currents
{Pj} that weakly converge to ∂T and since this limit must necessarily be a current of
integer multiplicity by the m− 1 case of Theorem 4.0.1.

Another important result that follows from the Deformation Theorem is the Isoperi-
metric Inequality.

Theorem 4.2.4 (Isoperimetric Inequality). Letm ≥ 2, and suppose that T ∈ Dm−1(Rm+k)
is integer-rectifiable. Assume that suppT is compact and ∂T = 0. Then there is a com-
pactly supported, integer-rectifiable current R ∈ DM (Rm+k) such that ∂R = T and

(M(R))(m−1)/m ≤ cM(T ),

where c ∈ R depends solely on m and k.

Proof. See Theorem 7.9.1 of [KP08].

4.3 Proving the Compactness Theorem

The existence portion of the Compactness Theorem follows immediately from the Banach-
Alaoglu Theorem, a standard result in functional analysis which we state below.

Theorem 4.3.1 (Banach-Alaoglu). Let X be a complete normed vector space. Then
the closed unit ball B of the continuous dual space X∗ is compact with respect to the
weak*-topology, where

B := {Λ ∈ V ∗ : |Λx| ≤ 1,x ∈ V }.

Lemma 4.3.2. Suppose {Tj} is a sequence of m-currents and

sup
j≥1

MW (Tj) <∞
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for every W ⊂⊂ U . There is a subsequence {Tj′} and a T ∈ Dm(U) such that∫
U
⟨ω, T̃j′⟩ dµTj′ →

∫
U
⟨ω, T̃ ⟩dµT

for every ω ∈ Dm(U). That is,
Tj′ → T

weakly.

Proof. By Theorem 4.3.1, the unit ball of Dm(U) B is weakly compact. However, by
Lemma 3.1.2, we know that Dm(U) is separable, and a standard functional analytic
argument deduces that B is hence metrizable and sequentially compact (since compactness
⇐⇒ sequential compactness in metric spaces). We then consider the dilation map
L : Dm(U) → Dm(U) defined by

x 7→ λx

for some adequate λ ∈ R such that {Tj} ⊂ L(B). Since L is clearly continuous and
continuous maps preserve compactness, our sequence is contained in a (sequentially)
compact ball and the existence of a subsequence that converges to a limit T ∈ L(B) ⊂
Dm(U) is immediate.

The lemma above clearly implies the existence of the limit in Theorem 4.0.1. The
difficulty in proving the theorem lies in verifying that the limit T is indeed an integer-
rectifiable current, so much so that it has been dubbed the Closure Theorem. We now
present a few intermediary results to begin our proof.

Lemma 4.3.3. If µ is a Radon measure on Rm+k and f is locally µ-integrable and
defined on Rm+k, then for µ-almost every x,

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

∥f(y)− f(x)∥ dµ(y) = 0.

Lemma 4.3.4 (Lower Density Lemma). If T ∈ Dm(U) and

MW (T ) +MW (∂T ) <∞

for every W ⊂⊂ U , then:

1. for µT -almost every x ∈ Rm+k,

lim
r→0

λ(x, r)

µT (B(x, r))
= 1,

where
λ(x, r) := inf{M(S) : ∂S = ∂(T B(x, r)), S ∈ Dm(U)};

26



2. if ∂T = 0 and ∂(T B(x, r)) is integer-rectifiable for all x ∈ Rm+k and almost
every r ∈ R, there is a δ > 0 such that

Θm
∗ (µT ,Rm+k, x) > δ

for µT -almost every x ∈ U .

Lemma 4.3.5 (Constant Vectorfield Lemma). Let T ∈ Dm(Rm+k) satisfy MW (T ) <∞
for all W ⊂⊂ U , ∂T = 0, and T̃ (x) = ω⃗ ∈

∧
m(Rm+k) for every x ∈ Rm+k. Let V be

the vector subspace of Rm+k consisting of the vectors in the directions in which T is
translation invariant. That is, the subspace defined by

V := {v ∈ Dm(Rm+k) : T (v) = T (rv) for all r ∈ R}.

Then ω⃗ ∈
∧

m(V ).

We may now present the proof of the closure portion of the Compactness Theorem,
beginning with a weaker version then generalizing the result to the full theorem.

Theorem 4.3.6 (Weak Closure Theorem). Let {Tj} be a sequence of integer-rectifiable
rectifiable m-currents in Dm(Rm+k) with

sup
j≥1

(M(Tj) +M(∂Tj)) <∞,

with ∂T = 0. If Tj → T , then T ∈ Dm(U) is also integer-rectifiable.

Proof. The proof will proceed by induction. The base case is trivial for 0-currents
since every 0-current is integer-rectifiable. Hence, we suppose the result holds for
(m− 1)-currents.

Recalling the Slicing Lemma (Theorem 4.1.5), for every Lipschitz f : Rm+k → R,
there is a subsequence j′ such that

sup
j′≥1

(M(⟨Tj′ , f, r⟩+M(∂⟨Tj′ , f, r⟩) <∞

and ⟨Tj′ , f, r⟩ → ⟨T, f, r⟩ for L1-almost every r ∈ R. Furthermore, each ⟨Tj , f, r⟩ is
integer-rectifiable by Lemma 4.1.4, and the limit ⟨T, f, r⟩ is also an integer-rectifiable
(m− 1)-current by the induction hypothesis. We also have that

⟨T, f, r⟩ = ∂(T {f < r}),

since ∂T = 0.

T ∈ Dm(Rm+k) must be of finite mass since

sup
j≥1

(M(Tj) +M(∂Tj)) <∞,
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and we use (2) of Lemma 4.2.4 to deduce the existence of δ > 0 such that if

M := {x ∈ Rm+k : Θm
∗ (µT ,Rm+k, x) > δ},

then µT (M
C) = 0. This implies that µT ≪ Hm M and that Hm(M) < ∞. By a

simple functional analytic argument, Hm M is a Radon measure.

We apply the Radon-Nikodym Theorem (Theorem 2.4.1), and by setting θ(x) =
dµT /d(Hm M), we may write

T (φ) =

∫
⟨φ(x), T̃ (x)⟩θ(x) dHm M(x) =

∫
M
⟨φ(x), τ(x)⟩ dHm(x) ,

where τ(x) = T̃ (x)θ(x) ∈
∧m(Rm+k). To prove that T is integer-rectifiable according to

Definition 3.2.9, we must show that M is countably m-rectifiable, θ(x) is an integer, and
that for Hm-almost every x, T̃ (x) is a simple m-vector in TxM . (The local integrability
of θ is easy to see as the integral becomes equivalent to M(T ) <∞)

Since Hm(M) <∞, we apply (2) of Proposition 2.2.1 to see

Θm∗(Hm,M, x) ≤ 1 (1)

for Hm-almost every x ∈M . Applying Lemma 4.3.3, we see that for Hm-almost every
a ∈M ,

lim
r→0

1

Hm(M ∩B(0, r)

∫
M∩B(a,r)

∥τ(a)− τ(x)∥ dHm(x) = 0, (2)

where B(a, r) is the open ball with radius r centered at a. Fix a point a ∈M where both
of these statements are satisfied (the set where both statements are false has measure 0).

By the definition of M and (2), we obtain

Θm
∗ (Hm,M, a) =

1

∥τ(a)∥
Θm

∗ (µT ,Rm+k, a) > 0.

Let Λ be a sequence of positive numbers converging to 0. We define the maps
ηλ,a : Rm+k → Rm+k by

ηλ,a :=
x− a

λ

for λ ∈ R. For every λ ∈ Λ,

Hm ηλ,a(M) =
1

λm
Hm (x− a)(M),
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implying that the left side is a Radon measure (due to the translation invariance of Hm).
Fix some constant 0 < r <∞. We then have

lim sup
λ∈Λ

((Hm ηλ,a(M))(B(0, r))) = lim sup
λ∈Λ

1

λm
Hm(M ∩B(a, λr),

= Ωmr
m lim sup

λ∈Λ

Hm(M ∩B(a, λr)

(λr)mΩm
,

= Ωmr
mΘm∗(Hm,M, a),

<∞,

where again the first equality is deduced from the translation invariance of Hm. By
a certain result on the convergence of measures, there is a subsequence Λ′ ⊂ Λ and a
Radon measure µ such that for λ ∈ Λ′,

Hm ηλ,a(M) → µ (3)

weakly, and this pointwise convergence implies that for λ ∈ Λ′,

(Hm ηλ,a(M)) ∧ τ(a) → (µ ∧ τ(a)),

weakly, where

((Hm ηλ,a(M)) ∧ τ(a))(φ) :=
∫
⟨φ, τ(a)⟩ d(Hm ηλ,a(M))

and

(µ ∧ τ(a))(φ) :=
∫
⟨φ, τ(a)⟩ dµ

for all φ ∈ Dm(Rm+k). Let us define

Tλ := ηλ,a#T,

where the right side denotes the push-forward under ηλ,a of T defined in Definition 4.2.2.
We also have that for every φ ∈ Dm(Rm+k),

Tλ → µ ∧ τ(a), λ ∈ Λ′ (4)

and
µTλ

→ ∥τ(a)∥µ, λ ∈ Λ′ (5)

weakly. These two assertions may be verified by noting that for every 0 < R <∞,

MB(0,R)(Tλ − ((Hm ηλ,a(M)) ∧ τ(a)) = 1

λm
MB(a,λR)(T − (Hm M) ∧ τ(a))

=
1

λm

∫
M∩B(a,λR)

∥τ(x)− τ(a)∥ dHm(x) → 0
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by (1) and (2).

It is easy to deduce from our previous discussion that ⟨Tλ, f, r⟩ are integer-rectifiable
(m− 1)-currents for every Lipschitz f and L1-almost every r, and clearly

M(Tλ) +M(∂Tλ)

by the finiteness of the sum of masses of T and ∂T . By (3) and the Slicing Lemma,
there is a subsequence Λ′′ ⊂ Λ′ such that

⟨Tλ, f, r⟩ → ⟨µ ∧ τ(a), f, r⟩, λ ∈ Λ′′

L1-a.e. By the inductive hypothesis, the limit slice is rectifiable, and by Lemma 4.3.4,
there is a δ > 0 such that

Θm
∗ (µ,Rm+k, x) >

δ

∥τ(a)∥
> 0 (6)

for µ-almost every x ∈M .

By (4) and ∂Tλ = 0, we also have ∂(µ ∧ τ(a)) = 0. Hence, we apply the Constant
Vectorfield Lemma (Lemma 4.3.5) to see that µ ∧ τ(a) must be translation invariant
in at least m directions. We also use (5) to deduce that µ ∧ τ(a) must be translation
invariant in at most m dimensions. Hence, our current in translation invariant in exactly
m dimensions. Thus, we apply Lemma 4.3.5 again to deduce that τ(a) ∈

∧
m(V ) is a

simple m-vector, and that there is a collection P1, . . . , Pp of m-planes parallel to the
m-dimensional subspace determined by τ(a) such that

µ =

p∑
j=1

αjHm Pj

where αj > 0. We note that by (1) and (3), we have

p∑
j=1

αj ≤ Θm∗(Hm,M, a) ≤ 1.

However, by (6), we know that each αj ≤ δ
∥τ(a)∥ , so p must be finite.

By a long and technical argument using the Slicing Lemma and the Poincare
inequality, it is concluded that in fact p = 1 and α1 = 1, and P1 passes through the
origin. Furthermore, P1 must be independent of the subsequences of Λ since it was
completely determined by τ(a).

Let us fix some continuous, compactly supported function f : Rm+k. We see that

lim
λ→0

∫
ηλ,a(M)

f dHm =

∫
Rm+k

f dµ =

∫
P1

f dHm ,
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since Hm ηλ,a(M) → µ weakly by (3). However, this clearly means that P = TaM ,
the approximate tangent space to M at a by Definition 3.2.8, and letting a vary, this
clearly holds for almost every a ∈M and M has an approximate tangent plane Hm-a.e.
By Remark 3.2.1, M is countably m-rectifiable.

Now all that is left is to verify that θ is integer valued. Notice that

⟨µ ∧ τ(a), f, r⟩ = ∂(µ ∧ τ(x) {f < r})(φ)

=

∫
M
⟨dφ, τ(x)⟩dHm P

=

∫
M
⟨dφ, T̃ (x)⟩θ(x) dHm P

is an integer-rectifiable (m− 1)-current by the induction hypothesis. Hence, θ(x) ∈ Z
and we are done.

Now that we have established the weak version of the theorem, we are ready to
prove the Closure Theorem in full generality.

Theorem 4.3.7 (Closure Theorem). Let U ⊂ Rm+k be open and let {Tj} ⊂ Dm(U) be
a sequence of integer-rectifiable m-currents with

sup
j≥1

(MW (Tj) +MW (∂Tj)) <∞.

Suppose Tj → T weakly. Then T is an integer-rectifiable m-current in Dm(U).

Proof. First consider the case where U = Rm+k. We use the Boundary Rectifiability
Theorem (Theorem 4.2.3) to deduce that each ∂Tj is an integer-rectifiable (m−1)-current.
Since ∂(∂T ) = 0 and ∂Tj → ∂T , we apply Theorem 4.3.6 to see that ∂T is also an
integer-rectifiable (m − 1)-current. By the Isoperimetric inequality (Theorem 4.2.4),
there is an integer-rectifiable m-current R ∈ Dm(Rm+k) such that ∂T = ∂R. Hence,
M(∂R) = M(∂T ) < ∞, so ∂R is an integer-rectifiable (m − 1)-current by the Weak
Closure Theorem above.

Clearly, we have Tj − R → T − R weakly, and by the definition of R, we have
∂(T −R) = 0. Hence, by the m− 1 case of the Compactness Theorem (Theorem 4.0.1),
T −R is an integer-multiplicity m-current, showing that we need not have the ∂T = 0
condition in Theorem 4.3.6.

To prove the result for open U ⊂ Rm+k where U is not the whole space, we fix
W ⊂⊂ U and let

C := {B(x, r) ⊂⊂ U}
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be an open covering for W . Fixing x ∈ U such that B(x, r) ⊂⊂ U for some r > 0, we
have

sup
j≥1

(MB(x,r)(Tj)+MB(x,r)(∂Tj)) <∞ ⇐⇒ sup
j≥1

(M(Tj B(x, r))+M((∂Tj) B(x, r))) <∞.

By the Slicing Lemma, we have a subsequence j′ such that

1. Tj′ B(x, r) → T B(x, r) weakly;

2. sup⟨T, f, r⟩ = sup(M(∂(Tj′ B(x, r))− (∂Tj) B(x, r))) <∞, where

f(y) = dist(x, y).

Combining these two facts, we clearly have

sup(Tj′ B(x, r)) +M(∂(Tj′ B(x, r))) <∞.

By putting U = Rm+k,we get that Tj′ B(x, r) → T B(x, r) weakly with the latter
being an integer-rectifiable m-current. Since x was arbitrary, we are done.

5 Plateau’s Problem

With the Compactness Theorem finally established, we are now equipped to prove the
existence of solutions to Plateau’s Problem, as provided in [Sim14].

Theorem 5.0.1 (Existence of Solutions). Let S be an (m − 1)-dimensional integer-
rectifiable current with compact support in Rm+k with ∂S = 0. Then there is a compactly
supported m-dimensional rectifiable current T ∈ Dm(Rm+k) with ∂T = S and M(T ) ≤
M(R) for every integer-rectifiable m-current R with compact support and ∂R = S.

Proof. Let us define the family of currents

IS := {R ∈ Dm(Rm+k) : R integer-rectifiable, compactly supported, ∂R = S}.

Taking a sequence {Rj} ⊂ IS satisfying

lim
j→∞

M(Rj) = inf
R∈IS

M(R),

and letting B(0, R) be an open ball in Rm+k containing suppS, we define f : Rm+k →
B(0, R) to be the retraction of Rm+k onto B(0, R). Clearly, Lip f = 1 and hence, we
have

M(f#Rj) = M(Rj).
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However, ∂f#Rj = f#∂Rj = f#S = S, because f restricted to B(0, R) is identical to
the identity function. Thus, f#Rj ⊂ IS and we have

lim
j→∞

M(f#Rj) = inf
R∈IS

M(R).

Applying the Compactness Theorem 4.0.1, there is a subsequence {Tj′} and integer-
rectifiable limit T ∈ Dm(Rm+k) such that f#Rj′ → T , and by the lower-semicontinuity
of mass (Lemma 3.2.1), we have

M(T ) ≤ inf
R∈IS

M(R).

Furthermore, suppT ⊂ B(0, R) and

∂T = lim ∂f#Rj′ = lim f#∂Rj′ = S,

so we have T ∈ IS , and we are done.

The complete solution of Plateau’s Problem in R3 is provided by the regularity
result below.

Theorem 5.0.2 (Regularity of Solutions). A rectifiable, area-minimizing 2-current
T ∈ R3 is a smooth, embedded manifold on the interior, that is, suppT − supp ∂T is an
embedded C∞ submanifold of R3.

This result was shown by Fleming in 1962. It is clear from this that currents have
a wide variety of applications, owing to their “nice” compactness properties. Some of
the notable current uses of currents include their application in the fields of partial
differential equations and dynamical systems, calculus of variations and its applications
to optimal transport, and the study of analytic varieties.

A The Topology on Dm(U)

We define the topology on Em(U) by considering some arbitrary ω ∈ Em(U) with the
representation

ω =
∑

α∈Im,n

ωαdx
α,

where each ωα : U → R is smooth and we use the notation established in Section 3.1.
We define the seminorms

νβK(ω) = sup
α∈Im,n

∥∥∥Dβωα

∥∥∥
where K ⊂ U is compact and the length of β = (β1, . . . , βm), defined

|β| = β1 + · · ·+ βm,

satisfies |p| ≤ k where k ∈ Z. The family of these seminorms for all β and compact
K ⊂ U induces a locally-convex, translation invariant Hausdorff topology on Dm(U).
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