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Aims of the talk

1 Background & History

2 Introduce Elliptic curves

3 The j-invariant

4 Hilbert class polynomials
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Hilbert’s 9th and 12th problems

Figure: David Hilbert

Find the general reciprocity law for any number field.

Extend the Kronecker-Weber theorem to any number field.
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What are Elliptic Curves?

Definition (Elliptic curves)

An elliptic curve is a plane curve defined by an equation of the form

y2 = x3 + ax + b,

for some constants a and b.
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Elliptic curves over C

Figure: An elliptic curve over C is a compact manifold of the form C/L, where
L = Z+ iZ is a lattice in the complex plane.
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Weierstrass Normal Form

Theorem
The equation of any cubic curve with a rational point can be written in the form

y2 = 4x3 −−g2x − g3,

where a rational point is a point with rational coordinates.
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Lattices and Curves

There is a bijective correspondence between lattices and complex elliptic curves.

Sarth Chavan (Euler Circle) Singular Moduli July 17, 2023 7 / 18



Lattices and Curves

A lattice is defined to be an additive subgroup L of C which is generated by two
complex numbers ω1 and ω2 that are linearly independent over R.

We find that

g2(L) = 60
∑
L∗

1

ω4
, g3(L) = 140

∑
L∗

1

ω6
,

where L∗ is L without the element 0.
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Singular moduli

Definition
The j -invariant of an elliptic curve E is defined as the quantity

j(E ) =
1728g32

g32 − 27g23
:=

1728g32
∆(E )

,

where

g2 = 60
∞∑

m,n=−∞
(m,n) ̸=(0,0)

1

(mτ + n)4
, g3 = 140

∞∑
m,n=−∞

(m,n)̸=(0,0)

1

(mτ + n)6
,

are multiples of the standard Eisenstein series on the upper half-plane H.
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Singular moduli

Definition

Let j(z) be the classical modular function for SL2(Z) defined by

j (z) :=
1

q
∏∞

n=1 (1− qn)24

(
1 + 240

∞∑
n=1

σ3(n)q
n

)3

= q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πız and σa(n) =
∑

k|n k
a.

Singular moduli is the classical name for the values assumed by j(z) at imaginary
quadratic arguments in the upper half of the complex plane.
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Arithmetic nature

Let K be an imaginary quadratic number field with order O.

Theorem

Let E be an elliptic curve with CM by O. Then, j(E ) is an algebraic number.
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Computing the singular moduli

Plug τ into the q-expansion of j(τ),

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + · · · .

This q-expansion can be computed via the q-expansions of g2(τ) and g3(τ),

g2(τ) =
(2π)4

12

(
1 + 240

∞∑
n=1

σ3(n)q
n

)
, g3(τ) =

(2π)6

216

(
1− 504

∞∑
n=1

σ5(n)q
n

)

Can be computed using PARI-GP software.
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Example

Example

j

(
1 +

√
−163

2

)
= −26 · 36 · 72 · 112 · 192 · 1272 · 163 + 1728.

Example

j

(
1 +

√
163

2

)
= −(26 · 3 · 5 · 23 · 29)3.

Example

j

(
1 +

√
−15

2

)
= −−191025− 85995

√
5

2
.
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Integrality of j(τ)

Theorem

Let τ ∈ H. Then, j(τ) is an algebraic integer.
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Gross-Zagier Theorem

Determined the prime factorization of the norm of the difference between two
singular moduli.

Theorem
We have

J(d1, d2)
2 = ±

∏
x2<d1d2

x2≡d1d2 (mod 4)

F

(
d1d2 − x2

4

)
,

where

J(d1, d2) =

(
h1∏
i=1

h2∏
k=1

(j(ai )− j(bk))

)4/w1w2

.
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Hilbert class polynomials

Definition
The Hilbert class polynomial Hn is defined by

Hn(x) :=
∏

j(E)∈EllO(C)

(x − j(E )) ,

where EllO(C) := {j(E/C) : End(E ) ∼= O} is the set of j-invariants of elliptic
curves E/C with CM by the imaginary order O with discriminant −n = disc(O).

Theorem

Hilbert class polynomials have integer coefficients, i.e., Hn ∈ Z[x ].
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Hilbert class polynomial

Problem. Given a monic irreducible polynomial H ∈ Z[X ], determine whether H
is an Hilbert class polynomial.

Proposition

Let H(X ) ∈ Z[X ] be a polynomial of degree h with exactly h+ real roots. If H is a
Hilbert class polynomial then the following hold:

(1) h+ | h;
(2) h+ is a power of 2;

(3) h+ ≡ h (mod 2); that is, h+ = 1 if and only if h is odd.
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Importance of singular moduli

Generates ring class field extensions of imaginary quadratic fields.

Distinguishes the isomorphism classes of elliptic curves with CM.
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