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ABSTRACT. In this survey article, we study singular moduli and its applications.

1. INTRODUCTION

Let j(z) be the classical modular function for SL2(Z) defined by

j (z) :=
1

q
∏∞

n=1 (1− qn)24

(
1 + 240

∞∑
n=1

σ3(n)q
n

)3

= q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πız and σa(n) =
∑

k|n k
a. Singular moduli is the classical name for the values

assumed by j(z) at imaginary quadratic arguments in the upper half of the complex plane.
Singular moduli are algebraic integers which play prominent roles in classical and modern

number theory [1]. For example, Hilbert class fields of imaginary quadratic fields are gener-
ated by singular moduli. Furthermore, isomorphism classes of elliptic curves with complex
multiplication are also distinguished by singular moduli. These invariants were studied in-
tensively by the leading number theorists since the time of Kronecker and Weber.

Hilbert, in his 9th problem, posed the problem of finding the general reciprocity law for
any number field. The class field theory developed in the first half of the 20th century was
successful in answering this question for finite abelian extensions of Q.

As an easy consequence of class field theory, one can reproduce the classical Kronecker-
Weber theorem, that is, every finite abelian extension of Q is a subfield of some cyclotomic
extension Q(ξm) of Q. Moreover, Hilbert’s 12th problem also asked how to extend the
Kronecker-Weber theorem to an arbitrary ground number field [1].

Motivated by the case of Q where all abelian extensions are obtained by adjoining the
values of the exponential function, Kronecker conjectured, while he was studying elliptic
functions, that all abelian extensions of an imaginary quadratic field should also arise in
such a manner. This was achieved by the beautiful theory of complex multiplication, which
allows one to describe all abelian extensions of an imaginary quadratic field via the values of
the modular j-function and the Weber function, or in the language of elliptic curves, via the
j-invariant and (certain powers of) x-coordinates of all torsion points of the corresponding
elliptic curve. This problem for general number fields, known as Kronecker’s Jugendtraum
(dream of youth), is still largely open and is at the heart of current research in number theory.
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2. BACKGROUND

2.1. Elliptic curves and singular moduli. Let K be a field whose characteristic is not 2 or
3. Then an elliptic curve E/K is a nonsingular curve in the projective plane P2 of the form

y2 = 4x3 −−g2x− g3,

with g2, g3 ∈ K, whose only point on the line at infinity is O = [0, 1, 0].
The j-invariant of an elliptic curve E is defined as the quantity

j(E) =
1728g32

g32 − 27g23
,

where

g2 = 60
∞∑

m,n=−∞
(m,n)̸=(0,0)

1

(mτ + n)4
, g3 = 140

∞∑
m,n=−∞

(m,n)̸=(0,0)

1

(mτ + n)6
,

are multiples of the standard Eisenstein series on the upper half-plane H.
The j-invariant of E uniquely determines its geometric isomorphism class: for elliptic

curves E1/F and E2/F we have j(E1) = j(E2) if and only if E1 and E2 are isomorphic
over an algebraic closure of F . Such an isomorphism is necessarily defined over a finite
extension of F , and for j-invariants other than 0 and 1728 this extension is at most a quadratic
extension: if E1 and E2 are not isomorphic over F then they are isomorphic over some
quadratic field Q(

√
d) with d ∈ Z squarefree, and if E1 is defined by y2 = x3+Ax+B then

y2 = x3 + d2 + d3B is a defining equation for E2 and we say that E2 is the quadratic twist
of E1 by d. Elliptic curves E over C are isomorphic (both as elliptic curves and as complex
analytic varieties) to C/L for some lattice L in C. If L has Z-basis ω1, ω2 with τ = ω1/ω2 in
the complex upper half-plane, then we set j(L) = j(τ), the value of the classical elliptic j-
function at τ , and we have j(E) = j(L). This value is independent of the (oriented) Z-basis,
and homothetic lattices have the same j-invariant. See [16, 18, 19, 22] for more details.

2.2. Basic CM facts. An imaginary quadratic order is a finite index subring of the ring
of integers OK of an imaginary quadratic field K. Imaginary quadratic orders are in 1-to-
1 correspondence with the set of imaginary quadratic discriminants: negative integers D
that are squares modulo 4. Every such D arises as the discriminant of a unique imaginary
quadratic order OD, and can be written as D = f 2D0 where the fundamental discriminant D0

is equal to the discriminant DK of the imaginary quadratic field K = Q(
√
D) = Q(

√
DK)

and f := [OK : OD] =
√
D/DK is the conductor of OD. The class number h(D) :=

h(OD) is the order of the class group ClD of invertible fractional OD-ideals modulo principal
fractional OD-deals. The class numbers h(D) are related by the formula [19, Thm. 7.24]

h(D) = h(OD) =
h(OK)f

[O×
K : O×

D]

∏
p | f

(
1−

(
DK

p

)
1

p

)
, (2.1)

where [O×
K : O×

D] is 2 (resp. 3) when DK = −4 (resp. DK = −3) and f > 1, and 1

otherwise, and
(

DK

p

)
∈ {0,±1} is a Kronecker symbol; the integer h(OK) divides h(D).

Fix an embedding of K in C. The image of each invertible OD-ideal a under this em-
bedding is a lattice in C homothetic to Z + τZ for some τ ∈ K ⊆ C that we may assume
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lies in the upper half plane. We define j(a) to be the j-invariant of this lattice; such values
j(a) are traditionally called singular moduli. Homothetic lattices have the same j-invariant,
so j(a) depends only on the ideal class [a] of a in ClD and may be written as j([a]). If E
is an elliptic curve defined over a number field F with End(E) an order in the imaginary
quadratic field K, then for every prime p of F at which E has good reduction, lying above
the rational prime p, the reduction is ordinary if p splits in K and supersingular if p is inert
in K. Moreover, in the ordinary case, the reduced curve E has the same endomorphism
ring End(E). (See [22, Theorem 13.12].) Let E be an elliptic curve defined over a num-
ber field. The (geometric) endomorphism ring End(E) is an arithmetic invariant that plays
a key role in many theorems and conjectures, including those related to the distribution of
Frobenius traces such as the Sato–Tate and Lang–Trotter conjectures, and those related to
Galois representations associated to E, such as Serre’s uniformity question. It is known that
the ring End(E) is isomorphic either to Z, or to an order O in an imaginary quadratic field,
and in the latter case one says that E has complex multiplication (CM). We refer the reader
to [19], and also to [20, Ch. II] for CM by the maximal order of an imaginary quadratic field,
and to [21, Ch. 6] for the general case.

3. INTEGRALITY OF THE SINGULAR MODULI

Proposition 3.1. For any proper fractional ideal a of O and σ ∈ Gal(H/K), we have

j(pa)σ = j(a)

for any proper ideal p = q ∩ O, where q is a prime of K whose Artin symbol is σ. In
particular, {j(a1), . . . , j(ah)} is the Galois orbit of j(a) for any proper fractional ideal a of
O and [Q(j(a)) : Q] = [K(j(a)) : K] = h, where h = h(O).

Proof. By Chebotarev’s density theorem, there are infinite many degree 1 primes q of K
whose Artin symbol is σ. For all but finitely many such primes q, we have

j(pa)σ ≡ j(pa)p ≡ j(a) (modP),

where p = q ∩ O is proper and P is any prime of H over p. Since these p’s have the same
Artin symbol, they must lie in the same ideal class of O. So j(pa)σ − j(a) is the same for
every p and has infinitely many prime factors, therefore it must be zero. We conclude that
j(pa)σ = j(a). The remaining part follows since [K : Q] ⩽ 2 and [Q(j(a)) : Q] ⩽ h. ■

We have seen that j(a) is an algebraic number of degree h(O) from the above Theorem.
However, it turns out that it is also an algebraic integer. This is always the case, and the goal
of this section is to explain this phenomenon. There are three possible proofs of this fact:
the complex analytic proof using the modular equation, the l-adic good reduction argument
proof due to Serre and Tate [10], and the p-adic bad reduction argument proof, again due to
Serre [12, II.6]. For convenience, we will choose the first approach here, as the other two
arguments go beyond the scope of this paper.

Let us first recall some facts about the modular curve X0(N), which plays an important
role in modern number theory. The modular curve X0(N) is a compact Riemann surface
constructed by compactifying Γ0(N)\H, the quotient of upper half plane by the congruence
group Γ0(N). It is the compactification of the moduli space of elliptic curves along with the
level structure of a cyclic subgroup of order N .
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Viewing X0(N) as a complex algebraic curve, the function field of X0(N) is equal to
C(j(Nτ), j(τ)). So X0(N) has a planar model defined by say some complex polynomial
ΦN(X, Y ) satisfying ΦN(j(Nτ), j(τ)) = 0, called the modular equation of level N .

An unexpected result is that the modular equation ΦN(X, Y ) in fact has rational, or even
better, integer coefficients. Therefore, X0(N) can be defined as an algebraic curve over Q
without reference to the complex numbers and it has a planar model over Q defined by the
modular equation. The goal of this section is to prove this unexpected fact and deduce the
integrality of j(a) as a consequence. See [1] for more rigorous details. However, to define
the modular equation, we need the following important proposition.

Proposition 3.2 (Hasse q-expansion principle). Let f(τ) be a modular function with respect

to Γ(1) with the q-expansion
∞∑

n=−t

cnq
n. Then f can be expressed as a polynomial of degree t

in Z[c−t, . . . , c0][j(τ)]. In particular, if ci ∈ Z, then this polynomial has integer coefficients.

Proof. The proof is by induction on t. When t = 0, f(τ) is a holomorphic function on the
compact Riemann surface X(1), hence it must be the constant c0. When t > 0, since j(τ)
has q-expansion 1

q
+ 744+ · · · with integer coefficients, the leading term of the q-expansion

of f − c−tj
t is (c1−t − 744)q1−t and all the coefficients are in Z[c1−t, . . . , c0]. Now applying

the induction hypothesis, we know f − c−tj
t ∈ Z[c1−t, . . . , c0][j] is a polynomial of degree

t− 1, which produces the desired result. ■

Definition 3.3. Let

∆N =

{
A =

[
a b
c d

]
: det(A) = N, gcd(a, b, c, d) = 1

}
.

Suppose {γi} is a set of orbit representatives for the left action of Γ(1) on ∆N . We define

ΦN(X, j(τ)) =
∏
i

(X − j(γiτ)).

Then the coefficients of X in ΦN(X, j(τ)) are modular functions of Γ(1), hence by Lemma
3, these coefficients of X are polynomials in j(τ). So ΦN(X, Y ) is a polynomial, called the
modular polynomial or the modular equation of level N .

Since
[
N 0
0 1

]
∈ ∆N , it follows immediately that ΦN(j(Nτ), j(τ)) = 0. Also, it is an

easy computation to see that the set of orbit representatives can be chosen as

C(N) =

{[
a b
0 d

]
: ad = N, a > 0, 0 ⩽ b < d, gcd(a, b, d) = 1

}
.

Theorem 3.4. The modular equation ΦN(X, Y ) ∈ Z[X, Y ]. Moreover, when N is not a
perfect square, the leading coefficient of ΦN(X,X) is ±1.

Proof. By Proposition 3.2, to show ΦN(X, Y ) ∈ Z[X, Y ], it suffices to show that the q-
expansions of ΦN(X, j(τ)) have integer coefficients. Using the orbit representatives in

C(N), we find that for γi =

[
a b
0 d

]
, j(γiτ) has a Fourier expansion in qa/d with coeffi-

cients in Z[ξ] where ξ = e2πi/N , hence the coefficients of q-expansions of ΦN(X, j(τ)) are
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in Z[ξ]. For an integer r prime to N , the map[
a b
0 d

]
7→
[
a br mod d
0 d

]
is a permutation of C(N), hence it leaves ΦN(X, j(τ)) unchanged. But this map has an
action ξ 7→ ξr on the coefficients, therefore the coefficients are actually in Z. So ΦN(X, Y ) ∈
Z[X, Y ]. Now suppose N is not a perfect square.

The leading coefficient of ΦN(X,X) is the same as the leading coefficient of the q-
expansion of ΦN(j(τ), j(τ)), so let us show that the latter is ±1. Now j(τ) begins with
q−1 and j(γiτ) begins with ξdq−a/d, so since N is not a perfect square and ad = N , we know
that q−1 and ξdq−a/d cannot cancel out, hence the leading coefficient of j(τ)−j(γiτ) is a root
of unity. Multiplying them together, we know that the leading coefficient of ΦN(j(τ), j(τ))
is a root of unity. But we already know it is an integer, hence it must be ±1. ■

Example 3.5. The first two modular equations are computed as

Φ1(X, Y ) = X − Y,

Φ2(X, Y ) = X3 + Y 3 −X2Y 2 + 24 · 3 · 31(X2Y + Y 2X)− 24 · 34 · 53(X2 + Y 2)

+ 34 · 53 · 4027XY + 28 · 37 · 56(X + Y )− 212 · 38 · 59.

Now we are in a position to prove the integrality of the singular moduli.

Theorem 3.6. Let O be an order in an imaginary quadratic field K and a be a proper
fractional ideal of O. Then j(a) is an algebraic integer of degree h(O).

Proof. By Chebotarev’s density theorem, there are infinitely many degree 1 primes of O in
the principal ideal class. Let p be such a prime. Then a/pa ∼= Z/pZ where p = N(p) is
a prime. We may assume that a = Z + Zτ , then pa is homothetic to Z + Zγτ for some
γ ∈ ∆p ([3, 11.24]). We know that Φp(j(a), j(pa)) = 0 by definition. But j(pa) = j(a) by
our choice of p. Hence by Theorem 7, j(a) satisfies the polynomial Φp(X,X) ∈ Z[X] with
leading coefficient ±1 and therefore j(a) is an algebraic integer. ■

4. GROSS-ZAGIER’S THEOREM ON SINGULAR MODULI

Gross and Zagier [16] proved a result which completely determines the prime factorization
of the norm of the difference between two singular moduli, which in turn justified many
classical conjectures on the congruences of singular moduli proposed by Berwick [4]. They
provide two proofs of different natures: The first proof, an algebraic proof, is based on
Deuring’s work on endomorphism rings of elliptic curves. The second analytic proof relies
on the calculation of the Fourier coefficients of the restriction to the diagonal H ⊆ H × H
of an Eisenstein series of the Hilbert modular group of Q(

√
D). As the authors remarked,

these two methods can be viewed as the special case N = 1 of the theory of local heights of
Heegner points on X0(N), which generalizes to groundbreaking Gross-Zagier formula [17].

In this section (which is reproduced from [1]), we will first state the famous Gross-Zagier’s
theorem, then use it to compute several examples and derive some consequences.

Now consider two orders with discriminants d1 and d2 satisfying gcd(d1, d2) = 1. Let
w1, w2 be the numbers of their units and h1, h2 be their class numbers. Let ai (1 ⩽ i ⩽ h1)
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and bk (1 ⩽ k ⩽ h2) be the representatives of their ideal class groups. Define

J(d1, d2) =

(
h1∏
i=1

h2∏
k=1

(j(ai)− j(bk))

)4/w1w2

.

Notice that when w1w2 = 4 (e.g., d1, d2 < −4), J(d1, d2) is just the norm of any of the
differences j(ai)− j(bk). In general, J(d1, d2) is a certain power of this norm and J(d1, d2)

2

is always an integer. To state Gross-Zagier’s theorem, let us introduce some notation. Let
D = d1d2. For a prime p, define

ϵ(p) =


(
d1
p

)
, p ∤ d1,(

d2
p

)
, p ∤ d2.

This is well-defined whenever
(

D
p

)
̸= −1. More generally, if n has the prime factorization

n =
r∏

i=1

paii with
(

D
pi

)
̸= −1, we define

ϵ(n) =
r∏

i=1

ϵ(pi)
ai .

Finally, set

F (m) =
∏

nn′=m,
n,n′>0

nϵ(n′).

This is well-defined whenever all primes p dividing m satisfy
(

D
p

)
̸= −1. Now we are

finally ready to state our main theorem, which is as follows.

Theorem 4.1 (Gross-Zagier Theorem [16]). With the above notation,

J(d1, d2)
2 = ±

∏
x2<d1d2

x2≡d1d2 (mod 4)

F

(
d1d2 − x2

4

)
.

Example 4.2. When d1 = −3, we know the corresponding w1 = 6 and j
(

1+
√
−3

2

)
= 0. So

in this case,

J(−3, d2) = N

(
j

(
d2 +

√
d2

2

))2/(3w2)

.

In particular, for d2 = −163, w2 = 1 and h2 = 1, so we have j
(

1+
√
−163
2

)
= J(−3,−163)3.

The factors of J(−3,−163)2 are tabulated in an online database, so we can conclude that

j

(
1 +

√
−163

2

)
= −(26 · 3 · 5 · 23 · 29)3.
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Finally, let us come to the algebraic proof of Gross-Zagier’s theorem. The proof proceeds
locally. As the first step, Gross and Zagier relate the valuation of the difference of two j-
values to the geometry of elliptic curves and reduce it to a counting problem of isomorphisms
between elliptic curves. Next, a generalization of Deuring’s lifting theorem will allow one to
reduce the problem to counting certain subrings of the endomorphism ring of a supersingular
elliptic curve. To complete the proof, Gross and Zagier give a convenient description of
a maximal order and its subrings in the rational quaternion algebra ramified at ∞ and a
prime for explicit computation. The first step can be viewed as an interesting geometrical
interpretation of the difference of j-values.

Proposition 4.3. Let W be a complete discrete valuation ring whose quotient field has char-
acteristic zero and whose residue field is algebraically closed and has characteristic ℓ > 0
(e.g., W (Fℓ)). Let π be its uniformizer and v be its normalized valuation. Let E,E ′ be
elliptic curves defined over W with good reduction and j-invariants j, j′. Denote the set of
isomorphisms from E to E ′ defined over W/πn by Ison(E,E ′). Then

v(j − j′) =
1

2

∑
n≥1

#Ison(E,E ′).

Proof. We may assume that E,E ′ are isomorphic over the algebraically closed field W/π,
otherwise both sides are zero. Denote i(n) = 1

2
#Ison(E,E ′), then i(1) ⩾ 1. Let us consider

the case when ℓ ̸= 2, 3 for simplicity. Change models for E,E ′ with simplified Weierstrass
equations

y2 = x3 + a4x+ a6, y2 = x3 + a′4x+ a′6.

By definition, we have i(n) ⩾ 1 if and only if we can solve the congruences{
a4 ≡ u4a′4

a6 ≡ u6a′6
(modπn)

simultaneously for some unit u ∈ (W/πn)∗. In this case ∆ = −16(4a34 + 27a26), and at least
one of a4 and a6 is a unit in W ∗ since E has good reduction mod π.

If a4 is a unit in W ∗, then a′4 is also a unit. By changing models we may assume that
a4 = a′4 = 1. Then

v(j − j′) = v(a26 − a′26 ) = v(a6 − a′6) + v(a6 + a′6).

On the other hand, the congruences become{
u4 ≡ 1

a6 ≡ u6a′6
(mod πn) .

We may possibly modify (a6, a
′
6) by ±1 so that v(a6 − a′6) is maximal. Then

i(n) =


0 (no solution), n > v(a6 − a′6),

1 (u = ±1), v(a6 + a′6) < n ⩽ v(a6 − a′6),

2 (u = ±1,±i), n ⩽ v(a6 + a′6).
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We get ∑
n⩾1

i(n) = v(a6 − a′6) + v(a6 + a′6).

So the theorem holds in this case.
If a6 is a unit in W ∗, then a′6 is also a unit. Similarly by changing models we may assume

that a6 = a′6 = 1. Then

v(j − j′) = v(a34 − a′34 ) = v(a4 − a′4) + v(a4 − ρa′4) + v(a4 − ρ2a′4)

= v(a4 − a′4) + 2v(a4 − ρa′4),

where ρ is a primitive cube root of unity in W ∗. On the other hand, the congruences become{
a4 ≡ u4a′4

u6 ≡ 1
(mod πn) .

We may possibly modify (a4, a
′
4) by ρ or ρ2 so that v(a4 − a′4) is maximal. Then

i(n) =


0 (no solution), n > v(a4 − a′4),

1 (u = ±1), v(a4 − ρa′4) < n ⩽ v(a4 − a′4),

3 (u = ±1,±ρ,±ρ2), n ⩽ v(a4 − ρa′4).

We get ∑
n⩾1

i(n) = v(a4 − a′4) + 2v(a4 − ρa′4).

This completes the proof. ■

or simplicity, we will assume d1 = −p is a prime from now on (for the general case, see
[11]). Let OK be the ring of integers of K = Q(

√
−p). Let E be an elliptic curve over W

with complex multiplication by OK and with j-invariant j = j(OK). For our purpose, we
need to calculate #Ison(E,E ′) where E ′ is an elliptic curve over W with complex multi-
plication by some ring Z[w] of discriminant d2. We can rewrite #Ison(E,E ′) in a manner
which only depends on E. Suppose f ∈ Ison(E,E ′), then wf = f−1 ◦ w ◦ f ∈ Endn(E) is
an endomorphism of E mod πn, which has the same norm, trace and action on tangent space
as w. Namely, wf belongs to the set

Sn = {α0 ∈ Endn(E) | T(α0) = T(w),N(α0) = N(w), α0 = w on Lie(E)},

Conversely, every element of Sn is of the form wf for some unique f ensured by the follow-
ing lifting theorem, which is a refinement of Deuring’s lifting theorem.

Theorem 4.4. Let E0 be an elliptic curve over W/πn and α0 ∈ End(E0). Assume that
Z[α0] is a Z-module of rank 2 and is integrally closed in its quotient field. Suppose α0

induces multiplication by a quadratic element w0 on Lie(E0). If there exists w ∈ W that

w ≡ w0 (mod πn), w2 − T(w0)w +N(w0) = 0,

then there exists an elliptic curve E over W and α ∈ End(E), such that (E,α) reduces to
(E0, α0) mod πn and α induces multiplication by w on Lie(E).



SINGULAR MODULI 9

Now by the above Theorem, we reduce to the counting problem of Sn.
When

(
ℓ
p

)
= 1, ℓ splits in K = End(E) ⊗ Q, so E has ordinary reduction mod π and

Endn(E) = End(E) = OK ([12, 13.12]). But OK contains no elements of discriminant
d2, so Sn is empty for all n ≥ 1. (Another way to say this: if two elliptic curves E and E ′

with complex multiplication have the isomorphic reduction Ẽ, then the reduction Ẽ must be
supersingular, since two different orders End(E) and End(E ′) have to embed into End(Ẽ)).

So we only need to consider the case
(

ℓ
p

)
̸= 1 and E has supersingular reduction. Then

End1(E) is a maximal order in the rational quaternion algebra B ramified at ℓ and ∞. The
algebra B can be desribed explicitly as a subring of M2(K),

B =

{[
α β

−ℓβ̄ ᾱ

]
: α, β ∈ K

}
.

The subrings Endn(E) can also be desribed explicitly. Using these descriptions, it turns
out that in many cases #Sn equals to w1/2 times the number of the solutions (x, b) (under
certain conditions on b) of the equation

x2 + 4ℓ2n−1N(b) = pq,

where we assume d2 = −q is a prime . The more precise result is the following.

Theorem 4.5. Let λ be a prime of OK over ℓ, then

ordλ(J(−p,−q)) =
1

2

∑
x∈Z

∑
n≥1

δ(x)R

(
pq − x2

4ℓn

)
, (2)

where

δ(x) =

{
2, x ≡ 0 (mod p),
1, otherwise,

and R(m) is the number of ideals of OK of norm m.

Remark 4.6. The main theorem of Gross and Zagier is now can be derived directly from
equation (2) using the formula

R(m) =
∑

n|m,n>0

(
n

p

)
.

5. HILBERT CLASS POLYNOMIALS (HCPS)

5.1. Overview. Let E/C be an elliptic curve E over C that has complex multiplication
(CM) by an imaginary quadratic order O, by which we mean that the endomorphism ring
End(E) is isomorphic to O. Let K denote the fraction field of O. The j-invariant of E is
an algebraic integer whose minimal polynomial over K is the Hilbert class polynomial Hn

1,
where −n is the discriminant of O.

1Note that most authors use the term Hilbert class polynomial only when O is a maximal order (they then
use the term ring class polynomial for the general case); however, we will not make this distinction.
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In particular, the Hilbert class polynomial Hn is defined by

Hn(x) :=
∏

j(E)∈EllO(C)

(x− j(E)) ,

where EllO(C) := {j(E/C) : End(E) ∼= O} is the set of j-invariants of elliptic curves E/C
with complex multiplication by the order O with discriminant −n = disc(O).

Moreover, Hn ∈ Z[x] and its splitting field over the imaginary quadratic field K is the
ring class field KO, which is an abelian extension of K whose Galois group Gal (KO/K)
is isomorphic to the class group Cl (O), via the Artin map. In particular, Gal (KO/K) is
abelian of order h(D). This is indeed a remarkable result as it implies that of uncountably
many isomorphism classes of elliptic curves over C, only countably many have CM.

The degree of the Hilbert class polynomial HD is the class number h(D). For any positive
integer h only finitely many negative discriminants D have class number h(D) = h. For
example, when h = 1 there are 13 (of which 9 are fundamental), corresponding to the 13
CM j-invariants that lie in Q. For h ⩽ 100 the complete list of discriminants D < 0
with h(D) = h is known. All such fundamental discriminants D0 were enumerated by
Watkins [13], and Klaise [15] used this list and the formula for h(D) as a multiple of h(D0)
listed in (1) to determine all negative discriminants D with h(D) ⩽ 100. In fact, there are a
total of 66,758 such discriminants, of which 42,272 are fundamental.

When D is a fundamental discriminant the ring class field of OD is the Hilbert class
field of K, its maximal unramified abelian extension, and in general the extension KO/K is
ramified only at primes that divide the conductor f of OD and must be ramified at all odd
primes that do. The extension KO/Q is Galois, and unramified at primes not dividing D. To
summarize the above discussion, we state the following main theorem.

Theorem 5.1. Let O be the maximal order in an imaginary quadratic field of discriminant
D, and let L be the splitting field of H(x) over K = Q(

√
D). The Hilbert class polynomial

H(x) is irreducible and has degree equal to the size of the ideal class group, and there is an
isomorphism between the ideal class group and the Galois group Gal(L/K).

The proofs and necessary background to understand these ideas, as well as some further
discussion of topics like the splitting of primes in imaginary quadratic fields and the action
of the Galois group Gal(L/K), can be found in lectures 21–22 of [13] and chapter 6 of [15].

One may ask, whether a given monic, irreducible, integer polynomial H is or is not an
Hilbert class polynomial (HCP), and if so, to determine discriminant D for which H =
HD. Sutherland and Cremona [18] recently answered these very interesting questions by
providing deterministic and probabilistic algorithms. We will see one of them below.

Theorem 5.2. Given a monic irreducible polynomial H ∈ Z[X], Algorithm 1 returns true
and the discriminant D if and only if H is the Hilbert class polynomial HD.

Algorithm 1. Given a monic irreducible H ∈ Z[X] of degree h, determine if H = HD for
some D. If so, return true and the value of D, otherwise return false.

Let D be the set of integers h+|h that are powers of 2 of the same parity as h.
Let pmin := ⌈37h2(llog(h+ 1) + 4)4⌉.
For increasing primes p ⩾ pmin :
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(1) Compute H := H mod p ∈ Fp[x].
(2) Compute d := deg gcd(H(x), xp − x).
(3) If d = 0 then proceed to the next prime p.
(4) If gcd(H,H

′
) ̸= 1 then proceed to the next prime p.

(5) If d < h and d ̸∈ D then return false.
(6) Let E/Fp be an elliptic curve whose j-invariant is a root of H .
(7) If E is supersingular then proceed to the next prime p.
(8) Compute D := disc(End(E)) ∈ Z
(9) If h(disc End(E)) ̸= h return false, otherwise compute HD(X).

(10) If H = HD then return true and D; otherwise return false.
Moreover, the authors also prove the following important results [18].

Proposition 5.3. Let D be an imaginary quadratic discriminant and let p be a prime for
which

(
D
p

)
= +1. Then the Hilbert class polynomial HD is squarefree modulo p.

Proposition 5.4. Let H(X) ∈ Z[X] be a polynomial of degree h with exactly h+ real roots.
If H is a Hilbert class polynomial then the following hold:

(1) h+ | h;
(2) h+ is a power of 2;
(3) h+ ≡ h (mod 2); that is, h+ = 1 if and only if h is odd.

For example, an HCP of odd degree has exactly one real root, so an odd degree polynomial
with any other number of real roots is not an HCP.

5.2. Ramanujan class polynomials. This subsection is reproduced from [6].
Let us now turn our attention toward a class of comparatively less studied polynomials

that were defined by Ramanujan in the 19th century. Ramanujan, who made many beautiful
and elegant discoveries in his short life of 32 years, defined in his third notebook [9, Pages
392-393] the values

tn :=
f
(

3
√
qn
)
f (q3n)

f 2 (qn)

√
3q1/18n ,

where qn = exp (−π
√
n), and f (−q) =

∏
n⩾1 (1− qn) .

For all positive n ≡ 11 (mod 24), let Pn be the minimal polynomial of tn over Q. We
refer to Pn a a Ramanujan class polynomial. Without any further explanation on how he
found them, Ramanujan gave the following table of polynomials Pn based on tn for the
first five values of n ≡ 11 (mod 24): Berndt and Chan [5, Theorem 1.2] later verified his

n Pn(z)
11 z − 1
35 z2 + z − 1
59 z3 + 2z − 1
83 z3 + 2z2 + 2z − 1
107 z3 − 2z2 + 4z − 1

Table 1: Pn for n = 11, 35, 59, 83, 107.
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claims for n = 11, 35, 59, 83, and 107 using laborious computations involving Greenhill
polynomials and Weber class invariants, and proved that each Pn has tn as a root. However,
due to computational complexity, their method to contruct Pn could not be applied for higher
values of n. Thus, they asked for an efficient way of computing the polynomials Pn for every
n ≡ 11 (mod 24). Moreover, the authors proved the following crucial result [5, Thm. 4.1]:

Theorem 5.5. Let n ≡ 11 (mod 24) be squarefree, and suppose that the class number of
Q(

√
−n) is odd. Then tn is a real unit generating the Hilbert class field of Q(

√
−n).

Ten years later, Konstantinou and Kontogeorgis [7] generalized this result by removing
the constraint of the class number needing to be odd and also provided an efficient method
for constructing the minimal polynomials Pn of tn over Q from the Ramanujan values tn for
n ≡ 11 (mod 24), using the Shimura reciprocity law, and thus answered the demand made
in [5] for a direct and an easily applicable construction method. Moreover, the authors also
proved that the tn is a class invariant for n ≡ 11 (mod 24) [7, Theorem 3.4].

It is interesting to point out that coefficients of the polynomial Pn have remarkably smaller
size compared to the coefficients of the corresponding Hilbert class polynomial Hn, which is
a clear indication that their use in the CM method, which is used for the generation of elliptic
curves over prime fields, can be especially favoured. The above discussion also suggests that
the polynomials Pn can be used in the CM method because their roots can be transformed to
the roots of Hn. For more details on constructing elliptic curves with CM method, see [2,3].

The author in [6] studies the discriminants of Pn; the historical precedent for doing so
comes from [16], which is known for computing the prime factorization of certain resultants
of Hilbert class polynomials. Gross and Zagier [16] also computed the prime factorization
of the discriminant of Hilbert class polynomial associated to fundamental discriminant −p,
where p ≡ 3 (mod 4) is a prime. This result was later generalized by Dorman [14], who
extended the discriminant formula to the Hilbert class polynomials associated with arbitrary
fundamental discriminants. Dorman’s result in turn was then extended by Ye [23], who com-
puted the prime factorization of HCPs associated to certain non-fundamental discriminants.

In particular the author [6] proved the following results which establish connection be-
tween the discriminants of the Hilbert class polynomial Hn and Ramanujan polynomial Pn.

Theorem 5.6. For all positive n ≡ 11 (mod 24), we have

∆(Hn) = ∆ (Pn) [Z [tn] : Z [jn]]
2 ,

where [Z [tn] : Z [jn]] is the index of Z [jn] in Z [tn].

Remark 5.7. Since the quotient [Z [tn] : Z [jn]]
2 is a perfect square, we deduce that ∆(Hn)

and ∆(Pn) have the same sign for all positive integers n ≡ 11 (mod 24).

Theorem 5.8. For all positive n ≡ 11 (mod 24), ∆(Pn) > 0 if and only if

hn ≡ |Cl (n) [2]| (mod 4),

where Cl (n) [2] is the subgroup of Cl (n) consisting of elements of order at most 2.

Theorem 5.9. For all positive squarefree integers n ≡ 11 (mod 24), we have 3 ∤ ∆(Pn).

One may ask, whether a given monic, irreducible, integer polynomial P is or is not an
Ramanujan class polynomial Pn, and if so, to determine discriminant n for which P = Pn,
and see if we can obtain analogues conditions given in Proposition 5.4.
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