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Abstract. The Hadwiger-Nelson problem is a famous unsolved problem in mathematics
that concerns the field of graph theory, in particular coloring the plane. The question asks
the following:

Open Question 0.1 (The Hadwiger-Nelson Problem). How many colors are needed to color
the points of the plane such that no two points exactly 1 unit distance apart are assigned the
same color?

In other words, it asks for the value of χ(E2), where χ is the chromatic number and E2

denotes the Euclidean plane. This problem has given rise to many further explorations and
discoveries, some of which we will discuss in this paper.

1. Introduction

The Hadwiger-Nelson Problem has a rich history behind it. It was originally attributed
to Nelson, who first recorded asking the question in 1950, yet over the years it had caught
the names of many other prominent mathematicians such as Erdos. While it is ambigious
who was the first to establish the problem, the work behind it can be explained in a much
more structured manner, which we will explore. [11]

2. Infinite Plane? Oh No

It is natural to ask how this question would be approached, since it considers χ(E2), which
by definition is an infinite set of points. Fortunately with the use of the graph theoretical De
Bruijn–Erdős Theorem, the plane can be reduced to a finite graph. (Note that there exists
a incidence geometrical De Brujin-Erdos Theorem , but unfortunately for us it is irrelevant
in this context.) Its statement is as follows:

Theorem 2.1 (De Bruijn–Erdos’s Compactness Theorem). An infinite graph G is k-colorable
if and only if every finite subgraph of G is k-colorable.

To prove this theorem, we will first need a few definitions:

Definition 2.2 (Filter). A filter on a set X is a collection F of subsets of X(i.e. F ⊆ P (X))
satisfying the following criteria:

(1) X ∈ F and ∅ /∈ F .
(2) If Z ⊆ Y ⊆ XandZ ∈ F , then Y ∈ F .
(3) If Y, Z ∈ F , then Y ∩ Z ∈ F .

Definition 2.3 (Ultrafilter). An ultrafilter on X is a filter on X that contains as many sets
as possible. (a maximization of F .)
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Definition 2.4 (Axiom of Choice). Every family ϕ of nonempty sets has a choice function,
i.e., there exists a function f such that f(S) ∈ S for every S from ϕ.

Proof. Let X be the collection of all finite subsets of V . In other words,

X = W ⊆ V | W is finite

. For each W ∈ X, let XW = {U ∈ X | W ⊆ U}, and let F be the set of all Y ⊆ X such
that, for some W ∈ X,XW ⊆ Y .

Note that it is trivial that F is a filter on X by simply checking the definition conditions
listed in Definition 2.2. Thus we can immediately apply the Axiom of Choice to find an
ultrafilter G on X such that F ⊆ G.
For every W ∈ X, we can find a function fW : W → d such that, for all v, w ∈ W ,

if {v, w} ∈ E, then fW (v) ̸= fW (w). In other words, we can find a chromatic coloring
fW : W → {0, 1, . . . , d− 1}.
For w ∈ V and i < d, let

Xw,i = W ∈ X | w ∈ W and fW (w) = i

. The characteristics of G as an ultrafilter guarantee the existence of a unique iw < d such
that Xw,iw ∈ G. Now all we have to do is to show that this is unique to all the other iw.
Let us formalize this argument by defining a function f : V → d by letting f(w) = iw for all
w ∈ V .

We claim that f is a chromatic coloring, i.e., for all {u, v} ∈ E, we have f(u) ̸= f(v).

Proof. Fix {u, v} ∈ E. Since G is an ultrafilter we can find a set W in Xu,iu ∩ Xv,iv . Now
we must have u, v ∈ W, fW (u) = iu, and fW (v) = iv. Since fW is a chromatic coloring and
{u, v} ∈ E, it follows that iu ̸= iv and hence f(u) ̸= f(v). ■

■

This theorem essentially boils down the problem to finite graphs, which is much easier to
tackle as we see. As this result had been proven before the Hadwiger-Nelson Problem became
mainstream, it was immediately known that the bounds on χ(E2) were 4 ≤ χ(E2) ≤ 7. We
will exhibit constructions of each bound in the section below.

3. Proving The Bounds

In this section we consider the proofs of the lower and upper bounds. These follow from
explicit constructions shown here rather than a more rigorous proof.

Theorem 3.1 (Classic Lower Bound).

χ(E2) = 4.

Proof. Assume for the sake of contradiction that χ(E2) = 3. Then all we need to do is
work our way downwards, from which we find that at least one edge is monochromatic,
contradiction. This specific graph is called the Moser Spindle, a nice construction in its
unit-distance form which we will generalize later. ■

Theorem 3.2 (Classic Upper Bound).

χ(E2) = 7.
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Figure 1. The Moser Spindle.
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Figure 2. A 7-coloring of the plane.

Proof. It is well known that a plane can be tiled by regular hexagons of side length 1.
Consider any hexagon. It is surrounded by 6 other hexagons, thus these 7 regions must all
be different colors. It forms a flower-like arrangement of 7 hexagons. This argument works
on every hexagon on the plane, thus concluding our proof. However, we must remember that
monochromatic unit distances are prohibited. Fortunately, we can simply scale up the tiling
by a small factor k, such as 1.1, which will increase distances and thus satisfy the problem
conditions.

■
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4. Is This Really The Lower Bound?

For many years after the Moser Spindle and Golomb graphs were discovered, the problem
was laid to rest. However, in 2018, de Grey discovered a 1581 vertex graph that required at
least 5 colors. We discuss more details as follows.

5. Constructing a 5-chromatic unit-distance graph

We begin with some definitions and then dive straight into the construction.

Definition 5.1 (Monochromatic Triple). A monochromatic triple is a set of 3 vertices that
are colored the same color.

Definition 5.2 (Linking Vertices). Linking vertices are the vertices at distance 2 from the
center.

Definition 5.3 (Linking Diagonal). A linking diagonal is a pair of linking vertices located
in opposite directions from the center.

Definition 5.4 (Specific Coloring). A specific coloring is a coloring such that two opposite
linking vertices are the same color as the center and all the other four are a second color.

Construction 5.5 (Cell). To construct this graph, the main idea is to start small; from the
basic hexagonal 7-vertex, 12-edge graph and look at the different ways to color it. We see
that the bottom two do not have a monochromatic triple, which is what we will use in the
following constructions as the base graph. Note that we disregard rotations and reflections
and color transpositions in all constructions.

Figure 3. A cell and its various colorings.

Construction 5.6 (Honeycomb). We construct a honeycomb graph that contains 13 copies
of the honey graph. The monochromatic property reduces all the possibilities to essentially
only 6 distinct cases, which are shown below. Note that the black vertices can represent any
color as long as they are distinct from their neighboring vertices. We can now see that the
two graphs on the right side have a specific coloring. We will focus on these graphs in the
next construction.
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Figure 4. A honeycomb and its various colorings.

Construction 5.7 (Hive). We construct a graph made of two copies of the honeycomb but
one copy is rotated exactly 2 arcsin 1

4
about the center. The objective is to preserve the

corresponding unit distances between points, allowing us to color both copies in a similar
monochromatic fashion to the regular honeycomb graph. In fact, this means that since
the specific coloring regular honeycomb graph has 3 monochromatic linking diagonals, the
double honeycomb graph must have 3 · 2 = 6 monochromatic linking diagonals.

Figure 5. A hive.

Construction 5.8 (Swarm). We now construct a graph made of two copies of the hive by
2 arcsin 1

8
, but rotated about a specific point A denoted in Figure 5. Once again this is done

to preserve unit distance. However, this rotation actually translates the previously linking



6 SAMARTH DAS

diagonal to a unit distance, so thus it presents a contradiction from the hive graphs. In fact,
it means that the points must be different colors, so we no longer have a monochromatic
diagonal in the hive and thus at least one cell must be non monochromatic.

Figure 6. A swarm.

We have shown that there exists a graph that forces at least one monochromatic equilateral
triangle - now it remains to show that we can block this property and force a fifth color via
another construction.

The main idea is to return to Moser spindles - since they have the property that the two
diagonals

√
3 apart are not both monochromatic. This property can be used in conjunction

with our swarm construction in order to force 5 colors.

Construction 5.9 (Moser Wheel). We can tightly link Moser Spindles to form the Moser
Wheel as shown below. The idea of this construction is to preserve a central cell, which then
can be proved non-monochromatic. Note that all edges are now

√
3 in length since these

distances are preserved under transformations.

Figure 7. A Moser Wheel.

The following two graphs are shown in the Appendix due to visual impenetrability, yet
somewhat nice-looking specimens.

Construction 5.10 (Mo(n)s(t)er). Finally, we construct this graph which consists of 6
copies of the sum of two edges of the Moser Wheel. Essentially, we construct another graph
such that its edges are the vector sum of the edges of the Moser Wheel, and whose magnitude
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is ≤
√
3. We then copy and translate it to form the monster, which clearly contains a large

central cell as shown.

Construction 5.11 (Swarmonster). Now that we have a graph that satisfies the conditions,
it can be used in place of our cell in the first part of the group. Essentially, we proved that
the construction worked for a cell as the base starting point. Now that we created a graph
made entirely of Moser Spindles that must have opposite diagonals non-monochromatic,
while in the cell they are allowed to be monochromatic, this will create a contradiction when
we apply the transformations. Thus when we apply the swarm configuration to the monster
we get a solution that satisfies the conditions.

6. Extensions

In the following sections, we will present several extensions of the Hadwiger-Nelson prob-
lem. These pose more interesting questions, some of which have a bounty (!).

7. Polychromatic Number of The Plane

After learning about the Hadwiger-Nelson Problem that only forbids unit distances, it
is natural to extend this to other distances. In other words, for any color i, it is assigned
a distance di which is forbidden; no two vertices may be exactly di apart. The problem
becomes forbidding all these distances. Formalizing the question, we have:

Extension 7.1 (Polychromatic Number of The Plane). What is the smallest number of
colors needed for coloring the plane in such a way that no color realizes all distances?

We can denote this number as χp(E2), so that the original problem is the case p = 1. It is in
fact possible to bound χp as well, in a similar fashion to χ. It is inherent that χp ≤ χ ≤ 7, as
forbidding multiple distances would cause a lower number than forbidding only one distance.
Unfortunately, this argument does not suffice for the lower bound. However, we can still
provide a proof as follows.

Theorem 7.2 (Raiskii’s Theorem). We have that

χp ≥ 4

.

Proof. Assume FTSOC that there exists a 3-coloring of the plane c : E2 → {·, ·, ·} such that
the following holds:

• There are no two points colored red at the distance r from each other.
• There are no two points colored blue at the distance b from each other.
• There are no two points colored green at the distance g from each other.

We then produce the following construction:
The reason for doing this is to work in in the 18-dimensional vector space E18 = {(a1, a2, . . . , a18) :

a1, a2, . . . , a18 ∈ R} and define a coloring c′ = (a1, a2, . . . , a18) = c(P ) where P is the terminal
point of the vector a1 · v1 + . . .+ a6 · v6 + a7 · v7 + a12 · v12 + a13 · v13 + a18 · v18.
Then we define a set M ∈ E18 such that the following conditions hold:

• ai ∈ {0, 1}∀i ∈ {1, 2, . . . , 18}
• a1 + a2 + a3 + a4 + a5 + a6 ∈ {0, 1}
• a7 + a8 + a9 + a10 + a11 + a12 ∈ {0, 1}
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Figure 8. Merkov’s Construction

• a13 + a14 + a15 + a16 + a17 + a18 ∈ {0, 1}
The cardinality of set M is 73 = 343 which can be seen. The reason for dividing it into

such a set is so that we can consider each Moser Spindle at a time. In particular, taking the
red points, denoted Mr = (a1, a2, . . . , a6, 0, 0, . . . , 0), we can identify the following properties:

• The Moser Spindle with all edges of length r cannot have 3 red vertices
• The set Mr can only have two elements colored by the vector coloring .

Then we consider the complement of set Mr, denoted Mbg = (0, 0, . . . , 0, a7, a8, . . . , a18. We
can in fact translate Mr on top of this graph Mbg as chromatic number is preserved under
translation. The key idea of this is that it allows us to count the number of Mr, in particular
it is 72 = 49 because each of the Moser Spindles has 7 colorings. Since no other elements can
be colored red, we simply have that the number of these is the same as the number of red
elements in the whole graph, an upper bound of 49 · 2 = 98. This construction also suffices
for the blue and green, so we have that the total upper bound is 98 · 3 = 294. However, this
is less than 343, the total number of colorings, so 294 cannot be an upper bound! Thus we
are done, and there must be at least 4 colors used.

■

For the upper bound, Stechkin found an explicit example:

Theorem 7.3 (Stechkin’s Theorem). We have that

χp ≤ 6

.
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Proof. We can tesselate the plane with a paralellogram pattern made up of equilateral tri-
angles and regular hexagons. The hexagons can be colored with four colors, similar to the
method in which we colored a square tiling, while the triangles are colored based on their
orientation (up facing triangles are one color and down facing triangles are another color.)
This uses a total of only 6 colors, and no color realizes all distances due to the fact that
each vertex colored the same color is more than 1 or 1

2
apart. Hence why it is called a

(1, 1, 1, 1, 1
2
, 1
2
) coloring. People have found other examples as well, which are shown in the

appendix. ■

Figure 9. Steichkin’s Pattern.

8. More Than The Plane

Another natural question to ask is what happens if we increase the dimensions, considering
χ(Ed) for an arbitrary dimension d. This turns out to have nice similarities to the d = 2
case, most notably the d = 3 case. We begin with a few definitions:

Definition 8.1 (Simplex). A simplex is a generalization of the notion of a triangle or tetra-
hedron to arbitrary dimensions.

Definition 8.2 (Diamond). We define a diamond as two copies of a n-simplex attached at
their facets in opposite orientations.

We can immediately present a lower bound by relating it to the Moser Spindle.

Theorem 8.3 (Raiskii’s Lower Bound). We have

n+ 2 ≤ χ(En)

.

Proof. This follows from the ”n-diamond construction.” It is essentially a generalization of
the Moser Spindle to n dimensions. It works by taking two ”diamonds” and attaching them
at one apex to the same vertex, and the other pair of apex by an edge of length 1. An
example for the case n = 3 is shown below. ■

In a similar way, we can obtain an upper bound by relating it to the 2-dimensional square
tiling of the plane.
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Figure 10. The 3-diamond construction.

Theorem 8.4 (Wikipedia’s Upper Bound). We have

χ(E2) ≤ ⌊2 +
√
(n)⌋n.

Proof. This follows from the tiling of space by n-dimensional hypercubes and coloring it
with kn colors, where the pattern iterates after k colors in any direction. Note that we must
account for the same problem we accounted for in the n = 2 case: the hypercubes must have
edge length 1√

n
to prevent diagonals from having unit distance, but more than 1

k−1
so that

two hypercubes of the same color are not unit distance apart. This gives us the following:

1

k − 1
<

1√
n
⇒ k > 1 +

√
n.

Setting k = ⌊2 +
√
n⌋ is the smallest number for which this is satisfied. An example of a

4-dimensional hypercube tiling is shown below. ■

Figure 11. A Tesseractic tiling.
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9. Three Dimensions

We begin with some definitions.

Definition 9.1 (Permutahedron). A permutahedron of order n is an (n − 1)-dimensional
polytope embedded in an n-dimensional space. Its vertex coordinates are the permutations
of the first n natural numbers. The edges identify the shortest possible paths that connect
two vertices. Two permutations connected by an edge differ in only two places and the
numbers on these places are neighbors. The permutahedron of order n has n! vertices, each

of which is adjacent to n− 1 others. The number of edges is (n−1)n!
2

, each with length
√
2.

As noted above, this is a specific case of the n-dimensional case, but produces very nice
results. In fact, it allows us to greatly improve bounds:

Theorem 9.2 (Radoichic’s Upper Bound). We have that

χ(E3) ≤ 15.

The upper bound is once again proved by a construction as follows:

Proof. We can tile space with the truncated octahedron. The reason for using this specific
shape is that it is a permutahedron of order 4, which allows us to separate unit distances.
Note that the truncated octahedron has 24 vertices and 14 faces, 8 of which are regular
hexagons and 6 of which are squares. This specific shape works because when we take the
truncated octahedron with side length 1√

10
, opposite vertices are at distance 1. Then we

simply just have to show that it can be colored with 15 colors in this fashion without unit
distances. This is easy to do by simply checking all cases, since the solutions are of the form
5i + 3j + k ≡ 0 (mod 15), where i, j, k are the unit vectors. A picture of the truncated
octahedron and its tesselation are shown below. ■

Figure 12. A truncated octahedron.

Now we prove the lower bound, which as in the 2-dimensional case is somewhat more
rigorous, although by far not as lengthy.

Theorem 9.3 (Nechustan’s Lower Bound). We have that

6 ≤ χ(E3).
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Figure 13. A truncated octahedron tesselation.

Proof. We make a nice construction as follows. Let s, t be two arbitrary points unit distanced
apart in E3 and let C = Cs,t be the circle of points that are unit distance from both s and
t. Fix a sequence of distinct points (p, p1, p2, q) on C that satisfy |p − p1| = |p1 − p2| =
|p2 − q| = 1. Now let τ be a rotation of the space around the line l = l(p, q) defined
by the condition |τ(pi) − pi| = 1 for i = 1, 2. Let G be the unit distance graph over
s, t, p, p1, p2, q, τ(s), τ(t), τ(p1), τ(p2) .
Then we identify the following properties for a proper 5-coloring of G:

• Whenever (p, q) is monochromatic then neither (p, p2) nor (p1, q) as well as neither
(τ(p), τ(p2)) nor (τ(p1), τ(q)) are monochromatic.

• Exactly one among (p, q), (p, p2), (p1, q) as well as one among (τ(p), τ(q), (τ(p), τ(p2)), (τ(p1), τ(q))
is monochromatic.

This allows us to force a sixth color; i.e. we can show that if E3 is properly 5-colored,
then rotating the circle C = Cp1,τ(p1) around the line l(p, q) avoids the color c(q), which is
different from any point c(p). This is easily shown by the properties we noted above. Now
by simply taking |p−q| = 5

3
and |p−p2| = |p1−q| =

√
83, we achieve the desired result. The

reason for these numbers is that the rotation formed entirely encloses the Raiskii Spindle as
we showed above, which by definition has 5-colorings, so we are done.

■

10. Two Forbidden Distances

This is also a specific case of the polychromatic number noted above, and also produces
nice results.

We define an additional parameter of the graph as follows:

Definition 10.1 (Two Forbidden Distances). For a given positive real number d ̸= 1, a
1, d-graph is a finite graph whose vertices are points in the Euclidean plane E2, and whose
edges are obtained by connecting two points whenever the distance between them is either
1 or d.
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Hereafter we exhibit certain examples of graphs that can be obtained using various values
of d. Note that we will state the theorems here, but the diagrams will be included in the
Appendix to maximize the viewing experience.

The following two theorems provide the cases of d = 2 and d = 2√
3
.

Theorem 10.2. χ(E2, {1, 2}) ≥ 5.

11. Rational Colorings

Another natural question to ask is what happens when we restrict the domain; instead
of taking all R2 in E2, we instead only take the rational numbers Q2. This is of course not
equivalent to the set of real numbers; see the appendix for a proof. However it still poses
quite interesting questions. In fact, we can give an explicit value for the chromatic number:

Theorem 11.1 (Woodall’s Chromatic Number).

χ(Q2) = 2.

Proof. We will partition the set Q2 into subsets such that the difference between their respec-
tive coordinates has an odd denominator. In other words, for any two points (r1, r2), (q1, q2) ∈
Q2, (r1, r2) and (q1, q2) will be in the same subset if the denominators of r1 − q1 and r2 − q2
are both odd numbers upon simplification. The reason for this odd (pun intended) method
is the following:

Lemma 11.2. If the distance between (r1, r2) and (q1, q2) is 1, then they are in the same
subset.

Proof. Since the distance between (r1, r2) and (q1, q2) is 1, by the distance formula, we have
(r1 − q1)

2 + (r2 − q2)
2 = 1. Now since r1, r2, q1, q2 ∈ Q, we can let

r1 − q1 =
a

b

and

r2 − q2 =
c

d

for a, b, c, d ∈ Z. Substituting, we get

(
a

b
)2 + (

c

d
)2 = 1 =⇒ a2d2 + b2c2 = b2d2.

Then b and d must be both odd, so our above definition works. ■

Now as we did with the other bounded cases in other problems, the coloring can be
achieved by simply translating the base case. In each subset we color points of the form
(o
o
, o
o
) and ( e

o
, e
o
) red and points of the form (o

o
, e
o
) and ( e

o
, o
o
) blue, where o represents an odd

number and e represents an even number. This provides the unit distance coloring that we
seek. ■

Similar bounds have been found for the case of Qn, for some n, although there is no known
general formula. The bounds and solutions for cases n = 3 to n = 8 are shown below.
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n χ(Qn)
3 = 2
4 = 4
5 ≥ 8
6 ≥ 10
7 ≥ 15
8 ≥ 16

12. Conclusion

The Hadwiger-Nelson Problem is a quite interesting and mind-boggling problem. Origi-
nally a simple ”fun” question, it has captivated the minds of mathematicians throughout the
tweniteth century and beyond. It has connected seemingly unrelated fields of mathematics
together in nontrivial ways, such as measure theory and topology. New discoveries are being
made till date. We conclude with some conjectures, the proof of which are left to future
readers.

Open Question 12.1 (Erd”os’). Given S, find the S-chromatic number χS(E2) of the plane.

Conjecture 12.2 (Total Chromatic Number). For any graph G, χ2(G) ≤ ∆(G) + 2, where
∆(G) denotes the maximum degree of a vertex in G.

Conjecture 12.3 (Hadwiger’s). Every connected n-chromatic graph G is contractible to Kn,
where an edge contraction of a graph G consists of deleting an edge and attaching its incident
vertices.

Of course, quite a lot of money awaits you if you manage to improve bounds and show
that χ(E2) = 7 ! (Don’t worry, the ! is an exclamation mark, not a factorial.)

13. Appendix

[1] [3] [4] [5] [6] [11] [9] [10] [7] [2] [8]
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[2] Joanna Chybowska-Sokó l, Konstanty Junosza-Szaniawski, and Krzysztof Wesek. Coloring distance
graphs on the plane. Discrete Mathematics, 346(7):113441, 2023.

[3] Aubrey D. N. J. de Grey. The chromatic number of the plane is at least 5, 2018.
[4] Geoffrey Exoo and Dan Ismailescu. The chromatic number of the plane is at least 5 - a new proof, 2018.
[5] Geoffrey Exoo and Dan Ismailescu. The hadwiger-nelson problem with two forbidden distances, 2018.
[6] Marijn J. H. Heule. Computing small unit-distance graphs with chromatic number 5, 2018.
[7] Veselin Jungic. The polychromatic number of the plane. Available at http://www.sfu.ca/~vjungic/

RamseyNotes/Polychromatic.html (1969/12/31).
[8] Chris Lambie-Hanson. Ultrafilters viii: Chromatic compactness. Available at https://

pointatinfinityblog.wordpress.com/2017/01/10/ultrafilters-viii-chromatic-compactness/

(2017/01/10).
[9] Oren Nechushtan. On the space chromatic number. Discrete Mathematics, 256(1):499–507, 2002.

[10] Geza Toth Rados Radoicic. Note on the chromatic number of the space. Available at http://sziami.

cs.bme.hu/~geza/chromatic.pdf (1969/12/31).
[11] Alexander Soifer. The Mathematical Coloring Book. Springer Science+Business Media, New York,NY,

1 edition, 2009.

http://www.sfu.ca/~vjungic/RamseyNotes/Polychromatic.html
http://www.sfu.ca/~vjungic/RamseyNotes/Polychromatic.html
https://pointatinfinityblog.wordpress.com/2017/01/10/ultrafilters-viii-chromatic-compactness/
https://pointatinfinityblog.wordpress.com/2017/01/10/ultrafilters-viii-chromatic-compactness/
http://sziami.cs.bme.hu/~geza/chromatic.pdf
http://sziami.cs.bme.hu/~geza/chromatic.pdf


THE HADWIGER-NELSON PROBLEM: A COLORFUL JOURNEY THROUGH THE PLANE AND BEYOND15

Figure 14. The monster.
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Figure 15. The Small Swarmonster.

Figure 16. A Tesseractic tiling.
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Figure 17. A Tesseractic tiling.

Figure 18. A Tesseractic tiling.
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Figure 19. A Tesseractic tiling.
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Figure 20. A Tesseractic tiling.
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Figure 21. A Tesseractic tiling.

Figure 22. A Tesseractic tiling.
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Figure 23. A Tesseractic tiling.
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