
ON THE EXISTENCE OF TORSION POINTS OF ORDER 11 ON
ELLIPTIC CURVES OVER Q

ROHAN RAMKUMAR

1. Abstract

The goal of this expository paper is to explore the Billing-Mahler Theorem about torsion
points on elliptic curves. We present two perspectives, one involving linear algebra and
rational transformations, and another where we explicitly construct modular curves, and
explore the differences and similarities between these methods.

2. Introduction

2.1. Elliptic Curves. We shall define an elliptic curve to be a curve of the form

E : y2 = x3 + ax2 + bx+ c,

for some a, b, c ∈ Z.
With the transformation (x, y) 7→

(
x− a

3
, y
)
, we can remove the quadratic term and

rewrite our curve as E : y2 = x3 + ax + b. With a proper scaling, we can make a and
b integers. We call this the Weierstrass form of E. Now, consider the graph of the curve
E ∪ O, where O is the point at infinity. Choose two points P = (p1, p2), and Q = (q1, q2)
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Figure 1. Graph of an elliptic curve y2 = x3 + ax+ b.
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with p1, p2, q1, q2 ∈ Q and P,Q ∈ E. Define the operation ∗ so that R = (r1, r2) = P ∗ Q is
the intersection of E and the line through P and Q. If P = Q, then we will use the tangent
line of E at point P instead. Letting the slope and y-intercept of this line be α and β
respectively, we have the following system:

r2 = αr1 + β

r22 = r31 + ar1 + b.

Substituting, we get
(αr1 + β)2 = r31 + ar1 + b,

and
x3 − α2x2 + (a− 2αβ)x+ b− β2 = 0

after changing variables. Note that, by construction, x = p1 and x = q1 satisfy this equation,
so x = r1 must be the third root of the cubic, and

x3 − α2x2 + (a− 2αβ)x+ b− β2 = (x− p1)(x− q1)(x− r1).
By Vieta, p1+q1+r1 = α2, so we have r1 = α2−p1−q1, and r2 = αr1+β = α3−αp1−αq1+β.
From this calculation, we see that R ∈ Q2, so we have found a way to generate new rational
points on E given two rational points on the curve. It turns out that this result holds more
generally, by Bézout’s Theorem, which states that the intersection of a curve of degree m
and a curve of degree n (in the complex projective plane) are exactly mn points, counting
multiplicities. In this case we have a line (degree 1) intersecting our elliptic curve (degree 3),
so there are 3 intersections, P,Q, and P ∗Q We will now explain the basics of group theory.

2.2. Group Theory.

Definition 2.1. (Definition of a Group) A group G = (X, ·) consists of a setX and operation
· such that the following is true:

(1) Associative Property: For all a, b, c ∈ X, we have a · (b · c) = (a · b) · c = a · b · c.
(2) Identity: There exists some e ∈ X such that e · a = a for all a ∈ X.
(3) Inverses: For all a ∈ X, there exists a−1 ∈ X such that aa−1 = e.

Example. Consider the group (Z,+), which consists the set of integers Z with the operation
addition, +.

(1) We have a+ (b+ c) = (a+ b) + c, for integers a, b, c so addition is associative.
(2) 0 + a = a for all integers a, so 0 is our identity element.
(3) a+ (−a) = 0, the identity, so inverses are defined in (Z,+).

Note that addition is commutative, but commutativity is not a necessary condition for a
group operation. We call commutative groups Abelian.

Definition 2.2. (Abelian Groups) A group G = (X, ·) is Abelian if we have a · b = b · a for
a, b ∈ G.
Nonexample. The group of n× n matrices for some n under the operation of matrix multi-
plication is not Abelian, since A ·B is not necessarily equal to B · A.

We call a group S a subgroup of a group G is S ⊂ G and the operations of S and G
are the same. Recall that a function f : A 7→ B is injective if no distinct a1, a2 ∈ A have
f(a1) = f(a2) and surjective if for each b ∈ B there exists a ∈ A with f(a) = b. A bijective
function is both injective and surjective.
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Definition 2.3. (Homomorphism) A map f : A 7→ B, for groups G1 = (A, ·), and G2(B, ∗)
is a homomorphism if it satisfies

f(x · y) = f(x) ∗ f(y).

Definition 2.4. (Isomorphism) A homomorphism is an isomorphism if and only if it is
bijective. We write G ∼= H if G is isomorphic to H.

Example. Consider the function f : R 7→ R+ defined as f(x) = ex. We can see that f is a
homomorphism betwen (R,+) and (R, ·) because

f(x+ y) = ex+y = ex · ey.
Since ex is bijective, it is also an isomorphism.

Example. Consider the function f : C 7→ R defined as

f(a+ bi) = a.

This is a homomorphism between the additive groups of C and R because

f(u+ v) = f(a+ bi+ c+ di) = a+ c = f(u) + f(v)

for complex numbers u = a+ bi and v = c+ di. However, this function isn’t injective, since,
for example, f(3 + 4i) = f(3 + 2i) = 3, so f(x) is not an isomorphism. Although f is
surjective here, this is not true in general for homomorphisms (a surjective homomorphism
is known as an epic morphism).

Definition 2.5. (Quotient Groups) Define aN := {an : n ∈ N}. Consider a subgroup N of
G. If gN = Ng for g ∈ G, we call N a normal subgroup of G. Then N is normal, we can
define the quotient group

G/N

to be the set {aN : a ∈ G}, and we define an operation on G/N such that (aN) · (bN) =
(a · b)N.

Example. Consider the additive group of Z and the subgroup

{. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . . },
denoted nZ, which is the set of Z that are multiples of n. Since addition is commutative, nZ
is a normal subgroup. Then we have the quotient group Z/nZ is the set of a + nZ, where
a ∈ Z. With the isomorphism

f(a+ nZ) 7→ a (mod n)

(one can verify that this is in fact an isomorphism), we see that the set Z/nZ is isomorphic
to the integers modulo n.

Theorem 2.6. (Fundamental Homomorphism Theorem) Let f : G 7→ H be a homomor-
phism. Then we have

I(f) ∼= G/K(f),

where the image I(f) ⊂ H is the set {f(g) : g ∈ G} and the kernel K(f) ⊂ G is the set
{g : g ∈ G; f(g) = e}, where e is the identity element.

See [Pin10] for a proof and more details.
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Example. Consider the homomorphism f : Z/100Z 7→ Z/10Z defined as

f(x) = x (mod 10).

This function can be thought of as extracting the units digit from a two-digit number.
For example, f(13) = 3 and f(ab) = b for any two digit number ab. We can see that
f(x + y) = f(x) + f(y), so f(x) is a homomorphism. The kernel of this function is the set
of b0 for integer b < 10, and the image of f is the set Z/10Z, as for any n ∈ Z/10Z, we
can choose any bn, as f(bn) = n. The group (Z/100Z)/K(f) consists of the set {0̃, 1̃, . . . , 9̃},
where we define ñ = {0n, 1n, . . . , 9n} for each 0 ≤ n ≤ 9. Clearly this group is isomorphic
to I(f) = Z/10Z, as was expected by the first homomorphism theorem.

Definition 2.7. (Order) Given a group G, we define its order |G| to be the number (possibly
infinite) of elements in G. An order of an element is the smallest number n (again possibly
infinite) with an = e, the identity element.

Definition 2.8. (Index) The given a group G and a subgroup H, we define the index to be
the value |G : H| (possibly infinite) such that

|G| = |G : H||H|.

Example. Consider the subgroup 2Z of Z. Since there are two elements in Z for every element
of 2Z, we see that |Z : 2Z| = 2.

Definition 2.9. (Direct Sum of Two Groups) Given two groups (G, ·) and (H, ∗), we define
the direct sum of G and H as

G⊕H = {(a, b) : a ∈ G, b ∈ H},
under the operation (a, b) + (c, d) = (a · c, b ∗ d). Sometimes the notation × is used instead
of ⊕ depending on the operation of the groups. In this paper, we will use the two symbols
interchangeably.

Definition 2.10. (Generators of a Group) For a group G, if for some set S ⊂ G, every
element of G can written as a product of finitely many elements in S and their inverses, then
we say that S generates G, and we define ⟨S⟩ to be the smallest subgroup of G containing S.
If G is generated by one element S = {x}, then we write ⟨S⟩ = ⟨x⟩. We call a group finitely
generated if S is finite.

Finitely generated Abelian groups are very important in abstract algebra, due to the
following theorem:

Theorem 2.11. (Structure Theorem of Finitely Generated Abelian Groups) For any finitely
generated Abelian group A,

A ∼= Zr ⊕ Z/p1Z⊕ · · · ⊕ Z/pnZ = Zr ⊕ Ators,

for prime pi. We call Zr the free part of A and Ators the torsion part. r is called the rank.

Definition 2.12. (Ring) We call a set R equipped with two operations + and · a ring if the
following are true

• (R,+) is an abelian group,
• (R, ·) is associative and has an identity element e such that a · e = e · a = a for all
a ∈ R,
• The operation · distributes over +; i.e. a ·(b+c) = a ·b+a ·c and (b+c) ·a = b ·a+c ·a.
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Example. Consider the set of integers Z. We can see that (Z,+) creates an abelian group,
and (Z, ·) is associative, has the identity 1, and distributes over addition, so (Z,+, ·) is a
ring.

Definition 2.13. (Ideals of a Ring) For a ring (R,+, ·), the subring (I,+, ·) is called an
ideal of R if rx, xr ∈ I for every x ∈ I and r ∈ R. If R is commutative (in ·), then the ideal
(a) = aR = {ar : r ∈ R} is called a principal ideal of R generated by a.

Example. Consider the principal ideal (3) = 3Z of Z. We can see that (3) is an ideal because
any n ∈ Z multiplied by some m ∈ (3) will still be a multiple of 3, hence nm ∈ (3).

Definition 2.14. A ring (K,+, ·) is a field if K is closed under inverses with respect to ·;
or that (K, ·) is a group.

Example. The ring Z is not a field because 1
n
is not necessarily in Z for n ∈ Z. However, Q

is a field, as we can verify that
1
p
q

=
q

p
∈ Q

for p
q
∈ Q.

The set of E(Q) under the operation ∗ has no identity element, so it does not form a
group. However, we can modify this operation slightly so that creates a group.

Definition 2.15. (Elliptic Curve Point Addition) Define the Abelian operation P +Q, for
rational points P and Q to be the reflection of P ∗Q over the x-axis.

Now, note thatO+P = P for all rational P, soO is the identity element of the group E(Q).
This also lets us define the additive inverse of P as the point −P such that P + (−P ) = O.
We see the the negative of a point is a reflection of that point about the x-axis. The point
addition operation is commutative, as the order of points does not change the line between
them, and the operation is also associative (see [FO17] for a proof), meaning that the set of
rational points, E(Q) with an operation of point addition is an Abelian group.

2.3. Projective Space. We will make heavy use of projective space, so we will need some
definitions.

Definition 2.16. (Projective Space Over a Field) We define the set Pn(K), for some field
K to be the set V \{0} under the equivalence relation x ∼ y if x = λy for some λ ̸= 0, where
V = Kn+1.

Example. Consider the projective plane P2(K) over a field K. By our definition, this is
the set K3\{0} under the equivalence relation of scaling. We use homogeneous coordinates
(x, y, z) ∈ K3\{0} to represent a point in P2(K), where the point (x, y, z) represents the
same point as (λx, λy, λz) for λ ̸= 0.

Definition 2.17. (Homogeneous Polynomial) A multivariate polynomial is called homoge-
neous if each term has the same degree.

Example. x3 + xz2 + xyz is a homogeneous polynomial in three variables because each term
has degree three.
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Figure 2. Point addition on an elliptic curve. We define P +Q to be the
reflection of P ∗Q over the x-axis.

Definition 2.18. (Projective Algebraic Plane Curve) A projective algebraic plane curve,
henceforth referred to as an algebraic curve, is the set of points in some projective space
that satisfy h(x, y, z) = 0, for some homogeneous polynomial h in three variables. The
degree of this algebraic curve is the degree of h.

Example. Consider an elliptic curve y2 = x3 + ax + b. Letting y = Y
Z

and x = X
Z

and
multiplying both sides by Z3, we get Y 2Z = X3 + aXZ2 + bZ3. Rearranging, we see that
Y 2Z −X3− aXY 2− bZ3 = 0, so this is an algebraic curve of degree 3, called a cubic curve.
Any polynomial in 2 variables can be transformed into an algebraic curve like this.

We dehomogenize a curve or a point with the substitution (x, y, z) 7→ (x/z, y/z, 1). By
discarding the z-coordinate, we can consider it now in 2d space. Although this process works
for most points, this transformation fails if z = 0. In this case, we map this point to O, the
point at infinity.

2.4. Torsion Points. A natural thing to analyze is the group is the order of its elements.
We call a point with finite order a torsion point. We will state some major results about
torsion points.

Theorem 2.19. (Mordell-Weil) The additive group of rational points on an abelian variety
(e.g. an elliptic curve) is finitely generated.
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So, we can write E(Q) ∼= Zr ⊕ E(Q)tors. This theorem was first proved for elliptic curves
by Louis Mordell in [Mor22], and was later generalized to abelian varieties by André Weil
in [Wei29].

Theorem 2.20. (Nagell-Lutz) All rational torsion points P = (x, y) on elliptic curves satisfy
the following:

(1) x and y are integers.
(2) y = 0 or y2 | ∆, where ∆ is the discriminant of the cubic function of x on the

right-hand side of the equation for E.

Similar to the discriminant of a quadratic equation, b2 − 4ac, we can define an expression
in terms of the coefficients of the cubic x3 + ax + b. Since this cubic is in depressed form,
the discriminant is −4a3 − 27b2. This theorem was proven independently by Élisabeth Lutz
in [Lut37] and Trygve Nagell.

Theorem 2.21. (Mazur) The torsion groups of all elliptic curves over Q must be isomorphic
to one of the following:

(1) Z/nZ for 1 ≥ n ≥ 10 or n = 12.
(2) Z/2nZ⊕ Z/2Z for 1 ≥ n ≥ 4.

Furthermore, there exist infinitely many elliptic curves that have each of these 15 possible
torsion subgroups.

This was prove by Barry Mazur in [Maz77] and [MG78].
We will be analyzing a specific case of Mazur’s theorem, by showing that n = 11 is

impossible.

Theorem 2.22. (Billing-Mahler) There exists no elliptic curve with any rational point of
order 11.

This was first proved by Gunnar Billing and Kurt Mahler in [BM40].
In this paper, we will derive a cubic curve C which must have more than 5 rational points

if there exists such an 11-torsion point, and we will turn that curve into an elliptic curve E,
which we will prove has exactly 5 rational points using some algebraic number theory. The
rest of the paper will look through at this problem through the lens of modular curves.

3. Implications of 11

We will assume the contrary, that there exists some rational point P of order 11 on some
elliptic curve E : y2 = x3 + ax+ b. For convenience will will use the notation

Pi := iP.

Also, let

LP,Q

denote the line connecting P and Q and let Li,j = LPi,Pj
.

Lemma 3.1. The points Pi, Pj, and Pk lie on a line if and only if i+ j + k ≡ 0 (mod 11).

Proof. We see that, by our definition of point addition, the Pi + Pj must be the additive
inverse of Pk, so we have Pi + Pj = −Pk = P−k. So, i+ j ≡ −k (mod 11) and i+ j + k ≡ 0
(mod 11) as desired. ■
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Lemma 3.2. Let K be a field and (a1, b1, c1), (a2, b2, c2) ∈ P2(K) be distinct points. Then
the equation of

L(a1,b1,c1),(a2,b2,c2)

is ∣∣∣∣∣∣
x y z
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ = 0.

Proof. Expanding out the determinant, we see that

(b1c2 − c1b2)x− (a1c2 − c1a2)y + (a1b2 − b1a2)z = 0.

Dehomogenizing by setting all z-coordinates to 1, we get

(b1 − b2)x− (a1 − a2)y = b1a2 − a1b2,
which is a line passing through our two desired points. ■

Consider the points P 0 = O = (0, 1, 0), P 1 = (a1, b1, c1), and P 2 = (a2, b2, c2). By Lemma
3.1 these points are not collinear, so P 1, P 2, and P 3 as vectors are linearly independent. So,
we can define a linear change of basis transformation ϕ such that

ϕ(P 0) = (0, 1, 0), ϕ(P 1) = (1, 0, 0), and ϕ(P 2) = (0, 0, 1).

Let P ′
n = ϕ(P n). This linear map ϕ is an affine transformation of P2(Q) that preserves lines,

so P ′
0, P

′
1, and P

′
2 are not collinear. So, P ′

3 = (u, v, w) does not lie on LP ′
0,P

′
1
, which has an

equation z = 0. Hence, w ̸= 0. Similarly, u, v ̸= 0 because P ′
3 ̸∈ {LP ′

0,P
′
2
, LP ′

1,P
′
2
}. Thus, define

the transformation ψ : P2(Q) 7→ P2(Q) as

ψ(x, y, z) =
(x
u
,
y

v
,
z

w

)
.

Now let Pn = ψ(P ′
n). Since homogenous coordinates are unaffected by scaling, we see that

P ′
0, P

′
1, and P

′
2 are fixed. Now, we have

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), and P3 = (1, 1, 1).

Let P4 = (x1, x2, x3). By Lemma 3.2, we have

L0,1 : z = 0,

L0,2 : x = 0,

L0,3 : x− z = 0,

L1,2 : y = 0,

L1,4 : x3y − x2z = 0,

L2,3 : x− y = 0.

We have that P−3 is the intersection of L0,3 and L1,2, which is the point

P−3 = (1, 0, 1).

Similarly, we can calculate

P−1 = (x1 − x3, x2, 0), P−2 = (0, x1 − x2 − x3, x1 − x3).
We see that

L−2,−3 : (x1 − x2 − x3)x+ (x1 − x3)y − (x1 − x2 − x3)z = 0.
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P−5 = L1,4 ∩ L2,3 = (x2, x2, x3),

and
P5 = L0,−5 ∩ L−2,−3 = ((x1 − x3)x2,−x1x2 + x1x3 + x22 − x23, (x1 − x3)x3).

2 + 4 + 5 ≡ 0 (mod 11), so P2, P4, P5 are collinear and∣∣∣∣∣∣
0 0 1
x1 x2 x3

(x1 − x3)x2 −x1x2 + x1x3 + x22 − x23 (x1 − x3)x3

∣∣∣∣∣∣ = 0.

Calculating this determinant, we see that

x21x2 − x21x3 + x1x
2
3 − x22x3 = 0.

Consider the curve C : u2v − u2w + uw2 − v2w = 0. This curve has the following points:

P0 = (0, 1, 0), P1 = (1, 0, 0), P2 = (0, 0, 1), P3 = (1, 1, 1), P−3 = (1, 0, 1).

However, the existence of a point of order 11 implies that some other rational P4 = (x1, x2, x3)
satisfies it as well, so this equation must have more than 5 rational points. We shall show
that this is impossible.

4. The Cubic Curve C

Proposition 4.1. The cubic curve C : u2v−u2w+uw2−v2w = 0 has only 5 rational points:
(0,1,0),(1,0,0),(0,0,1),(1,1,1), and (1,0,1).

Lemma 4.2. The cubic curve C is equivalent to the curve y2 + y = x3 − x2.

Proof. We will use an algorithm outlined in [ST92] to do this. We will use the curve

C : F (X, Y, Z) = X2Y −X2Z +XZ2 − Y 2Z = 0.

Note that the tangent line at any point P0 is given by the equation

(4.1)
∂F

∂X

∣∣∣∣
P0

X +
∂F

∂Y

∣∣∣∣
P0

Y +
∂F

∂Z

∣∣∣∣
P0

Z = 0.

The tangent line at O is given by Y − Z = 0. By making the substitution

X1 = X, Y1 = Y, Z1 = Y − Z,
we have set the line Z1 = 0 to the tangent at point O = (1, 0, 0) (note that the coordinates
of O have not changed under this transformation). Our new curve is

X1Y
2
1 − Y 3

1 +X2
1Z1 − 2X1Y1Z1 + Y 2

1 Z1 +X1Z
2
1 = 0.

Now, we substitute Z1 = 0 into this equation to find the intersection of our tangent line at
O to the curve, as we get X1Y

2
1 − Y 3

1 = Y 2
1 (X1 − Y1) = 0, so X1 = Y1 ̸= 0, since the point

(x, 0, 0) = (1, 0, 0) = O. From this, we can see that the point O ∗ O = (1, 1, 0). We want to
move this point to the point (0, 1, 0), which we can do with the transformation

X2 = X1 − Y1, Y2 = Y1, Z2 = Z1,

to get the new cubic equation:

X2Y
2
2 +X2

2Z2 +X2Z
2
2 + Y2Z

2
2 = 0.

We try to apply the same process again, but we now try to move the line X = 0 to the
tangent at the point O ∗O = (0, 1, 0), but we find from 4.1 that this tangent line is already
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Figure 3. Changing the axes of C to convert it into a Weierstrass form.

be X2 = 0, so we have no work to do. Now, we dehomogenize our equation, by letting x = X2

Z2

and y = Y2

Z2
. Since our curve has degree 3, we divide it by Z3

2 to get

X2Y
2
2

Z3
2

+
X2

2

Z2
2

+
X2

Z2

+
Y2
Z2

= 0.

Substituting x and y, we see that

xy2 + x2 + x+ y = 0.

Multiplying by x and making the substitution x1 = x, y1 = xy we get y21 + y1 = −x31 − x21.
Substituting x2 = −x1, y2 = y1, we arrive at y22 + y2 = x32 − x22 as desired. ■

The five rational points mentioned in Proposition 4.1 become the points

{O, (0,−1), (0, 0), (1,−1), (1, 0)}.
With the translation (x, y) 7→ (x, y− 1

2
), we can complete the square on the left-hand side to

arrive at y2 = x3+x2− 1
4
. Finally, we scale variables with the transformation (x, y) 7→ ( x

22
, y
23
)

to get

(4.2) y2 = x3 − 4x2 + 16.

For the rest of this section, we will call this curve E. Note that we could depress this cubic
with a simple affine transformation by using Tartaglia’s method to arrive at a more familiar
yet more unwieldy form as y2 = x3 − 432x+ 8208.
We are left to show that Equation 4.2 has exactly 5 rational points. By Mordell-Weil, we

know that E(Q) ∼= E(Q)tors × Zr. We wish to show that E(Q) ∼= Z/5Z, so we must prove
that both E(Q)tors ∼= Z/5Z and r = 0.

Proposition 4.3. The torsion group of E(Q) is isomorphic to Z/5Z.

Proof. We will be using Nagell-Lutz. Recall that the square of the y-coordinate must divide
the discriminant of the cubic function of x, which happens to be ∆ = −2816 = −28 · 11.
Clearly 11 ∤ y, because otherwise 112 | y, implying that 112 | ∆, which is false. So, we have
that y2 | 28 and thus |y| | 24. By checking all of these values of |y|, namely 1, 2, 4, 8, and 16, we
can find that |y| = 4 is the only value for which there exists integer x that solves Equation 4.2.
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Thus, we end up with a group with exactly five torsion points: O, (0, 4), (0,−4), (4, 4), (4,−4),
isomorphic to Z/5Z, as desired. ■

Now we need to prove that the rank of E is 0, which turns out to be the hardest part of
this proof.

4.1. Field Theory.

Definition 4.4. (Ring of Polynomials) For a commutative ring R, we define R[x] to be the
ring of polynomials:

p(x) = p0 + p1x+ · · ·+ pnx
n

for all nonnegative integer n.

Example. We can define substitution of a number into some ring of polynomials. For example,
consider the substitution of

√
2 into Z[x], denoted Z[

√
2], which is

p0 + p1(
√
2) + p2(

√
2)2 . . .

But, since (
√
2)2 = 2, all the terms of degree 2 and higher can be collapsed into terms of

lower degree, so we have

Z[
√
2] = {a+ b

√
2 : a, b ∈ Z}.

Definition 4.5. (Field Extension) Given a field K, we call L an extension field over K
(denoted L/K) if K is a subfield of L.

Definition 4.6. (Vector Space and Degree of a Field Extension) Given a field extension
L/K,L is a vector space over K; i.e. each element of L can be represented as k1b1 + k2b2 +
· · ·+ knbn for each ki ∈ K. The set B = {bi} is called the basis of this vector space, and the
degree of L/K is equal to the dimension of this vector space, or the number of elements in
B.

We will be mostly concerned with extensions over Q, the rationals. Choose a monic
irreducible polynomial in Z[x] of degree n and choose a root α.

Definition 4.7. (Minimum Polynomial) The minimum polynomial of an algebraic number
α is the lowest degree function f(x) with leading coefficient 1 such that f(α) = 0. Since α is
algebraic, the coefficients of f(x) must be integers, so f(x) ∈ Z[x].

Example. Consider the algebraic number ρ = 1
2
+ i

√
3

2
. Clearly ρ satisfies the polynomial

f(x) = x2 + x + 1 = 0. Since this function is irreducible over Z, it must be the lowest
possible degree polynomial, and since the leading coefficient of f(x) is 1, f(x) is the minimum
polynomial of ρ.

We define the field extension Q(α) as follows:

Definition 4.8. (Finite Field Extensions over Q) A field extension K = Q(α) is the vector
space spanned by {1, α, α2, ...αn−1} where n is the degree of the minimum polynomial of α
in Z[x]. We refer to n as the degree of the field extension of L/K, denoted [L : K].

Example. Consider the field K = Q(
√
2). It is easy to see that the minimum polynomial of√

2 is f(x) = x2− 2. So, we have that K/Q is spanned by the basis {1,
√
2}; in other words,

each element of K can be written as a+ b
√
2 for a, b ∈ Q. It can easily be verified that this

is indeed a field.
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Definition 4.9. (Ring of Integers of a Field) We define OK as the set of elements of K that
are roots of some monic polynomial over Z. This is called the ring of integers of K.

Theorem 4.10. (Unique Factorization of Ideals of Ring of Integers) Every ideal a = aOK

has a unique prime decomposition:

a =
∏
i

pi
ai .

Definition 4.11. (Norm of an Algebraic Number and Principal Ideals of Ring of Integers)
The norm of an algebraic number α with respect to a field extension is defined as:

NL/K =

(∏
j

σj(α)

)[L:K(α)]

,

where each σj is a root of the minimum polynomial of α. For L = K(α), the norm is exactly
the product of the roots of the minimum polynomial. Since this product is equal to ±1 times
the constant term of the minimum polynomial, by Vieta, the norm of an algebraic number
is always an integer.

The norm of the principal ideal (α) = αOK is defined as NL/K((α)) = |NL/K(α)|. Addi-
tionally, we have that NK/Q(a) = a[K:Q] for a ∈ Q and

NK/Q(α, β) = NK/Q(α) ·NK/Q(β)

for α, β ∈ K.
The ideal generated by a prime number in Z may not necessarily be prime in K. We call

a prime p ramified in L if we have

pOk = pe11 . . . pess ,

and some ei > 1.

Theorem 4.12. A prime p is ramified in K if and only if p | DK , where DK is the discrim-
inant of K.

Theorem 4.13. (Sum of Two Prinicpal Ideals is GCD) Given two principal ideals of some
ring of integers OK , (a) = aOK and (b) = bOK , then the ideal (a) + (b) = (gcd (a, b)).

Proof. We have that (a) + (b) consists of the set of x ∈ OK such that x = ma + nb for
m,n ∈ Z. But, by Bézout’s identity, this is the set of x = l gcd (a, b) for l ∈ Z. Hence,
(a) + (b) = (gcd (a, b)). ■

4.2. Rank of E.

Proposition 4.14. E has a rank of 0.

Our polynomial is f(x) = x3−4x2+16. As mentioned earlier, Disc(f) = ∆ = −28 ·11 < 0,
so f(x) has three roots, θ1, θ2, θ3, only one of which is real. Choose one arbitrarily to be called
θ. Consider the number field K = Q(θ).With the use of a CAS, we find that the discriminant
of K is −44. We also find that the ring of integers of K is OK = Z+Z · 1

2
θ+Z · 1

4
θ2 = Z

[
θ
2

]
.

We see that the class number is hK = 1, meaning that all ideals of OK are principal.

Theorem 4.15. (Dirichlet Unit Theorem) Let K be a finite field extension of Q with r1
real embeddings and 2r2 complex embeddings (r2 pairs of complex embeddings). Then the the
abelian unit group of OK , denoted O×

K , is finitely generated and has rank r = r1 + r2 − 1.
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For our cubic field K, we have r1 = 1 and r2 = 1, since there are one real and two complex
roots, so the rank of O×

K is 1, which means there is only one fundamental unit group (not
±1). We can calculate that O×

K = ⟨−1⟩⊕⟨η⟩ = (−1)e0 ·(η)e1 , where η = 1− 1
2
θ and e0, e1 ∈ Z.

Proposition 4.16. Let K× be the multiplicative group of K, and let (K×)2 be the subgroup
of K× containing the elements a2 for every a ∈ K. Then the map µ : E(Q) 7→ K×/(K×)2

defined by
µ(O) := 1, µ(x, y) := x− θ mod (K×)2

is a homomorphism with kernel 2E(Q).

Proof. Note that µ(P ) = µ(−P ) because P and −P have the same x-coordinate. Since any
element ν ∈ (K×)/(K×)2 satisfies ν2 = 1 and thus ν = 1

ν
, so we have µ(−P ) = µ(P ) = 1

µ(P )
=

µ(P )−1. Next, we have to show that P1 + P2 + P3 = O =⇒ µ(P1)µ(P2)µ(P3) = 1. If any of
the Pi = O, then the other two must be negatives of each other, so µ(P1)µ(P2)µ(P3) = 1. So,
assume that none of the Pi = (xi, yi) are O. Since the Pi sum to O, they are the intersection
of some line y = λx+ ν and E. Thus, we must have

f(x)− (λx+ ν)2 = (x− x1)(x− x2)(x− x3),
where f(x) = x3 − 4x2 + 16. Substituting x = θ, we see that

(x1 − θ)(x2 − θ)(x3 − θ) = (λθ + ν)2 + f(θ) = (λθ + ν)2 ≡ 1 mod (K×)2,

since f(θ) = 0. But the left-hand side is precisely µ(P1)µ(P2)µ(P3), so we are done. Now,
we must show that the kernel of this homomorphism is 2E(Q), or the set of all points
on E(Q) that are multiples of 2. Any point Pk ∈ K(µ) can be written as 2Pn for some
Pn ∈ E(Q), so µ(Pk) = µ(2Pn) = µ(Pn)

2 ≡ 1 mod (K×)2, so we see that 2E(Q) ⊂ K(µ).
Let P0 = (x0, y0) ∈ K(µ). Then, x0− θ must be a square of some element in K, and, treating
K as a vector space of dimension three, we must have

x0 − θ = (uθ2 + vθ + w)2.

Since the degree of the minimum polynomial of θ is 3, we cannot have u = 0, as otherwise
there would exist a quadratic polynomial with root θ. Now define the following:

r =
4u+ v

u
, s =

4uv + v2

u
− w, t = 4uw + vw

u
+ 16u.

Noting that −θ3 = −4θ2 + 16, we see that

(r − θ)(uθ2 + vθ + w) = sθ + t,

so
(sθ + t)2 = (r − θ)2(uθ2 + vθ + w)2 = (r − θ)2(x0 − θ).

Note that the function g(x) = (sx+ t)2 − (r− x)2(x0 − x) is a monic cubic polynomial with
roots θ1, θ2, θ3, so it must be equal to f(x) = x3 − 4x2 + 16. The intersections of the elliptic
curve and the line y = sx+ t are the roots to the equation

f(x)− (sx+ t)2 = −(r − x)2(x0 − x).
We see that the point ±P = (x0,±y0) must be an intersection point, and since the point
with x-coordinate r is a double root of this function, the line y = sx+ t must be tangent to
E at the some point R = (r, y1). But this means that 2R = ∓P, so P is a multiple of 2, and
thus K(µ) = 2E(Q). ■
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Recall that by Mordell-Weil,

E(Q) ∼= E(Q)tors × Zr ∼= Z/5Z× Zr.

By the first homomorphism theorem,

I(µ) ∼= E(Q)/K(µ) ∼= E(Q)/2E(Q) ∼= (Z/5Z× Zr)/(2Z/5Z× 2Zr) ∼= (Z/2Z)r,
where I and K are image and kernel respectively, since Z/5Z is a finite field, so 2Z/5Z ∼=
Z/5Z. Since we want to show that r = 0, we need to show that I(µ) has a trivial image.
Assume the contrary, that there exists some P = (x, y) such that µ(P ) ̸= 1. In other words,
x− θ is not a perfect square in K.

Proposition 4.17. For any rational x and y such that (x, y) ∈ E(Q), x can be written in
the form

x =
n

t2
,

for n, t ∈ Z and t ̸= 0 such that gcd (n, t) = 1.

Proof. Let x = a1
b1

and y = a2
b2

in simplest terms. Consider the transformation of E(Q)

defined: (p, q) 7→ (p · b1, q · b3/21 ). This maps E to a different curve, call it E1 : y2 =

x3 + αx2 + βx+ γ. The point (x, y) = (a1
b1
, a2
b2
) is sent to

(
a1,

a2
√

b31
b2

)
. This new point must

lie on E1, so we have
a22b

3
1

b22
= a31 + αa21 + βa1 + γ.

The RHS must be integral, since we have just scaled each coefficient by some power of b1,
so the LHS must also be an integer, and we must have b22 | a22b31. Since a2

b2
is in simplest form,

we must have b22 | b31, so b1 must be a perfect square, and thus x = a1
b1

can be written as n
t2

with n = a1 and t2 = b1. ■

Thus,
µ(P ) = µ(x, y) = x− θ mod (K×)2 = n− t2θ mod (K×)2.

Proposition 4.18. Consider the integral ideal (n− t2θ).

(n− t2θ) =

(∏
i

peii

)
A2,

where A is an integral ideal, each ei ∈ {0, 1}, and each pi divides the discriminant

∆(f) =
∏
j ̸=k

(θj − θk)2 = −28 · 11.

Proof. For this proof, we will work in the field L = Q(θ1, θ2, θ3). Consider each root θj.
Factoring out the even powers of ideals in the factorization of (n− t2θj), we have(∏

i

p
eij
i

)
A2

j

for some ideal Aj, prime ideals pi and eij ∈ {0, 1}. If pi | A, then pi ramifies, so it must
divide the discriminant. Thus, we only need to consider unramified prime ideals which do
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not appear in A. We must have eij = 1 for some j, otherwise the corresponding pi term
would not appear in any of the factorizations. Since y2 = (x − θ1)(x − θ2)(x − θ3), we
have y2t6 = (n − θ1t

2)(n − θ2t
2)(n − θ3t

2). Let m = yt3. Since the product of the ideals
(n − θ1t2)(n − θ2t2)(n − θ3t2) is a perfect square, then the sum of the exponents for each i
over j must be even, or

ei1 + ei2 + ei3 ≡ 0 (mod 2).

Fix some i. Then, we must have some j, k ∈ {1, 2, 3}, j ̸= k with eij = eik = 1, since they
cannot all be 0.

Consider the ideal u = (n− θjt2) + (n− θkt2).
Notice that since we have the equivalence between the numbers:

−1 · (n− θjt2) + 1 · (n− θkt2) = t2(θj − θk),
we must have that the number (θj − θk)t2 is contained in the ideal (n − θjt2) + (n − θkt2),
since −1, 1 ∈ OL. Additionally, since m2 = (n − θ1t

2)(n − θ2t
2)(n − θ3t

2), we see that
n − θjt

2 | m2 and n − θkt
2 | m2, so gcd (n− θjt2, n− θkt2) | m2, and m2 lies in the ideal

(n − θjt
2) + (n − θkt

2). Since any multiple of m2 by an element in L will also lie in this
ideal, m2(θj − θk) lies in u. Since gcd (m, t) = 1 and both t2(θj − θk) and m2(θj − θk) lie in
u, we must have that θj − θk is in u. But, since u = gcd ((n− θjt2), (n− θkt2)), we see that
pi | (θj − θk) | ∆, as desired. ■

Theorem 4.19. (Dedekind-Kummer) Let K = Q(α) and let f be the minimum polynomial
of α over Z[x]. Then for each prime number p not dividing the index |OK : Z[α]|, factor f(x)
into monic irreducible polynomials as

f(x) ≡ π1(x)
e1 · π2(x)e2 . . . πn(x)en (mod p).

Then, (p) = pOK can be factored as

(p) = pe11 · pe22 · · · · · penn ,
such that NK/Q(pi) = pdeg πi .

Recall that OK = Z + Z · 1
2
θ + Z · 1

4
θ, so the index |OK : Z[θ]| = 1 · 2 · 4 = 8, since

Z[θ] = Z+ Z · θ + Z · θ2. Since 11 does not divide this index, we can write

f(x) = x3 − 4x2 + 16 ≡ (x+ 1)2(x+ 5) (mod 11).

Thus, we see that
(11) = q2 · q′

for prime ideals q ̸= q′ and NK/Q(q) = NK/Q(q
′) = 111 = 11. However, 2 | [OK : Z[θ]]. Since

OK = Z
[
θ
2

]
, consider the ring Q

(
θ
2

)
. But, the basis of this field is

{
1, θ

2
, θ

2

4

}
, which spans

the same vector space as Q(θ), which has basis {1, θ, θ2}, so K = Q(θ) = Q
(
θ
2

)
. Since

θ3 − 4θ2 + 16 = 0,

we find that (
θ

2

)3

− 2

(
θ

2

)2

+ 2 = 0,

so g(x) = x3 − 2x2 + 2 is the minimum polynomial of θ
2
. Now, since 2 ∤

∣∣OK : Z
[
θ
2

]∣∣ = 1, we
can apply Dedekind-Kummer:

g(x) = x3 − 2x2 ≡ x3 (mod 2).
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So, (2) = p3, for some prime ideal p with NK/Q(p) = 21 = 2.
Next, note that (∏

i

NK/Q(pi)
ei

)
·NK/Q(A)

2 = NK/Q

((∏
i

peii

)
A2

)
= NK/Q((n− t2θ))
= NK/Q(n− t2θ),

where we have used the multiplicative property of the norm. The minimum polynomial of
n − t2θ is (x − (n − t2θ1))(x − (n − t2θ2))(x − (n − t2θ3)), and the product of its roots is
(n− t2θ1)(n− t2θ2)(n− t2θ3), so

NK/Q(n− t2θ) = (n− t2θ1)(n− t2θ2)(n− t2θ3)
= t6(n/t2 − θ1)(n/t2 − θ2)(n/t2 − θ3)
= t6(x− θ1)(x− θ2)(x− θ3).

But recall that (x− θ1)(x− θ2)(x− θ3) = x3 − 4x2 + 16 = y2, so

NK/Q(n− t2θ) = t6y2,

a perfect square. Hence,∏
i

NK/Q(pi)
ei =

NK/Q(n− t2θ)
(NK/Q(A))2

=

(
t3y

NK/Q(A)

)2

.

Since NK/Q(p) = 2 and NK/Q(q) = NK/Q(q
′) = 11, and since∏

i

NK/Q(p
ei
i ) = NK/Q(p

e1qe2q′
e3) = 2e111e211e3

is a perfect square, we must have e1 = 0 or e2 = e3 = 0 or 1.
If e2 = e3 = 1, then from Proposition 4.18, qq′ | n − t2θ, so (qq′)2 | (n − t2θ)2 =

n2 − 2nt2θ + t4θ2. But recall that q2q′ = 11, so

n2 − 2nt2θ + t4θ2

11
∈ OK .

This means that 11|r and 11|t, contradicting the fact that gcd (r, t) = 1. So, we have e1 =
e2 = e3 = 0 and (n− t2θ) = A2. Since K has class number 1, A is generated by some a ∈ OK .
Then, we have n− t2θ = u · a2, where u is a non-square element of the units O×

K (u clearly
cannot be a square since otherwise n− t2θ would be a perfect square in K which we assumed
to be false).

After factoring all even powers of η into a, we find that u ∈ {−1,−η, η}, where η is the
fundamental unit 1 − 1

2
θ as mentioned earlier. We see that NK/Q(u)NK/Q(a)

2 = NK/Q(n −
t2θ) = t6y2, as calculated earlier, so

NK/Q(u) =
t6y2

NK/Q(a)2
=

(
t3y

NK/Q(a)

)2

≥ 0,

and since NK/Q(−1) = NK/Q(−η) = −1 < 0, we know that u = η and n− t2θ = η · a2. Since
ηa ∈ O, we can write

ηa = u+ v · 1
2
θ + w · 1

4
θ2,
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for u, v, w ∈ Z, from our equation for OK . Thus,

η(n− t2θ) =
(
1− 1

2
θ

)
(n− t2θ)

= (ηa)2

=

(
u+ v · 1

2
θ + w · 1

4
θ2
)2

= θ4
(
w2

16

)
+ θ3

(vw
4

)
+ θ2

(uw
2

)
+ θ2

(
v2

4

)
+ θ(uv) + u2.

But, recall that θ3 − 4θ2 + 16 = 0, so θ3 = 4θ2 − 16 and θ4 = 4θ3 − 16θ = 16θ2 − 16θ − 64.
Making these substitutions and expanding

(
1− 1

2
θ
)
(n− t2θ), we arrive at

(4.3) θ2
(
t2

2

)
−θ
(
t2 +

n

2

)
+n = θ2

(
v2

4
+
uw

2
+ vw + w2

)
+θ(uv−w2)+(u2−4wv−4w2).

Any of the θ = θ1, θ2, θ3 satisfy this equation, so we can choose the matrix

A =

1 θ1 θ21
1 θ2 θ22
1 θ3 θ23

 ,

so that Equation 4.3 is equivalent to

A ·

 n
−t2 − n

2
t2

2

 = A ·

 u2 − 4wv − 4w2

uv − w2

v2

4
+ uw

2
+ vw + w2

 .

The matrix A turns out to be the Vandermonde matrix V (θ1, θ2, θ3), which is a matrix
with a special property that the square of its determinant is the discriminant of the monic
polynomial with roots θ1, θ2, θ3, which we found to be the cubic x3 − 4x2 + 16, which has
discriminant ∆ = −2816 ̸= 0, so the determinant of A is non-zero and A is invertible.
Multiplying both sides by A−1 equates the vectors n

−t2 − n
2

t2

2

 =

 u2 − 4wv − 4w2

uv − w2

v2

4
+ uw

2
+ vw + w2

 .

From equating the second entries of each vector, we see that

−2t2 − n = 2uv − 2w2,

so n must be even. Equating the first entries gives us

n = u2 − 4wv − 4w2,

and since n is even, u must also be even. Equating the third entries tells us that

2t2 = v2 + 2uw + 4vw + 4w2,

so v is even. But, since u is even, 4 | v2 + 2uw + 4vw + 4w2 = 2t2, so t is even. But,
gcd (n, t) = 1, so this is impossible and we have arrived at a contradiction. Thus, there
exists no point P such that µ(P ) ̸= 1 mod (K×)2, and thus the image I(µ) = 1. But, since
I(µ) ∼= (Z/2Z)r, we must have r = 0, as desired. Thus there exists exactly 5 rational points
on E, so there cannot exist any elliptic curves with torsion points of order 11.
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Figure 4. Transformation between C/Λ and the surface of a torus. Since a
torus has genus one, it can be mapped to an elliptic curve, which also has
genus one, because of Theorem 5.9. Edited from https://upload.

wikimedia.org/wikipedia/commons/6/60/Torus_from_rectangle.gif.

5. A Different Approach: Modular Curves

Although we have successfully proven the theorem of Billing-Mahler, we still have unan-
swered questions, such as how the elliptic curve y2−y = x3−x2 has any relation to 11−torsion
elliptic curves. We seek to explain this by deriving this equation from a different angle, by
using modular curves.

Definition 5.1. (Lattice Λ Definition) Define a lattice Λ ⊂ C with basis ⟨ω1, ω2⟩, with
ω1

ω2
̸∈ Q, to be an additive subgroup of C to be Z · ω1 + Z · ω2. In other words, it consists of

all integer combinations of ω1 and ω2.

Consider the quotient group C/Λ. This group consists of all the complex numbers within
the parallelogram spanned by ω1 and ω2, where the operation, addition, between two com-
plex numbers z1 and z2 is defined as normal complex addition z1 + z2 modulo ω1, ω2. This
parallelogram is called a complex torus, as the paralleogram can be morphed into the surface
of a torus. It turns out that there is a connection between elliptic curves and complex tori,
but we first need to define a function on C/Λ.

Definition 5.2. (Weierstrass ℘-function) Let Λ be a complex lattice. Define the Weierstrass
℘-function on Λ to be

℘(z) =
1

z2
+

∑
ω∈Λ,ω ̸=0

(
1

(z − ω)2
− 1

ω2

)
.

We can calculate the derivative

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
.

Theorem 5.3. For any lattice Λ, there exists an elliptic curve E/C such that the map
ϕ : C/Λ 7→ P2(C) defined as

ϕ(z) := [℘(z), ℘′(z), 1]

is both an isomorphism between the Riemann surface of the complex torus C/Λ and that of
the elliptic curve E/C and an isomorphism between the additive groups of C/Λ and E(C).

Proof. A property of the function ℘(z) is that it satisfies the differential equation

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6,

where Gk is an Eisenstein series of weight k with respect to Λ defined by

Gk =
∑

ω∈Λ,ω ̸=0

ω−k

https://upload.wikimedia.org/wikipedia/commons/6/60/Torus_from_rectangle.gif
https://upload.wikimedia.org/wikipedia/commons/6/60/Torus_from_rectangle.gif
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Figure 5. Addition in a complex torus.

(see VI.3.5 of [Sil09] for a deeper discussion of this). For convenience, let g2 = 60G4(Λ) and
g3 = 140G6(Λ). We see that this differential equation is in a very similar form to that of an
elliptic curve; in fact, if we let y = ℘′(z) and x = ℘(z), as is the case under ϕ, then we have

y2 = 4x3 − g2x− g3,

an elliptic curve. It requires some more work to show that ϕ is surjective and is truly an
isomorphism between C/Λ and E(C) (see VI.3.6 of [Sil09] for more details), but it can be
shown that complex addition on a complex torus C/Λ corresponds to point addition on
E(C). ■

It turns out that this relationship works both ways, as is evidenced by the uniformization
theorem. We call two lattices Λ1 and Λ2 homothetic if Λ1 = αΛ2 for some α ∈ C∗ = C\{0}.

Theorem 5.4. (Uniformization Theorem of Elliptic Curves) For any elliptic curve E/C,
there exists a lattice Λ ⊂ C, unique up to homothety, such that the map ϕ, as defined earlier,
maps C/Λ to E(C).

See [Par16] for a proof. This theorem tells us that there is a bijection between equivalence
classes of lattices under homothety and the set of all E/C. Thus, we have turned the problem
of analyzing elliptic curves into analyzing lattices.



20 ROHAN RAMKUMAR

A natural question to ask about lattices over C is when two bases span the same lattice. We

only need to consider lattices spanned by ⟨1, τ⟩ =
〈
1, ω2

ω1

〉
, as any lattice will be homothetic

to one of this form. Additionally, we want to take this basis to be positively oriented, or
that im (τ) > 0. If this is not the case, then we can just switch ω1 and ω2, which clearly will
not affect the lattice. This orientation makes it so that we only have to consider τ in the
upper half plane H = {z = a+ bi|b > 0; a, b ∈ R}.

Definition 5.5. (Special Linear Group) Define SL(n, F ) or SLn(F ), where n ∈ Z+ and F
is a field, to be the group of n× n matrices over F with determinant 1.

Example. (SL2(Z)) In this paper we will be concerned with the group and subgroups of
SL2(Z), or 2 × 2 integer matrices with determinant 1. We define the action of SL2(Z) on
the upper half plane H to be Möbius transformation (fractional transformation of a complex
number)

γ(z) =
az + b

cz + d

for some

γ =

(
a b
c d

)
∈ SL2(Z),

that is a, b, c, d ∈ Z such that ad− bc = 1. We can verify that the group action of functional
composition is equivalent to that of matrix multiplication by defining γ1, γ2 ∈ SL2(Z) as

γ1 =

(
a1 b1
c1 d1

)
and γ2 =

(
a2 b2
c2 d2

)
We see that

(γ1 ◦ γ2)(z) =
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + c2d1)z + (c1b2 + d1d2)
= (γ1 · γ2)(z),

where ◦ is functional composition and · is matrix multiplication, so our action of functional
composition of Möbius transformations is isomorphic to that of matrix multiplcation in
SL2(Z), with the caveat that γ is considered the same matrix as −γ, as γ(z) = −γ(z).

Consider the mapping

ϕ : Λ 7→ Z2

by the transformation

ϕ(nω1 +mω2) = (n,m)

for n,m ∈ Z. Clearly this is an isomorphism, as ϕ(z1) + ϕ(z2) = ϕ(z1 + z2) for z1, z2 ∈ Λ.
Our question about different bases for the same lattice Λ has turned into a question about
different bases for Z2. But this is just the set of pairs of vectors ((a, b), (c, d)) that are linearly

independent, which is the same as the set of matrices

(
a b
c d

)
with nonzero determinant. To

preserve our positive orientation, we can choose matrices with positive determinant. Since
we want to create a group of integer matrices, the inverses of all of these matrices must be
over Z, so the determinant must be ±1. Since we require a positive determinant, we see that
all automorphisms of Z2 that preserve orientation and have integral inverses are exactly the
group SL2(Z).



ON THE EXISTENCE OF TORSION POINTS OF ORDER 11 ON ELLIPTIC CURVES OVER Q 21

Figure 6. The fundamental domain (in gray) of Y (1) and the its images
under Γ(1). Each “triangle” corresponds to the image of the fundamental
domain under some transformation γ ∈ Γ(1). This pattern is known as the
Dedekind tessellation of the upper half plane.

Example. The vectors î = (1, 0) and ĵ = (0, 1) clearly span Z2. We can choose any matrix
γ ∈ SL2(Z), such as

A =

(
7 −6
6 −5

)
,

and we see that AT · î = (7,−6) and AT · ĵ = (6,−5) are our new basis vectors of Z2.

Temporarily reversing the order of the basis of our lattice Λ, we see that if Λ = ⟨τ, 1⟩,
then ϕ(τ) = (1, 0) and ϕ(1) = (0, 1). Applying a matrix

γ =

(
a b
c d

)
∈ SL2(Z)

to these vectors, we get the new basis vectors

AT · (1, 0) = (a, b) and AT · (0, 1) = (c, d),

which corresponds to a new basis of our lattice, after reversing our basis again to bring it
back to its original form, Λ = ⟨cτ + d, aτ + b⟩. Scaling, we see that

Λ = ⟨1, τ⟩ =
〈
1,
aτ + b

cτ + d

〉
.

Thus, to study the equivalence classes of lattices over C, we need to study the equivalence
classes of the upper half plane defined by the equivalence relation z1 ∼ z2 if z2 = γ(z1) for
γ ∈ SL2(Z), which is also the equivalence class of lattices up to homothety. From here, we
will refer to the group SL2(Z) as Γ(1), the name of which we shall soon explain.
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We are concerned with the quotient H/Γ(1); that is, the set of H under the aformentioned
equivalence relation. We call this quotient Y (1). The curve Y (1) is known as a modular
curve. Each point of Y (1) corresponds to an equivalence class mentioned earlier, and thus
corresponds to an elliptic curve by Theorem 5.4. We will use the notation ℜ(z) and ℑ(z) to
represent the real and imaginary parts of z respectively.

Lemma 5.6. (Fundamental Domain)

(i) Γ(1) is generated by S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

(ii) The region bounded by defined by D = {z : −1
2
≤ ℜ(z) ≤ 1

2
; |z| ≥ 1} is a fundamental

domain; i.e. each point in D corresponds to a unique orbit of H under Γ(1), except for
boundary points of D.

Proof. We see that the matrices S and T have very intuitive actions on a complex number.
T (z) = z + 1, which corresponds to a linear shift to the right by one, and S(z) = −1

z
, which

corresponds to an inversion about the unit circle followed by a reflection about the y-axis.
These two matrices explain the translational and circular symmetry in Figure 6.

(i) We will proceed with casework.
Case 1: a = 0.
bc = ad− 1 = −1, and since b, c ∈ Z, we must have b = −c = ±1. Thus,

γ(z) =
±1
∓τ + d

= − 1

τ ∓ d
= (S · T∓d)(τ).

Case 2: a = ±1.
Since γ = −γ, we can multiply by −1 if needed so that a = 1. Then

γ(z) =
z + b

cz + d
,

and

(γ · S)(z) = −cz − d
z + b

,

and

(γ · S · T c)(z) =
−cz − d
z + b

+ c =
bc− d
z + b

= − 1

z + b

because the determinant d− bc = 1. This transformation has matrix

(
0 1
1 b

)
, which reduces

to Case 1 since a = 0.
Case 3: |a| > 1.
WLOG, let |a| ≥ |c|. If this is not the case, apply S to γ. Choose n =

⌊
a
c

⌋
. Then we have

|a− nc| < |c|. We see that

(γ · T−n)(z) =
az + b

cz + d
− n =

(a− nc)z + (b− nd)
cz + d

,

and

(γ · T−nS)(z) = − cz + d

(a− nc)z + (b− nd)
.

We can repeat this process, each time decreasing both |a| and |c|. But notice that this is
the same as applying the procedure of the Euclidean algorithm to a and c. Thus, we must
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eventually reach a = 0, if gcd(a, c) ̸= 1, or a = ±1, if gcd(a, c) = 1, which reduce to Case 1
and Case 2 respectively.

(ii) We will show that the mapping π : D 7→ Y (1) is a surjection, or that any τ ∈ H is
equivalent to some point in D. First, we can repeatedly apply T or T−1 to shift τ such that
|ℜ(τ)| ≤ 1

2
. If |τ | ≥ 0, then τ ∈ D as desired. Otherwise, we have

ℑ(Sτ) = ℑ
(
−1

τ

)
= ℑ

(
− τ̄

|τ |2

)
= ℑ

(
τ

|τ |2

)
> ℑ(τ),

so we can repeatedly apply T±1 to S(τ) again until it is between the lines |ℜ(z)| = 1
2
. Now,

we will derive a formula for ℑ(γ(z)) for γ =

(
a b
c d

)
∈ Γ(1). Let τ = u+ vi. Then we have

γ(τ) =
aτ + b

cτ + d
=
au+ avi+ b

cu+ cvi+ d
=

(au+ avi+ b)(cu− cvi+ d)

|cu+ cvi+ d|2
.

Taking the imaginary part, we see that

ℑ(γ(τ)) = ℑ
(
(au+ avi+ b)(cu− cvi+ d)

|cu+ cvi+ d|2

)
=
advi− bcvi
|cτ + d|2

.

But, since ad− bc = 1, we have

ℑ(γ(τ)) = vi

|cτ + d|2
=
ℑ(τ)
|cτ + d|2

.

Since there can only be a finite number of lattice points inside the unit disk, there are only
a finite number of matrices γ such that ℑ(γ(τ)) > ℑ(τ). So the algorithm must terminate
at some τ ∈ D. It turns out that the map π is injective only for non-boundary points of D
and we have the following for distinct points τ1, τ2 in the boundary ∂D with τ2 = γ(τ1) :

ℜ(τ1) = ±
1

2
: τ2 = T±1(τ1),

|τ1| = 1 : τ2 = −
1

τ1
.

See Lemma 2.3.2 of [DS05] for a proof of injectivity and boundary conditions. ■

Definition 5.7. (Riemann Surface) A Riemann surface is a connected complex manifold of
complex dimension 1.

Intuitively, this means that the neighborhood of each point in a Riemann surface is home-
omorphic to to the complex plane C, or that it “looks like” the complex plane near every
point. It turns out that Y (1) is a Riemann surface (see section 2.1 of [DS05] for more details).
We need the following definition:

Definition 5.8. (Compact Set) A set X is compact if every open cover of X has a finite
subcover.

In other words, X contains all limiting points.

Example. For example, the interval [0, 1) is not compact since it does not contain the point
1. In fact, all compact subsets of Euclidean space Rn must be bounded and closed (this is
known as the Heine-Borel Theorem).
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Figure 7. By thinking in the Riemann sphere P1(C), the fundamental
domain D can be thought of as a sphere missing a point, hence it is not
compact.

Example. The set C is not compact. We can see this by applying a stereographic projection
to turn it into a sphere missing one point. If we add the point at infinity to our complex
plane, we arrive at the complex projective line P1(C), which is now in bijection with the
sphere, which is compact. This sphere is known as the Riemann sphere.

The reason why compactness is important is because of the following theorem:

Theorem 5.9. Every compact Riemann surface is isomorphic to an algebraic curve.

See [Smi15] for a proof and details. Note that we have already seen this theorem in action.
A torus is a compact Riemann surface, so it must be isomorphic to an algebraic curve. But
from 5.3, we know that the Weierstrass ℘-function does exactly that, converting a complex
torus into an algebraic curve, specifically an elliptic curve.

Now, consider the fundamental domain D. We would like it to be compact so that we can
determine an equation for its algebraic curve. If we consider the extended complex plane
C∞, we can think of D as a disk missing a point (see Figure 7).

This is not compact because it is missing a limiting point. Thus, we can add the point ∞
to compactify D. However, by doing this, we must add all the the points γ(∞) for some

γ =

(
a b
c d

)
∈ Γ(1).

We see that

lim
x→∞

ax+ b

cx+ d
=
a

c
,

so naturally, we let γ(∞) = a
c
. Similarly, choosing any q = a

c
∈ Q in lowest terms we can

find b and d such that ad− bc = 1, and thus there will exist γ ∈ Γ(1) with γ(∞) = q. This
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Figure 8. Any point P of order 11 corresponds to a complex number
z ∈ C/Λ such that 11z ≡ 0 mod Λ. In this figure, we have 11z = 3 + 2τ.
With a change of basis ⟨1, τ⟩ 7→ ⟨3 + 2τ, τ⟩, we transform the set nz 7→ Z

11
.

means that we must add both∞ and Q to H to create a compact modular curve. This leads
to the definition H∗ = H ∪∞∪Q. This leads to the following definition:

X(1) = H∗/Γ(1).

For now, the set Q ∪∞, called cusps, lie in the same orbit under Γ(1). But, using different
subgroups of Γ(1) instead, we can have multiple orbits, the number of which is related to
the structure of elliptic curves.

Now, let there exist a cycle of order 11 on an elliptic curve E/Q. From Theorem 5.3,
for a lattice Λ = ⟨1, τ⟩ corresponding to E, we must have that there exists z ∈ C/Λ such
that 11z ≡ 0 mod Λ, so 11z = n + mτ for some n,m ∈ Z. We can change our basis to
⟨n + mτ, ω⟩ where ω is some lattice point positively oriented from n + mτ (see Figure 8).
Dividing by n+mτ, we get the lattice Λ′ = ⟨1, τ ′⟩, for which the cyclic subgroup of order 11
is represented by the additive group 1

11
Z ∈ C/Λ′. Since Λ′ is homothetic to Λ, they represent

the same elliptic curve E. Consider the pair (C/Λ, P ), called a refined moduli pair. If we
choose a point P be of order 11, we see that, on the complex torus, P = n

11
for some integer

n. Choosing the basis ⟨ n
11
, τ ′⟩ and rescaling lets us choose P = 1

11
.

We have just shown that for any point P of order 11,

(C/Λ, P ) ∼=
(
C/Λ,

1

11

)
.
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We wish to determine for which what subset γ ∈ Γ(1) we have
(
C/Λτ ,

1
11

) ∼= (
C/Λτ ′ ,

1
11

)
.

Recall that the homothety of Λτ ′ is given by cτ + d. Hence, we have

cτ + d

11
≡ 1

11
mod Λτ ′ .

We must have that cτ
11

is a multiple of τ, or that c ≡ 0 (mod 11). Additionally, we must have

d ≡ 1 (mod 11). So, we have γ( 1
11
) = a

11
+ b. We want this to be congruent to 1

11
mod Λτ ′ .

But,

a

11
+ b ≡ 1

11
mod Λτ ′ ,

so a ≡ 1 (mod 11). So,

γ ≡
(
1 ∗
0 1

)
(mod 11),

where ∗ represents any other number. We denote the set of γ that satisfy this as Γ1(11). In
general, for N > 0,

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
1 ∗
0 1

)
(mod N)

}
.

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
1 0
0 1

)
(mod N)

}
.

We see that Γ(1) = Γ1(1) = SL2(Z), as all integer matrices are equivalent (mod 1). We can
define the modular curves Y (N) = H/Γ(N) and Y1(N) = H/Γ1(N), compactifying them
into X(N) and X1(N) respectively.

We have the following in general:

Theorem 5.10. For N > 0,
(i)There exists a surjective mapping between the pair (E,P ) and a point on Y1(N), where P

is a rational point on elliptic curve E of order N. Two pairs (E1, P1) and (E2, P2) correspond
to the same point on Y1(N) if and only if there exists an isomorphism between E1 and E2

that maps P1 to P2.
(ii)There exists a surjective mapping between the pair (E,P,G) and a point on Y (N),

where P is a rational point on elliptic curve E and G is a cyclic subgroup of E both of order
N. Two pairs (E1, P1, G1) and (E2, P2, G2) correspond to the same point on Y (N) if and only
if there exists an isomorphism between E1 and E2 that maps P1 to P2 and G1 to G2.

See [DS05] for more details.
It turns out that, unlike in the case of X(1), where we added a single orbit of cusps to

compactify Y (1), we need to instead adjoin a set C of 10 orbits of cusps, 5 of which lie in Q
and 5 of which lie in the maximal real subfield Q(ζ11 + ζ−1

11 ) of the cyclotomic field Q(ζ11).
See example 9.3.5 of [DI95] for more details. Additionally, there exists a bijection

X1(11)Q ←→ Ell(Q) ∪ CQ,

where Ell(Q) is the set of elliptic curves over Q with 11-torsion points, CQ is the set of five
cusps in Q, and X1(11)Q represents the algebraic curve over Q representing X1(11). Such an
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algebraic curve exists because of Theorem 5.9, since X1(11) is compact. From example 9.1.6
of [DI95], we see that the genus of X1(11) is given by

g = 1 +
112

24

∏
p|N

(
1− 1

p2

)
− 11

4

∏
p|N

(
1− 1

p2
+ vp(N)

(
1− 1

p

)2
)

= 1,

since the only prime factor of 11 is itself, with the p-adic valuation v11(11) = 1. From the
genus-degree formula for algebraic curves, which states that

g =
(d− 1)(d− 2)

2
,

we see that for a curve to have genus 1 it must have a degree d satisfying

d2 − 3d = 0.

Since our curve has positive degree, we must have d = 3. By applying the procedure from
Lemma 4.2, we can turn this cubic curve into an elliptic curve, so the modular curve X1(11)
has an elliptic curve equation.

Proposition 5.11. The modular curve X1(11) as an algebraic curve has the equation

y2 + y = x3 + x2.

Proof. Consider the refined moduli pair (E,P ), where P is a rational point of order 11 on
E. We can rewrite E it as

E : y2 + a1xy + a3y = x3 + a2x
2,

with a2, a3 ̸= 0, if we transform P into (0, 0) and the tangent line to P be the line x = 0
after a linear transformation (see [Rei86] for details). With the transformation

X =

(
a3
a2

)2

X ′

and

Y =

(
a3
a2

)3

Y ′,

and substituting (1− c) = a1a2
a3

and b = −a32
a23
, which is valid since a3 ̸= 0, we arrive at

E : y2 + (1− c)xy − by = x3 − bx2.

Since P has order 11, we see that 5P = −6P, so x5P = x6P = x−6P , where xnP is the
x-coordinate of nP. We can calculate the following:

• P = (0, 0)
• 2P = (b, bc)
• 3P = (c, b− c)
• 4P = (r(r − 1), r2(c+ r − 1)), where r = b

c

• 5P = (rs(s− 1), rs2(r − s)), where s = c
r−1

• 6P = (−mt,m2(m+ 2t− 1)), where m = s(1−r)
1−s

and t = r−s
1−s

.
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Equating x-coefficients of 5P and 6P, we have

rs(s− 1) = −mt.
Reversing the substitutions of 6P, we have

r2 − 4sr + 3s2r − s3r + s = 0.

With the transformation (s, r) 7→
(

1
s+1

, 1
r+1

)
to bring (1, 1) to (0, 0) and remove the singu-

larity there, we arrive at
r2 + s2r + r − s3 = 0.

Finally, substituting y = s
r
and x = 1

r
, we have

y2 + y = x3 − x2,
which parameterizes our pair (E,P ) and thus is an equation for X1(11). ■

Notice that this is exactly the same equation we found earlier in Lemma 4.2. Of course,
this is no coincidence, as we were implicitly parameterizing all 11-torsion elliptic curves
without realizing it. We have already proven that this elliptic curve has exactly 5 torsion
points, but we expected exactly 5 cusps to lie in Q. Thus, there are no non-cusp rational
points on X1(11), so there cannot be any elliptic curves over Q with torsion points of order
11.

6. Further Exploration

A lot of our work with modular curves did not require that P had order 11. In fact, we
could have used a similar procedure to describe a point with N -torsion. By analyzing the
curves X1(N) for higher values of N, Mazur in [Maz77] and [MG78] was able to prove that
there are only 15 different possibilities for torsion groups, and that infinitely must exist of
each kind.

Elliptic curves in general are also important in cryptography. The previously most popular
cryptography algorithm, RSA, is weak to quantum algorithms, which are able to efficiently
factor large numbers in theory. So, a new technique has been developed called ECC, or
elliptic curve cryptography, where an elliptic curve is considered over the finite field Fp

instead of Q. In this finite field, given a point P and another point nP, it is difficult to
calculate the value of n. So, we can publicly hand out P and nP, keeping our value of n
secret.
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