
Ehrhart theory-
On the Discrete Volume of Lattice Polytopes

Ritisha Bansal

July 17, 2023

Ritisha Bansal Ehrhart theory-On the Discrete Volume of Lattice PolytopesJuly 17, 2023 1 / 17



Introduction to Ehrhart theory

The Ehrhart theory was devised by Eugene Ehrhart in 1962 who studied
the relationship between an object’s continuous volume and its discrete
volume.

This theory serves as a generalisation of Pick’s theorem for polytopes in
higher dimensions. Ehrhart studied how the number of lattice points inside
an object changed as the object was scaled up in size.

The Ehrhart theory has wide applications ranging from number theory,
commutative algebra and enumerative combinatorics.
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Pick’s theorem

Theorem

(Pick’s theorem). Given a convex integral polygon P, let the number of
lattice points strictly interior to P be I and number of lattice points on the
boundary of P be B. Then, the area of the polytope is-

A = I + B
2 − 1.

Example
The area of this convex polygon is,

A = 1 + 96
2 − 1 = 48.

Figure: convex polygon
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Describing polytopes

There are two different ways to define convex polytopes are.

1 Vertex description- Using the vertex description, a convex polytope P
∈ Rd is the convex hull of a finite set of points {v1, v2, . . . , vn} in Rd .
To be precise, polytope P is the smallest convex set containing those
points. P = conv{v1, v2, . . . , vn}.

2 Hyperplane description-By the hyperplane description, a convex
polytope P is the bounded intersection of finitely many half-spaces
defined by linear inequalities.
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Lattice-point enumeration

Ehrhart theory deals with computing the discrete volume of a polytope by
counting the number of its integer lattice points which is the lattice-point
enumerator.

Definition

For a positive integer t, the tth dilate of P ∈ Rd is tP, and

tP = {(tx1, tx2, · · · , txd) : (x1, x2, · · · , xd) ∈ P}.

Definition

The lattice point enumerator of P ∈ Rd when evaluated at t is,

Lp(t) = |tP ∩ Zd |.

The value of Lp(t) is the discrete volume of tP.
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Ehrhart series

Definition

The Ehrhart series is another important tool for analyzing a polytope P. It
is the generating function of the lattice point enumerator of P and can be
defined as,

Ehrp(z) =
∑
t>=0

Lp(t)z
t .

Example
The Ehrhart series of the origin is-

1
(1−z) = 1 + z + z2 + z3 + · · ·
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Unit D-Cube

The unit d-cube is a polytope whose vertices are are all of the points in
Rd such that every coordinate is either 0 or 1:

= conv{(x1, x2, . . . , xd) ∈ Rd : xi = 0 or 1 for 1 <= i <= d}.
= {(x1, x2, . . . , xd) ∈ Rd : 0 <= xi <= 1 for 1 <= i <= d}.

Theorem

The lattice-point enumerator of is,

L (t) = (t + 1)d =
∑d

k=0

(d
k

)
tk

Ritisha Bansal Ehrhart theory-On the Discrete Volume of Lattice PolytopesJuly 17, 2023 7 / 17



Unit D-Cube

The unit d-cube is a polytope whose vertices are are all of the points in
Rd such that every coordinate is either 0 or 1:

= conv{(x1, x2, . . . , xd) ∈ Rd : xi = 0 or 1 for 1 <= i <= d}.
= {(x1, x2, . . . , xd) ∈ Rd : 0 <= xi <= 1 for 1 <= i <= d}.

Theorem

The lattice-point enumerator of is,

L (t) = (t + 1)d =
∑d

k=0

(d
k

)
tk

Ritisha Bansal Ehrhart theory-On the Discrete Volume of Lattice PolytopesJuly 17, 2023 7 / 17



Example

Figure: 6th dilate of unit-cube

Computing the Ehrhart series of the unit d-cube-

Ehr =
∑
t>=0

(t + 1)dz t

=
d∑

k=1

A(d , k)zk

(1− z)d+1
.
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Standard Simplex

The standard simplex denoted by △ in dimension d is the convex hull of
(d + 1) points e1, e2, · · · , ed and the origin. Here is ej is unit vector with a
1 in the j th position while the rest are 0 vectors.

△={(x1, x2, · · · , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1 and all xk ≥ 0}.
The t dilate of the standard simplex is given by,

t△={(x1, x2, · · · , xd) ∈ Rd : x1 + x2 + · · ·+ xd <= t and all xk >= 0}.

Figure: 3-D standard simplex
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To compute the discrete volume of △ we use a counting function.

m1 +m2 + · · ·+md ≤ t.

m1 +m2 + · · ·+md+1 = t.

The counting function is,

t ∈ Zd = const

( ∑
m1>=0

zm1

)( ∑
m2>=0

zm2

)
· · ·

 ∑
md+1>=0

zmd+1

 z−t

 .

= const(
1

(1− z)d+1z t
).

Thus, Ehr△(z) = 1
(1−z)d+1 . Using the binomial series we get,

1
(1−z)d+1 =

∑
k≥0

(d
k

)
zk .

Thus, L△(t) =
(d+t

d

)
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Cross-polytopes

The hyperplane description of a cross polytope Rd hyperplane
description is-

:= {(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd | ≤ 1}.

Figure: 3-D cross polytope- BiPyr(Q)

A d dimensional cross-polytope can be defined as the bipyramid over a
(d − 1) dimensional cross polytope Q with vertices v1, v2, . . . , vm such
that Q contains the origin. We define BiPyr(Q) as-

conv{(v1, 0), (v2, 0), . . . , (vm, 0), (0, . . . , 0, 1) and (0, . . . , 0,−1)
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LBiPyr(Q)(t) = 2 + 2LQ(1) + 2LQ(2) + · · ·+ 2LQ(t − 1) + LQ(t).

Theorem If Q contains the origin, then EhrBiPyr(Q)(z) =
1+z
1−zEhrQ(z). The

cross poltyope in dimension 0 is the origin with Ehrhart series 1
(1−z) . Thus,

the higher dimensional cross polytopes can be computed recursively by the
formula-

Ehr (z) = (1+z)d

(1−z)d+1 .
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Ehrhart theory

Theorem

Ehrhart’s theorem- Given a convex integral polytope P ∈ Rd , the
lattice-point enumerator LP(t) of P is a rational polynomial in t of degree
d which we call the Ehrhart polynomial.

LP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.
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Ehrhart Macdonald Reciprocity

Theorem

Ehrhart Macdonald Reciprocity- Given a convex polytope P ∈ Rd ,
evaluating LP(t) at negative integers yields,

LP(−t) = (−1)dLP◦(t).
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From Discrete to Continuous Volume

Theorem

For a given convex polytope P ∈ Rd let its Ehrhart polynomial be,

LP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0. Then cd equals the volume of P

.

Proof

volP : = lim
t→∞

1

td
|P ∩ 1

t
Zd | = lim

t→∞

1

td
|tP ∩ Zd |.

= lim
t→∞

1

td
LP(t).

We now have,

volP = lim
t→∞

cd t
d + cd−1t

d−1 + · · ·+ c1t + 1

td
.

= lim
t→∞

(cd + cd−1t
−1 + · · ·+ c1t

−d+1 + t−d).

= cd .
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Decoding coefficients

Decoding the Second Leading coefficient-

Theorem

Suppose LP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0 is the Ehrhart
polynomial of an integral polytope P. Then,

cd−1 =
1
2

∑
F facetofP vol(F ).

Decoding the Last coefficent-
The constant term c0 of the Ehrhart polynomial is the Euler characteristic
of P and is equal to 1.
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Ehrhart positivity

We conclude with an open field of research in Ehrhart theory-Ehrhart
positivity. A convex integral polytope P is said to have Ehrhart positivity if
LP(t) has all positive coefficients. This leads us the central question of
this field of research.

Open Question
Which faimilies of integeral polytopes have Ehrhart positivity?

Ritisha Bansal Ehrhart theory-On the Discrete Volume of Lattice PolytopesJuly 17, 2023 17 / 17


