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Abstract- In this paper, we will overview the fundamentals of the Ehrhart theory, specif-
ically Ehrhart polynomials and their associated Ehrhart series. The Ehrhart theory was
proposed by Eugene Ehrhart in 1962 who at the time was as a mathematics teacher at a
lycées. This theory shows that the number of lattice points contained by the tth dilate of a
d-dimensional polytope is a rational polynomial in t of degree d called the Ehrhart polyno-
mial. We will examine the Ehrhart polynomials of some common polytopes and properties
of these polynomials, a proof of the Ehrhart theory and an open problem in this field.

1. Introduction

Since, Ehrhart’s original works in 1960, Ehrhart theory has developed as a key topic at the
intersection of polyhedral geometry, number theory, commutative algebra and enumerative
combinatorics. Its diverse applications are owing to the fact that it connects the worlds of
discrete and continuous mathematics in a fascinating way. Ehrhart studied the relationship
between an object’s continuous volume which is its normal or intuitive volume and its discrete
volume-a different sense of volume given by the lattice points contained inside it. In the
mathematics of lattice points, the first well-known result is Pick’s theorem which gives the
area of a convex polygon in terms of lattice points inside it and on its boundary. Ehrhart
devised a different approach to serve as a generalisation for polytopes with higher dimensions.
Ehrhart instead studied how the number of lattice points inside an object changed as the
object was scaled up in size. For this purpose, he defined the lattice-point enumerator
function LP (t) in t of an object, which counted the number of lattice points in the object
after being scaled up by a factor of t for positive integers t. The central theorem of Ehrhart
theory is theorem 10.1 which says,

LP (t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0.

Indeed, the lattice-point enumerator of a polytope P is an Ehrhart polynomial. Connecting
back to Pick’s theorem and volume, Ehrhart discovered that the leading coefficient of a
polytope’s lattice-point enumerator always equaled the polytope’s volume. Moreover, the
associated generating function for the lattice-point enumerator of P called the Ehrhart series
can be defined as,

EhrP (z) = 1 +
∑

t≥1 LP (t)z
t.

The structure of the paper is as follows. We start by an in-depth look at Pick’s theorem in
section 2 providing a traditional proof for it. Section 3 establishes fundamentals of polytopes
and we then move on to laying out the basics of lattice-point enumeration in section 4 with
sections 5,6,7 and 8 computing the lattice-point enumerators of several common polytopes.
Continuing in section 9, we will explore the role of generating functions in Ehrhart theory
and then go on to introduce cones and integer-point transform in section 10. The main
results of Ehrhart theory are provided in section 11.Sections 12 and 13 deal with interpreting
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Figure 1. decomposition of convex polygon

coefficients and interpolation. Section 14 briefly explores Ehrhart quasipolynomials and
lastly in section 14 we explore an active area of research in this field.

2. Pick’s theorem

Pick’s theorem is the most famous theorem involving lattice-point enumeration and it
is fundamental to this paper as it provided the basis for developing Ehrhart theory. The
theorem named in honour of its discover Georg Alexander Pick (1859-1942) presents the
surprising fact that the area A of polynomial P can be computed simply by counting lattice
points. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization
of Pick’s theorem in the Euclidean plane.

Theorem 2.1. (Pick’s theorem). Given a convex integral polygon P, let the number of lattice
points strictly interior to P be I, and let the number of lattice points on the boundary of P
be B. Then, the area of the polytope is-

A = I + B
2
− 1.

Lemma 2.2. Pick’s identity has an additive character: we can always decompose P into the
union of two integral polygons P1 and P2 by joining two vertices of P with a line segment as
shown by figure 1.The validity of Pick’s identity for P follows from the validity of the Pick’s
identity for P1 and P2.

Denote the area, number of interior lattice points, and number of boundary lattice points
of Pk by Ak, Ik, and BK respectively, for k = 1, 2. Clearly,

A = A1 + A2.

Furthermore, if we denote the number of lattice points on the edge common to P1 and P2

by L, then

I = I1 + I2 + L− 2 and B = B1 +B2 − 2L+ 2.

Thus

I +
B

2
− 1 = I1 + I2 + L− 2 +

B1

2
+

B2

2
− L+ 1− 1.

= I1 +
B1

2
− 1 + I2 +

B2

2
− 1.

This proves the claim. Note that our proof also shows that the validity of Pick’s identity for
P1 follows from the validity of Pick’s identity for P and P2. Now, every convex polygon can
be decomposed into triangles that share a common vertex. Hence it suffices to prove Pick’s
theorem for triangles.
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Lemma 2.3. Pick’s theorem holds for all integral rectangles R whose sides are parallel to
the axes.

Proof. Let the width of R be w and the height of R be h. Then, without loss of generality
let the bottom-left vertex of R be (0, 0) and the top-right vertex of R be (w, h). So we have,

(2.1) A = wh.

The lattice points strictly inside R form a rectangular grid with bottom-left vertex (1, 1)
and top-right vertex (w − 1, h− 1), so we have,

(2.2) I = (w − 1)(h− 1).

The horizontal edges of R each have length w, so they contain w + 1 lattice points each.
Likewise, the vertical edges each have length h, so they contain h + 1 lattice points each.
This gives that,

(2.3) B = 2(w + 1) + 2(h+ 1)− 4 = 2w + 2h.

Putting together (2.1), (2.2), and (2.3) we have,

I +
B

2
− 1 = (w − 1)(h− 1) +

2w + 2h

2
− 1.

= wh− w − h+ 1 + w + h− 1

= wh = A.

■

Lemma 2.4. Pick’s theorem holds for all integral right triangles T whose legs are parallel
to the axes.

Proof. Let the legs of T have lengths w and h. Then, without loss of generality let the
vertices of T be (0, 0), (w, h), and (w, 0). Thus, we have,

(2.4) A =
wh

2
.

Let H be the number of lattice points on the hypotenuse of T .Then, if we use the same
definition of rectangle, we see that the number of internal lattice points of T is half the
number of internal lattice points of R that do not lie on the hypotenuse of T . Thus, with 2
accounting for vertices,

(2.5) I =
(w − 1)(h− 1)−H + 2

2
.

For the boundary, the horizontal and vertical legs contain w + 1 and h + 1 lattice points,
respectively. The hypotenuse contains H lattice points. Subtracting 3 to account for the
vertices gives,

(2.6) B == (w + 1) + (h+ 1) +H − 3 = w + h+H − 1.
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Putting together (2.4), (2.5), and (2.6) we have,

I +
B

2
− 1 =

(w − 1)(h− 1)−H + 2

2
+

w + h+H − 1

2
− 1.

=
wh− w − h+ 1 + w + h− 1

2
.

=
wh

2
= A.

■

Thus, with the above three lemmas, we can piece together the proof of Pick’s theorem.
We now go on to derive the general form of the lattice-point enumerator for all convex

polytopes using Pick’s theorem.

Theorem 2.5. Given a convex integral polygon P , let its area be A and let the number of
lattice points on its boundary be B. Then,

Lp(t) = At2 + B
2
t+ 1.

Proof. Consider tP , the scaling of P to its t dilate. Let its area be At, the number of lattice
points in its interior be It and those on its boundary be Bt. We have,

(2.7) Lp(t) = It +Bt.

Since tP is P under a dilation by a factor of t, we have that the area increases by a factor
of t2. This gives,

(2.8) At = At2.

Thus to finish, Pick’s theorem combined with (2.7) and (2.8) gives,

At = It +
Bt

2
− 1.

At = It +Bt −
Bt

2
− 1.

At = Lp(t)−
Bt

2
− 1.

Lp(t) = At +
Bt

2
+ 1.

Lp(t) = At2 +
B

2
t+ 1.

■

3. Description of Polytopes

In this paper, we will only discuss convex polytopes. The two different ways to define
convex polytopes are the vertex description and the hyperplane description.

Definition 3.1. Using the vertex description, a convex polytope P ∈ Rd is the convex hull
of a finite set of points {v1, v2, . . . , vn} in Rd. You cane imagine this by film wrapping around
the vertices of a polytope, then the region enclosed by the film is the polytope’s convex hull.
We denote the convex hull of P by P = conv{v1, v2, . . . , vn}.To be precise polytope P is the
smallest convex set containing those points; that is,
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P = {λ1v1 + λ2v2 · · ·+ λnvn : all λk >= 0 and λ1 + λ2 + · · ·+ λn = 1}.

Definition 3.2. If we instead use the hyperplane description, a convex polytope P ∈ Rd is
the bounded intersection of finitely many d-dimensional half spaces and (d− 1)-dimensional
hyperplanes. A hyperplane H ∈ Rd is a (d − 1) dimensional subspace of a d-dimensional
space. A half-space H ⊂ Rd is the part of a d-dimensional space that lies on a given side
of a (d− 1)-dimensional hyperplane. We call a hyperplane H a supporting hyperplane of a
polytope P if P is completely contained in one of the two half spaces H1 and H2 bounded
by H such that P ∈ H1 or P ∈ H2. For some, some a ∈ Rd and some constant b.

H := {x ∈ R : a.x ≥ b} or H := {x ∈ R : a.x ≤ b}.

The fact that every polytope has both vertex and hyperplane description which are equiv-
alent is highly nontrivial both conceptually and algorithmically.

Definition 3.3. The dimension of the P is the dimension of the affine space spanned by P .

span P := {x+ λ(y − x) : x, y ∈ P, λ ∈ R}.

The face of a d-dimensional polytope can have any dimensionality less than or equal to d.
In particular, the (d−1)-dimensional faces are called facets, the 1-dimensional (line segment)
faces are called edges, and the 0-dimensional (point) faces are called vertices. A convex d-
polytope has at least (d + 1) vertices. A convex d-polytope with exactly (d + 1) vertices is
called a d-simplex. Also, note that Ehrhart theory is concerned with polytopes with integer
or rational vertices i.e a rational polytope.

4. Lattice Point Enumeration

Lattice point enumerators-Ehrhart theory deals with computing the discrete volume
of a polytope by counting the number of its integer lattice points. We are interested in how
the number of lattice points differs as P is scaled up.

Definition 4.1. For a positive integer t, the tth dilate of P ∈ Rd is tP , and

tP = {(tx1, tx2, · · · , txd) : (x1, x2, · · · , xd) ∈ P}.

Definition 4.2. The lattice point enumerator of P ∈ Rd, which counts lattice points inside
tP when evaluated at t is,

Lp(t) = |tP ∩ Zd|.
We can think of this in another way as leaving P fixed and shrinking the integer lattice that
is,

Lp(t) = |P ∩ 1
t
Zd|.

The value of Lp(t) is called the discrete volume of tP .

Definition 4.3. The Ehrhart series is another important tool for analyzing a polytope P .
It is the generating function of the lattice point enumerator of P and can be defined as,

Ehrp(z) = 1 +
∑
t≥1

Lp(t)z
t

Ehrp(z) =
∑
t>=0

Lp(t)z
t.

Note -The generating function for x1 + x2 + · · ·+ xd+1 is,
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Figure 2. 6th dilate of unit-cube

(1 + z + z2 + · · · )d+1 = 1
(1−z)d+1 .

The coefficient of zk in this generating function, when expanded fully, equals the number of
ways to choose non-negative integers x1, x2, . . . , xd+1 such that x1 + x2 + · · ·+ xd+1 = k. We
will be using this generating function for lattice-point enumeration of a standard simplex.

5. Unit D-Cube

We first begin with lattice point enumeration of unit d-cube:=[0, 1]d which is a generali-
sation of the 2-D unit square and 3-D unit cube. Denoted by , it is the is the polytope
whose vertices are all of the points in Rd such that every coordinate is either 0 or 1:

= conv{(x1, x2, . . . , xd) ∈ Rd : xi = 0 or 1 for 1 <= i <= d}.
= {(x1, x2, . . . , xd) ∈ Rd : 0 <= xi <= 1 for 1 <= i <= d}.

The interior of the unit d-cube is,

= {(x1, x2, · · · , xd) ∈ Rd : 0 < xi < 1 for 1 <= i <= d}.

Theorem 5.1. The lattice-point enumerator of unit-d cube is,

L (t) = (t+ 1)d =
∑d

k=0

(
d
k

)
tk

and the lattice-point enumerator of the interior unit-d cube is,

= (t− 1)d.

Proof. A given lattice point (x1, x2, · · · , xd) can have xi = 0, 1, · · · , t. Thus, since each of
the d coordinates had t+ 1 possible values, L (t) = (t+ 1)d. ■

The Ehrhart series of the unit-d cube takes a special form as it can be expressed in terms of
the Eulerian number A(d, k)

Definition 5.2. The Euelerian number A(d, k) can be defined as the number of ways to
arrange numbers from 0 to d such that k numbers are greater than the previous number.
The generating function for A(d, k) is,∑

j>=0 j
dzj =

∑d
k=0

A(d,k)zk

(1−z)(d+1)
.
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Figure 3. 3-D standard simplex

We can now express Ehrhart series of in terms of Eulerian numbers:

Ehr = 1 +
∑
t>=1

(t+ 1)dzt =
∑
t>=0

(t+ 1)dzt.

=
1

z

∑
t>=1

tdzt.

=
d∑

k=1

A(d, k)zk

(1− z)d+1
.

The Eulerian numbers have many fascinating properties like A(d, k) = A(d, d+1− k) which
provide different ways of computing Ehrhart series of .

6. The Standard Simplex

Definition 6.1. The standard simplex denoted by △ in dimension d is the convex hull of
(d + 1) points e1, e2, · · · , ed and the origin. Here is ej is unit vector with a 1 in the jth

position while the rest are 0 vectors.

△={(x1, x2, · · · , xd) ∈ Rd : x1 + x2 + · · ·+ xd ≤ 1 and all xk ≥ 0}.
The t dilate of the standard simplex is given by,

t△={(x1, x2, · · · , xd) ∈ Rd : x1 + x2 + · · ·+ xd <= t and all xk >= 0}.
To compute the discrete volume of △ we use a counting function as we are trying to count
all integer solutions {(m1,m2, . . . ,md) ∈ Zd and (m1,m2, . . . ,md) ≥ 0} to,

m1 +m2 + · · ·+md ≤ t.

To translate this inequality in d variables to an equality d+1 variables, we introduce a slack
variable md+1, such that md+1 ∈ Zd and md+1 ≥ 0. Thus,

m1 +m2 + · · ·+md+1 = t.

The counting function is,

t ∈ Zd = const

( ∑
m1>=0

zm1

)( ∑
m2>=0

zm2

)
· · ·

 ∑
md+1>=0

zmd+1

 z−t

 .

= const(
1

(1− z)d+1zt
).
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Thus, we have proved that the Ehrhart series of △ is Ehr△(z) =
1

(1−z)d+1 .

Using the binomial series we get,
1

(1−z)d+1 =
∑

k≥0

(
d
k

)
zk.

Thus, we have proved that the lattice point enumerator of△ is the polynomial L△(t) =
(
d+t
d

)
.

Incidentally L△(t) has an alternative life in traditional combinatorics as shown below.

Definition 6.2. A Sterling number denoted by s(n.k) is the number of ways to partition
a set of n elements into k non-empty sets. The uniqueness of these numbers is that they
are the first of the kind to be denoted as the coefficients in expansions of falling and rising
factorials.

L△(t) can be expressed in terms of the Sterling numbers in a unique way as,

△ = 1
d!

∑d
k=0(−1)d−kstirl(d+ 1, k + 1)tk.

7. Bernoulli polynomials as Lattice Point Enumerators of Pyramids

We will explore the fascinating connection between Bernoulli polynomials and certain
pyramids over unit cubes.

Definition 7.1. TheBernoulli polynomials named after Jacob Bernoulli, combine Bernoulli
numbers and Binomial coefficients and are useful for series expansion of functions.The
Bernoulli polynomials Bn can be defined by the generating function,

zexz

ez−1
=
∑

k≥0
Bk(x)
k!

zk.

The Bernoulli numbers are Bk := Bk(0) and have generating function,
zexz

ez−1
=
∑

k≥0
Bk

k!
zk.

Theorem 7.2. For integers d >= 1 and n >= 2,∑n−1
k=0 k

d − 1 = 1
d
(Bd(n)−Bd).

This can be proved using the generating functions defined above.

For a polytope Q ∈ Rd−1 with vertices v1, v2, . . . , vm we define Pyr(Q) as the convex hull of
(v1, 0), (v2, 0), . . . , vm, (0, 0, . . . , 1). Given below is an example of the unit-cube.

A (d− 1) dimensional unit cube when embedded in Rd forms a d dimensional pyramid by
adjoining one more vertex at (0, 0, . . . , 1). This geometric object has the given hyperplane
description,

P = {(x1, x2, . . . , xd) ∈ Rd : 0 <= x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1}.
Thus, pyramid P is contained in the unit cube and its vertices are a subset of the vertices
of the cube.

Lattice-point enumeration in integer dilates of P . The number of lattice points inside
P is given by,

{(m1,m2, . . . ,md) ∈ Zd : 0 ≤ mk ≤ t−md ≤ t for k = 1, 2, . . . , d− 1}.
When counting the solutions to 0 ≤ mk ≤ t−md ≤ t, once we have chosen md from 0 to t,
we have t−md+1 independent choices for each of the integers m1,m2, . . . ,md−1. The lattice
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Figure 4. Lattice point enumeration of tPyr(Q)

point enumerator of P is the total number of solutions to the counting function. Thus,

Lp(t) =
t∑

md=0

(t−md + 1)d−1 =
t+1∑
k=1

kd−1.

=
1

d
(Bd(t+ 2)−Bd).

Theorem 7.3. the number of integer lattice points in tPyr(Q) is by construction,

LPyr(Q)(t) = 1 + LQ(1) + LQ(2) + · · ·+ LQ(t).

= 1 +
t∑

j=1

LQ(j).

Proof. This is because there is one lattice point in which xd coordinate is t which is a vertice,
LQ(1) lattice points with xd coordinate as (t− 1), LQ(2) lattice points with xd coordinate as
(t−2) up to LQ(t) lattice points with xd = 0 as these are the lattice points for the cube. ■

Theorem 6.3 allows us to compute the Ehrhart series of Pyr(Q) from the Ehrhart series
of Q:

Theorem 7.4. EhrPyr(Q)(z) =
EhrQ(z)

1−z

Proof.

EhrPyr(Q)(z) = 1 +
∑
t≥1

LPyr(Q)(t)z
t = 1 +

∑
t≥1

(1 +
t∑

j=1

LQ(j))z
t.

=
∑
t≥0

zt +
∑
t≥1

t∑
j=1

LQ(j)z
t =

1

1− z
+
∑
j≥1

LQ(j)
∑
t≥j

zt.

=
1

1− z
+
∑
j≥1

LQ(j)
zj

1− z
=

1 +
∑

j≥1 LQ(j)z
j

1− z
.

■

The pyramid was constructed over the unit (d − 1)cube. Thus, using Ehrhart series of
unit-cube in terms of Eulerian numbers, Ehrhart series of pyramid is-

Ehrp(z) =
1

1−z

∑d
k=1

A(d−1,k)zk−1

(1−z)d
=
∑d

k=1
A(d−1,k)zk−1

(1−z)d+1 .
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Figure 5. 3-D cross polytope

8. Lattice-point enumeration of Cross-polytopes

Definition 8.1. A cross polytope denoted by Rd is also known as orthoplex and is sym-
metric about the origin. Its vertices are the d unit vectors e1, e2, . . . , ed and their negatives.
Its hyperplane description is-

:= {(x1, x2, . . . , xd) ∈ Rd : |x1|+ |x2|+ · · ·+ |xd| ≤ 1}.

Figure 5 is a 3 dimensional octahedron.Its vertices are (±1, 0, . . . , 0), (0,±1, . . . , 0), . . . , (0, 0, . . . ,±1).
A 2-D cross poltyope is always a square, 3-D a regular octahedron ans 4-D a 16 cell. A
cross-polytope’s facets are simplexes of previous dimension while its vertex figure is (d− 1)
dimensional cross-poltyope.

To compute the discrete volume of a cross polytope we use a method similar to that used
in section 6. To do this, we define a d dimensional cross-polytope as the bipyramid over a
(d − 1) dimensional cross polytope Q with vertices v1, v2, . . . , vm such that Q contains the
origin.We define BiPyr(Q), the bipyramid over Q as-

conv{(v1, 0), (v2, 0), . . . , (vm, 0), (0, . . . , 0, 1) and (0, . . . , 0,−1)

Thus, the number of lattice points in tBiPyr(Q) is by construction,

LBiPyr(Q)(t) = 2 + 2LQ(1) + 2LQ(2) + · · ·+ 2LQ(t− 1) + LQ(t).

= 2 + 2
t−1∑
j=1

LQ(j) + LQ(t).

The proof of this identity is similar to the one used for pyramids.

Theorem 8.2. If Q contains the origin, then EhrBiPyr(Q)(z) = 1+z
1−z

EhrQ(z). The cross

poltyope in dimension 0 is the origin with Ehrhart series 1
(1−z)

. Thus, the higher dimensional

cross polytopes can be computed recursively by the formula-

Ehr (z) = (1+z)d

(1−z)d+1 .

Theorem 8.3. The lattice-point enumerator of a d-dimension cross polytope is,

L (t) =
∑d

k=0

(
d
k

)(
t−k+d

d

)
for all t ≥ 1.

The proof of 8.3 follows from its Ehrhart series.
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Proof. Since, Ehr (z) = 1+
∑

t≥1 L (t)zt, we can retrieve L by expanding Ehr (z) into a
power series with z = 0.

Ehr (z) =
(1 + z)d

(1− z)d+1
=

∑d
k=0

(
d
k

)
zk

(1− z)d+1

=
d∑

k=0

(
d

k

)
zk
∑
t≥0

(
t+ d

d

)
zt.

=
d∑

k=0

(
d

k

)∑
t≥k

(
t− k + d

d

)
zt.

Using the fact that
(
t−k+d

d

)
= 0 for 0 ≤ t < k we get,

Ehr (z) =
∑

t≥0

∑d
k=0

(
d
k

)(
t−k+d

d

)
zt.

Hence,L (t) =
∑d

k=0

(
d
k

)(
t−k+d

d

)
. ■

The counting function of cross polytopes bears a connection to the Laugerre polynomials
and the Riemann hypothesis.

9. Euler’s generating function for Rational Polytopes

We used a counting function for lattice-point enumeration of a standard simplex. We
now set up a generating function which can be used for the lattice-point enumerator of any
arbitary rational polytope.Such a polytope is given by its hyperplane description, an intersec-
tion of half-spaces given by inequalities. We can change this into an equality by introducing
a slack variable as we did for the standard simplex. Furthermore, by translation we can
assume the polytope has positive coordinates. We can describe every rational polytope P as
with some integral matrix A ∈ Zmd and some integer vector b ∈ Zm,

P = {x ∈ Rd : Ax = b}
Hence, lattice-point enumerator of tP is the counting function,

LP (t) = {x ∈ Zd : Ax = tb}

Theorem 9.1. Euler’s generating function- The lattice-point enumerator of a rational
polytope P can be computed by,

LP (t) = const
(

1
(1−ze1 )(1−ze2 )···(1−zed )ztb

)
We can show this by an example.

Example 9.2. Let P have vertices (0, 0), (2, 0), (1, 1) and (0, 3
2
). Then,

LP (t) =
{
(x1, x2) ∈ Z2 : x1, x2 ≥ 0, x1 + 2x2,≤ 3t, x1 + x2,≤ 2t

}
.

=
{
(x1, x2, x3, x4) ∈ Z4 : x1, x2, x3, x4 ≥ 0, x1 + 2x2 + x3 = 3t, x1 + x2 + x4 = 2t

}
.

The counting function of P is,

f(z1, z2) :=
1

(1−z1z2)(1−z21z2)(1−z1)(1−z2)z3t1 z2t2
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The geometric series of this equals,

f(z1, z2) : =

∑
n1≥0

(z1, z2)
n)

∑
n1≥0

(z1
2, z2)

n)

(∑
n3≥0

z1
n3

)(∑
n4≥0

z1
n4

1

z13tz22t

)
.

=
∑

n1,...,n4≥0

z1
n1+2n2+n3−3tz2

n1+n2+n4−2t

The number of lattice points is equal to the number of solutions to (n1, n2, n3, n4) ∈ Z4
≥0.

That is,

Thus,

LP (t) = const
(

1
(1−z1z2)(1−z12z2)(1−z1)(1−z2)z13tz22t

)
10. Introducing Cones and Integer-Point Transform

The Ehrhart polynomial of an integral polytope encodes the relationship between its vol-
ume and the number of lattice points contained in it. The important question is why the
lattice-point enumerator of a polytope is always an Ehrhart polynomial in the first place.
The proof of the theorem below provides a precise answer. This fundamental theorem was
proved in 1962 by the French mathematician Eugene Ehrhart who made extensive contribu-
tions to lattice-point enumeration. Thus, the Ehrhart polynomial and Ehrhart theory are
named in his honour.

Theorem 10.1. Ehrhart’s theorem- Given a convex integral polytope P ∈ Rd, the lattice-
point enumerator LP (t) of P is a rational polynomial in t of degree d which we call the Ehrhart
polynomial.

LP (t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0.

Since most proofs work like a charm for a simplex, we first dissect a polytope into simplices.

Definition 10.2. The triangulation of a convex polytope P ∈ Rd is the finite collection T
of (d− 1) simplices such that,

P =
⋃

△∈T △.

△1∩ △2 is a face common of △1 and △2 for every △1, △2 ∈ T .

Theorem 10.3. Given a convex polytope P ∈ Rd it is always possible to triangulate P using
no new vertices.

This can be proved by lifting P into Rd+1. Refer to [DLRS10] for a compete proof of this
theorem and further study of triangulations which is an active area of research.

Now we introduce the concept of cones and coning.

Definition 10.4. A cone K in Rd is a set of points of the form-

k = {v + λ1w1 + λ1w2 + · · ·+ λmwm : λ1 + λ2 + · · ·+ λm ≥ 0}.
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Figure 6. tiling a cone

where v, w1, w2, . . . , vn ∈ Rd and there exists some hyperplane H such that H ∩ K = {b}.
v is the vertex of K and wi are its generators. If K is of dimension d, we call it a d-cone.
The d-cone k is simplicial if k has precisely d linearly independent generators. Cone are
important for us for the process coning over a polytope.

Definition 10.5. Let P ∈ Rd be a convex polytope with vertices v1, v2, . . . , vn. We lift these
vertices in Rd+1 by adding 1 as their last coordinate. So let,

w1 = (v1, 1), w2 = (v2, 1), . . . , wn = (vn, 1)

Now we define the cone over P as,

cone(P ) = {λ1w1 + λ2w2 + · · ·+ λnwn : λ1, λ2, . . . , λn ≥ 0} ∈ Rd+1.

This pointed cone has the origin as the vertex and we can recover our original polytope P
by cutting the cone with hyperplane xd+1 = 1. Note that like triangulation of a polytope, a
cone can be triangulated into simplicial cones using no new generators.

Definition 10.6. Integer-Point Transforms for Rational Cones- Let S be a rational
cone or polytope with S ∈ Rd. Then its integer point transform is a multivariate generating
function which encodes the information contained by the lattice points in S. The generating
function σS is,

σS(z) = σS(z1, z2, . . . , zd).

:=
∑

m∈S∩Zd

zm, where zm = Πd
i=1zi

di .

Thus, the generating function σS simply lists all integer points in S in a special form as a
formal sum of Laurent monomials.

Example 10.7. Consider a 1-dimensional cone K = [0,∞). Its integer-point transform is,

σS(z) =
∑

m∈[0,∞)∩Z z
m = 1

(1−z)
.

Example 10.8. To understand obtaining the integer-point transform of a cone K by tiling,
we consider the 2-dimensional in figure 6 given by-

k := {λ1(1, 1) + λ2(−2, 3) : λ1, λ2 ≥ 0} ∈ Rd.

We tile K by covering it entirely with translates of the fundamental parallelogram Π-

Π := {λ1(1, 1) + λ2(−2, 3) : 0 ≤ λ1, λ2 < 1} ∈ Rd.

We first list all vertices of translates of Π using the geometric series with (j, k ≥ 0) -
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m=j(1,1)+k(−2,3) z

m = 1
(1−z1z2)(1−z1−2z23)

.

Let (m,n) range over Π ∩ Z2 = {(0, 0), (0, 1), (0, 2), (−1, 2), (−1, 3) which are the lattice
points in the interior of Π. Using (m,n) we generate all lattice points in K apart from its
vertices by,

L(m,n) := {(m,n) + j(1, 1) + k(−2, 3) : j, k ∈ Z≥0}
So, K is union of L(m,n) and all vertices. Hence,

σK(z) = (1 + z2 + z2
2 + z1

−1z2
2 + z1

−1z2
3)

∑
m=j(1,1)+k(−2,3)

zm.

=
(1 + z2 + z2

2 + z1
−1z2

2 + z1
−1z2

3)

(1− z1z2)(1− z1−2z23)
.

Theorem 10.9. Let K be an integral simplicial d-cone with generators w1, w2, . . . , wd. Then
for some v ∈ Rd, the integer point transform of v + k is,

σv+k(z) =
σv+Π(z)

(1−zw1 )(1−zw2 )···(1−zwd )
.

where Π is the fundamental parallelpiped of K with hyperplane description as defined in
above example.

Proof. Let m ∈ (v + k) ∩ Zd be a lattice point in (v + k). By definition, we have,

(10.1) m = v + λ1w1 ++λ2w2 + · · ·++λdwd.

For some unique λ1, λ1, . . . , λd ≥ 0. We now decompose each λ1 into its integer and fractional
parts by letting λi = [λi] + {λi} for all i with [λi] as integral and {λi} as fractional.Then
(10.1) becomes,

(10.2) m = (v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd) + ([λ1]w1 + [λ2]w2 + · · ·+ [λd]wd).

We can define p as the fractional part by,

p = v + {λ1}w1 + {λ2}w2 + · · ·+ {λd}wd.

p ∈ (v +Π) ∩ Zd sine {λ1} < 1 for all i. We can thus rewrite (10.2) as,

(10.3) m = p+ k1w1 + k2w2 + · · ·+ kdwd.

For some unique k1, k2, . . . , kd ∈ Z≥0. Thus, the generating function we have whose coeffi-
cients are all m ∈ (v + k) ∩ Zd is, ∑

p∈(v+Π)∩Zd

zp

(∑
k1≥0

zk1w1

)
· · ·

(∑
kd≥0

zkdwd

)
= σv+Π(z)

(
1

1− zw1

)
· · ·
(

1

1− zwd

)
.

=
σv+Π(z)

(1− zw1)(1− zw2) · · · (1− zwd)
.

■

To complete the puzzle, we need this last theorem before we can prove Ehrhart’s theorem.

Theorem 10.10. For a convex integral polytope P ∈ Rd, its Ehrhart series can be written
as,

EhrP (z) = σcone(P )(1, 1, . . . , 1, zd+1).



DISCRETE VOLUME OF LATTICE POLYTOPES 15

Proof. We first create cone(P ) which is the cone over P . As mentioned before, the inter-
section of cone(P ) and the hyperplane xd+1 = 1 is P itself. So, as a generalization, the
intersection of cone(P ) and the hyperplane xd+1 = t for some positive integer t is tP . Thus,
we can decompose P into layers such that each layer is the intersection of P and hyperplane
of form xd+1 = t. Thus, we can rewrite σcone(P ) in terms of the layers σtP ’s as,

σcone(P )(z1, z2, . . . , zd+1) = 1 + σP (z1, z2, . . . , zd)zd+1 + σP2(z1, z2, . . . , zd)z
2
d+1 + · · ·

= 1 +
∑
t≥1

σtP (z1, z2, . . . , zd)z
t
d+1.

The 1 terms corresponds to the origin for z0d+1. Using the fact that, σP (1, 1, . . . , 1) = |P ∩
Zd| = LP (1) which is the lattice-point enumerator of P , this gives,

σcone(P )(1, 1, . . . , 1, zd+1) = 1 +
∑
t≥1

σtP (z1, z2, . . . , zd)z
t
d+1.

= 1 +
∑
t≥1

LP (t)z
t
d+1.

= EhrP (zd+1).

■

11. Main Results of Ehrhart theory

Now we are ready to prove Ehrhart’s theorem. Since, every convex polytope P ∈ Rd

can be triangulated into simplices, we can simply count lattice points in simplices and use
inclusion-exclusion to address double-counting. Thus, it suffices to prove Ehrhart theory for
simplices.

Lemma 11.1. If ∑
t≥0 f(t)z

t = g(z)
(1−z)d+1 .

Then f is a polynomial of degree d if and only if-

(1) deg g ≤ d.
(2) g(1) ̸= 0.

By this lemma, it suffices to prove that,

(11.1) Ehr△(z) =
g(z)

(1− z)d+1
.

for some simplex △ ∈ Rd where g has degree at most d and g(1) ̸= 0. Since △ is a
d−simplex, it has exactly d + 1 vertices which we can denote by v1, v2, . . . , vd+1. Thus,
cone(△) is simplicial as it will have d+1 generators denoted by w1, w2, . . . , wd. By theorem
10 we have,

(11.2) σcone(P )(z) =
σΠ(z)

(1− zw1)(1− zw2) · · · (1− zwd+1)
.

Now if we let z = (1, 1, . . . , 1, zd+1) and have wi = (vi, 1) = (vi,1, vi,2, . . . , vi,d, 1) we get that
zwi = (1vi,1)(1vi,2) · · · (1vi,d)(z1d+1) = zd+1. Thus, equation 11.1 becomes,
(11.3)

σcone(△)(1, 1, . . . , 1, zd+1) =
σΠ(1, 1, . . . , 1, zd+1)

(1− zd+1)(1− zd+1) · · · (1− zd+1)
=

σΠ(1, 1, . . . , 1, zd+1)

(1− zd+1)d+1
.
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Now since equation 11.3 and equation 11.1 have the same form, it remains to prove that
σΠ(1, 1, . . . , 1, zd+1) is a polynomial of degree at most d and σΠ(1, 1, . . . , 1, 1) ̸= 0. The latter
is obvious since,

σΠ(1, 1, . . . , 1, 1) = |Π ∩ Zd+1|. and Π contains the origin so LΠ(1) can have min value=1.

Now to prove the former, we recall the definition of integer-point transform which is,

σS(z) =
∑

m∈S∩Zd zm.

We can now substitute S as Π, z = (1, 1, . . . , zd+1) and m as (m1,m2, . . . ,md+1), so we get,

σΠ(1, 1, . . . , 1, zd+1) =
∑

m∈S∩Zd

(1, 1, . . . , 1, zd+1)
(m1,m2,...,md+1).

=
∑

m∈S∩Zd

(1m1)(1m2) · · · (1md)(z
md+1

d+1 ).

=
∑

m∈S∩Zd

(z
md+1

d+1 ).

Thus, it remains to prove that md+1 ≤ d for every m ∈ Π ∩ Zd. Recalling the definition of
the fundamental parallelpiped we have,

Π = {λ1w1 + λ1w1 + · · ·+ λd+1wd+1 : 0 ≤ λi < 1 for 1 ≤ i ≤ d+ 1}.
Since, wi = (vi, 1) for all i for all m = m1,m2, . . . ,md+1 ∈ Π ∩ Zd we have,

md+1 = λ1 + λ2 + · · ·+ λd+1.

Since, for all i 0 ≤ λi < 1,

md+1 < 1 + 1 + · · ·+ 1 = d+ 1.

Since, m is an integer its max value is d. Thus, the max degree of σΠ(1, 1, . . . , 1, zd+1) is d.
Thus, finally we have proved Ehrhart’s theorem.

Ehrhart Series of an Integeral Polytope- We now build the proof of Ehrhart’s the-
orem further by studying the polynomial σΠ(1, 1, . . . , 1, zd+1) to express Ehrhart series in an
alternative form.

Corollary 11.2. Suppose △ is an integeral d-simplex with vertices v1, v2, . . . , vd+1 and let
wj = (vj, 1). Then,

Ehr△(z) = 1 +
∑

t≥1 L△(t)z
t =

h∗
dz

d+h∗
d−1z

d−1+···+h∗
1z+h∗

0

(1−z)d+1 .

where h∗
k equals the number of lattice points with last coordinate k. This is because the

coefficient of zkd+1 simply counts the integer points in the parallelpiped Π cut with the hy-
perplane xd+1 = k. This result can be used to compute Ehr△ of an integral simplex △ very
quickly.
Stanley’s non-negativity theorem shows that h∗

0, h
∗
1, . . . , h

∗
d are non-negative integers. A

full proof can be found in [BD08]. You can also explore an extension of Stanley’s theorem
in weighted Ehrhart theory in [BDDL+23].

We now present a formula for extracting the Ehrhart polynomial of P from its Ehrhart
series as defined above.

Lemma 11.3. Suppose P is an integral convex d− polytope with Ehrhart series-
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Ehr△(z) = 1 +
∑

t≥1 L△(t)z
t =

h∗
dz

d+h∗
d−1z

d−1+···+h∗
1z+h∗

0

(1−z)d+1 .

Then,

LP (t) =
(
t+d
d

)
+ h∗

1

(
t+d−1

d

)
+ · · ·+ h∗

d−1

(
t+1
d

)
+ h∗

d

(
t
d

)
.

The proof of this follows binomial expansion and can be found at [BR07].

Lastly in this section, we shall describe a theorem which beautifully connects the number
of integer lattice points in a convex polytope and those which are strictly inside the polytope.

Theorem 11.4. Ehrhart Macdonald Reciprocity- Given a convex polytope P ∈ Rd,
evaluating LP (t) at negative integers yields,

LP (−t) = (−1)dLP ◦(t).

Recalling, lattice-point enumeration of the unit d cube and its interior:

L
d
(t) = (t+ 1)d.

L ◦
d
(t) = (t− 1)d.

Using Ehrhart-Macdonald Reciprocity, we can find L ◦
d
(t) directly from L

d
(t) by evaluating

L
d
(t) at negative integers. This gives,

L
d
(−t) = (−1)dL ◦

d
(t).

L ◦
d
(t) = (−1)d.L

d
(−t).

L ◦
d
(t) = (−1)d.(−t+ 1)d.

L ◦
d
(t) = (t− 1)d.

A full proof of this theorem can be found at [Mac71] and an alternate proof can be found
at [Sam09].

12. Interpreting coefficients of Ehrhart polynomial

It turns out that the coefficients of the Ehrhart polynomial encode some very important
information. We aim to decode some of them here.

From Discrete to Continuous volume- We start by presenting a very important theo-
rem which decodes the leading coefficient of an Ehrhart polynomial. The theorem provides
a fundamental connection between the discrete and continuous volume of a polytope by
enabling us to calculate a polytope’s continuous volume from its Ehrhart polynomial.

Theorem 12.1. For a given convex integral polytope P ∈ Rd let its Ehrhart polynomial as
defined above be,

LP (t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0. Then cd equals the volume of P .

Proof. In higher dimensions, the volume of a polytope P ∈ Rd denoted by volP can be
computed by approximating P with d-dimensional boxes that get smaller and smaller. To
be precise, if we take the boxes with side length 1/t then each have volume 1/td. We might
further think of the boxes as filling out the space between lattice points in the lattice 1

t
Zd.

Thus, if we take the limit as the side length of the d-dimensional approaches 0, we reach the
precise value of the continuous volume of P . This is equivalent to counting the number of
lattice points inside P on with a smaller and smaller lattice. As such,we can define,

volP := limt→∞
1
td
|P ∩ (1

t
Z)d|.
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Since shrinking the lattice by a factor of t is equivalent to expanding P by a factor of t, we
can rewrite this definition as,

volP := limt→∞
1
td
|tP ∩ Zd| = limt→∞

1
td
LP (t).

We now have,

volP = lim
t→∞

cdt
d + cd−1t

d−1 + · · ·+ c1t+ 1

td
.

= lim
t→∞

(cd + cd−1t
−1 + · · ·+ c1t

−d+1 + t−d).

= cd.

■

We will now briefly examine the second leading coefficient of the Ehrhart polynomial.

Theorem 12.2. Suppose LP (t) = cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0 is the Ehrhart polynomial
of an integral polytope P . Then,

cd−1 =
1
2

∑
FfacetofP vol(F ).

This theorem establishes the relationship between the second leading coefficient cd−1 of
Ehrhart polynomial of P and leading coefficients of the Ehrhart polynomials of the facets of
P . The proof of this theorem involves using the Dehn-Somerville relations.

The constant term c0 of the Ehrhart polynomial is the Euler characteristic of P and is
equal to 1. The reader may wonder if the middle coefficients of the Ehrhart polynomial
can be decoded as well. These coefficients are much more mysterious and an active area of
research.

13. Interpolation

We know use the polynomial behavior of LP of an integral polytope P to compute the
continuous volume volP and the discrete volume LP from a finite data. A degree-d poly-
nomial is uniquely determined by d + 1 distinct points. Interpolation involves finding the
lattice-point counts for dilates 0 to n which uniquely gives the Ehrhart polynomial of P for
all dilates. It is is a useful tool in Ehrhart theory because it can be simpler to just enumerate
the first few dilates of a polytope then to find some general formula. In case of an Ehrhart
polynomial LP (t), the interpolation equation is-

LP (x1)− 1
LP (x1)− 1

...
LP (xd)− 1

 =


xd
1 xd−1

1 · · · x1

xd
2 xd−1

2 · · · x2
...

...
...

xd
d xd−1

d · · · xd

 =


cd
cd−1
...
c1


Example 13.1. Reeve’s tetrahedron- Let Th be a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)and
(1, 1, h) where h is a positive integer.

To interpolate the Ehrhart polynomial LTh
(t) from its values at various points we deduce

the following,

4 = LTh
(1) = vol(Th) + c2 + c1 + 1.

9 = LTh
(2) = vol(Th).2

3 + c2.2
2 + c1.2 + 1.
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Using the volume formula for a pyramid we know that,

vol(Th) =
1
3
(base area)(height) = h

6
.

So, h+ 1 = h2c2 − 1 which gives c2 = 1 and c1 = 2− h
6
. Thus,

LTh
= h

6
t3 + t2 + (2− h

6
)t+ 1.

14. Extended Ehrhart theory and Quasipolynomials

The central theorem of this paper, theorem 10.1 was based on the Ehrhart polynomial of
an integral polytope.In this section, we will give an extension of this theorem to study the
lattice-point enumerator of rational polytopes which surprisingly turns out to be quasipoly-
nomial.

Definition 14.1. Quasi-polynomial- The coefficients of a quasi-polynomial are periodic
functions with an integral period. Thus, we define a quasipolynomial Q an expression of the
form,

Q(t) = cn(t)t
n + · · ·+ c1(t)t+ c0(t).

where c0, . . . , cn are periodic functions in t. The degree of Q is n and the least common
period of c0, . . . , cn is the period of Q. Alternatively, for a quasipolynomial Q, there exists a
positive integer k and polynomials p0, p1, . . . , pk−1 such that,

Q(t) =


p0(t) if t = 0 mod k
p1(t) if t = 1 mod k
...

pk−1(t) if t = k − 1 mod k


The minimal suck K is the period of Q and for this minimal k, polynomials p0, p1, . . . , pk−1

are the constituents of Q.

Example 14.2. Consider the quasipolynomial Q(x) = 5n3 + [1
2
, 2, 1

3
]nn

2 + [1, 2
3
]nn+ [3

5
, 4]n.

This is a quasi-polynomial of degree 3 and the period is the least common multiple of 1, 3, 2
and 2 which is 6.

Theorem 14.3. Ehrhart’s theorem for rational polytopes- If P is a convex rational
d-polytope, then LP (t) is a quasipolynomial in t of degree d. Its period divides the least
common multiple of the denominators of the coordinates of the vertices of P .

We will call the least common multiple of the denominators of the coordinates of the
vertices of P the denominator of P . A proof of this theorem in [MS05]. We can also prove
this theorem to be an extension of theorem 10.1 as the denominator of an integral polytope
P is always 1.

Example 14.4. We will now find the quasi-polynomial of a polytope P given by,

x ≥ 0
x ≤ n

3

The vertices of P are 0 and n
3
, thus the denominator of P is 3. Therefore, the general form

of the resulting quasi-polynomial should be,

LP (t) = αt+ [β1, β2, β3],

To determine α, β1, β2 and β3 one must know some initial values of the quasi-polynomial
which are the lattice-point enumerators for some dilates of P . We find that,
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t LP (t)
0 1
1 1
2 1
3 2

From lp(0) = 1 we can calculate β1 = 1. Thus, since LP (3) = 3α+β1 = 3α+1 = 2 → α =
1
3
.Solving the remaining two equations gives β2 =

2
3
and β3 =

1
3
. Thus, the quasi-polynomial

in t of degree 1 and period 3 is,

LP (t) =
1
3
t+ 1, 2

3
, 1
3
.

15. Ehrhart positivity

We now present an open field of research in Ehrhart theory-Ehrhart positivity. A convex
integral polytope P is said to have Ehrhart positivity if LP (t) has all positive coefficients.
This gives the central question of this field of research-

Question 15.1. Which faimilies of integeral polytopes have Ehrhart positivity?

This turns out to be a challenging question as even though multiple families of polytopes
have shown to be Ehrhart positive, the techniques involved are different. Since there is no
standard procedure for determining Ehrhart positivity, it continues to be a fascinating area
of research in Ehrhart theory.

Products of positive linear polynomials- We present families of polytopes which can
be shown to be Ehrhart positive using the following naive lemma.

Lemma 15.2. Suppose a polynomial f(t) is either

(1) a product of linear polynomials with positive coefficients, or
(2) a sum of products of linear polynomials with positive coefficients.

Then f(t) has positive coefficients. Using this lemma we can show the two simplest families
of polytopes-unit cubes and standard simplex to be Ehrhart positive.

Theorem 15.3. The unit d-cube is Ehrhart positive.

Proof. As proved in section 5, L (t) = (t + 1)d. Since, (t + 1) is a linear polynomial with
positive coefficients and d is a positive integer, (t+ 1)d has positive coefficients as well. ■

Theorem 15.4. The standard d-simplex is Ehrhart positive.

Proof. As proved in section 6, L (t) =
(
d+t
d

)
. . Thus, by the expansion of the binomial

coefficient we get, ■

(
d+ t

d

)
=

(d+ t)(d+ t− 1) · · · (t+ 1)

d!.t!
.

=
(d+ t)!

d!
.

Since d! is a positive constant and the numerator is also a product of linear polynomials with
positive coefficients,

(
d+t
d

)
written as a polynomial must have positive coefficients.
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There are many other classes of polytopes that are Ehrhart positive including the cross-
polytope; however, proving their positivity involves more complex methods. For an in-depth
study of Ehrhart positivity, refer to [Liu19]. A unique application of Ehrhart theory is in
the Voting theory.

16. Voting Paradox
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