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Abstract. Sieve methods are very useful tools to locate elements of a set and calculate
the cardinalities of sets. This paper will show many forms of sieve methods and their
applications in combinatorics. Most of the sieve methods are in conjunction with another
combinatorial method known as the Principle of Inclusion-Exclusion. This principle will
help us identify the usefulness of sieve methods and their applications, such as restricted
permutations, ferrers boards, and involutions.

1. Introduction

Sieve methods are an age-old mathematical technique used to “sieve” through sets, in
order to extract specific elements. Essentially, these sieves separate out the unwanted ele-
ments, extracting patterns and structures. Sieve methods are applicable in number theory,
cryptography, combinatorics, and even computer science. In this paper, we will discuss
predominantly the usefulness of sieve methods in (enumerative) combinatorics.

There are two main types of sieve methods:

(1) Approximating with an overcount and then subtracting off an overcounted approxi-
mation of our error, then overcounting this error, subtracting it off, and so on, until
we have a correct count of the objects. This method is essentially the Principle of
Inclusion-Exclusion.

(2) The elements of the larger set can be weighted, in such a way that unwanted elements
cancel out, leaving us with our original set.

This paper will focus on the first type, though we will touch upon the second type.
One of the most well-known, if not the most well-known sieve is the Sieve of Eratosthenes.

This is a method of finding the number of primes of a given set. The procedure for this
comes out to be something of this sort:

Suppose we have a list of numbers (1, 2, . . . , n). We want to find the number of prime
numbers in this list. We can do this in a systematic approach instead of testing out every
single number, which would take a considerable amount of time, especially for large n. Notice
that 1 is not a prime number, but 2 is (which we can find out through testing). Then, any
proper multiples (multiples that do not equal 2) of 2 cannot be prime. Therefore, we can
remove them from our list. The next number in our list that has not been crossed out must
be a prime number, and the (proper) multiples of this prime number may be crossed off as
well. We can continue this until we are left with our primes. This is the essence of the Sieve
of Eratosthenes.

Something to note is that when we are supposedly crossing out multiples of 2 primes p
and q, we are crossing the numbers which are multiples of both primes p and q twice. This
looks very much like a job for Inclusion-Exclusion.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 60

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 1. Sieve of Eratosthenes (1-100)

In this paper, we will explore sieve methods similar to the Sieve of Eratosthenes, which are
woven through the intricacies of the Principle of Inclusion-Exclusion. We will talk bout many
of the applications of the Principle of Inclusion-Exclusion. After going over some background,
we will explicitly state the Principle of Inclusion-Exclusion and then prove it. We will discuss
some simple examples of the use of the Principle of Inclusion-Exclusion, and then discuss
different combinatorial structures, which include ferrers boards and involutions. Finally, we
will branch into a more algebraic approach and show how the Principle of Inclusion-Exclusion
can be expressed in terms of matrices and determinants.

2. Preliminaries

Throughout this paper [n] will be defined as the set {1, 2, . . . , n}.

Definition 2.1. Let [n]× [n] denote the set of ordered pairs of (a, b), such that 1 ≤ a, b ≤ n.

Therefore, [n]×[n], would be the set of ordered pairs {[(1, 1), (1, 2), . . . , (1, n)], [(2, 1), (2, 2),
. . . , (2, n)], . . . , [(n, 1), (n, 2), . . . , (n, n)]}.

2.1. Generating Functions and Power Series. One of the most convenient ways to count
objects is to represent them as a power series p(n) =

∑∞
n=0 anx

n = a0 + a1x
1 + a2x

2 + · · · .
This is what is known as an ordinary generating function.

There are two main types of generating functions, ordinary generating functions, like the
one we saw prior, and exponential generating functions. For N, we can represent the ordinary
generating function f(n) as the formal power series:∑

n≥0

f(n)xn.

The exponential generating function of f(n) can be represented as the formal power series∑
n≥0

f(n)
xn

n!
.
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Note that all formal means is that we do not care whether the function converges or not,
which is irrelevant to the content of this paper.

3. The Principle of Inclusion-Exclusion

Put in simple terms the Principle of Inclusion-Exclusion (PIE) is a combinatorial argument
used to find the cardinality of the union of sets by adding and subtracting off the intersections
of the subsets. We can use the following Venn diagram to visualize this.

A1

A2

A3

A1 ∩ A2

A2 ∩ A3

A1 ∩ A3

A1 ∩A2 ∩A3

Figure 2. Venn Diagram of PIE for 3 sets

Suppose we have sets A1, A2, and A3 that are subsets of X. Suppose we are trying to find
|X|, the cardinality of the union of the three subsets. Note that the expression

|A1| ∪ |A2| ∪ |A3|
has overcounted each A1 ∩ A2, A2 ∩ A3, and A1 ∩ A3 twice, and A1 ∩ A2 ∩ A3 thrice.

Therefore, we must subtract each pairwise intersection and add back the intersection of all
three sets.

Theorem 3.1. Suppose we have subsets A1, A2, . . . , An of set X. Let X be the union of the
sets Ai for integers 1 ≤ i ≤ n. |X| defined as |A1 ∪ A2 ∪ A3 ∪ · · · ∪ An|. Then, |X| can be
expressed as

|X| =
n∑

i=1

|Ai| −
∑

1≤i≤j≤n

|Ai ∩ Aj|+ · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An| (3.1)

Proof. Suppose we have an element j ∈ X, that is in k of the m subsets. Suppose we
assume that j is in subsets A1, . . . Ak. This means that j is not in the rest of the subsets
Ak+1, . . . , Am.

The following is how many times j is counted:
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k
1

)
times in A1, . . . , Ak

−
(
k
2

)
times in Aa ∩ Ab

+
(
k
3

)
times in Aa ∩ Ab ∩ Ac

...
+(−1)k−1

(
k
k

)
times in A1 ∩ A2 · · · ∩ Ak

=
(
k
0

)
− (1− 1)k = 1.

Therefore, every element j ∈ X is counted once and only once in the set X for all m, as
desired. ■

The following is a consequence of PIE. Let A be a finite set and let S be a set of properties
that may or may not be satisfied by set A. For any T ⊆ S, we can denote f=(T ) to be the
number of objects in A that exactly satisfy the properties in T . This means that A fails to
satisfy any of the properties of S − T . The number of objects in A that at least satisfy the
properties in T can be denoted by f≤(T ). If Y is the set that ranges over all the subsets of
T , it can be seen from this that

f≥(T ) =
∑
U⊇T

f=(U). (3.2)

Therefore,

f=(U) =
∑
U⊇T

(−1)|U−T |f≥(T ). (3.3)

More importantly, the number of objects satisfying none of the properties is seen as

f=(∅) =
∑
U⊇T

(−1)|U |f≥(T ). (3.4)

In part, this is useful since many times it is much harder to count the number of objects
that do satisfy a set of properties. Using this identity, we can count the number of objects
that satisfy none of the properties and are in turn counting the number of objects that do
satisfy the properties.

We can also think of the number of objects in A that contain at most the properties in T
denoted by f≤(T ). Then we get

f≤(T ) =
∑
U⊆T

f=(U), (3.5)

and

f=(U) =
∑
U⊆T

(−1)|T−U |f≤(T ). (3.6)

3.1. Euler’s Totient (ϕ) Function. PIE, although in the domain of (enumerative) com-
binatorics, is widely applicable to other branches and forms of mathematics (it is simply
adding and subtracting). One such application is in the realm of number theory with Euler’s
totient function. This is a useful method for determining the number of relatively prime
integers that are less than an integer n.
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Theorem 3.2. Let n be a positive integer greater than 1, and let ϕ(n) be the function defined
by ϕ(n) = #{k, 1 ≤ k ≤ n, gcd(n, k) = 1}. If n = pa11 pa22 · · · pakk , then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
· · ·

(
1− 1

pk

)
. (3.7)

Proof. For each i ∈ 1, 2, . . . , k, let Ai be the set of integers m ≤ n that is divisible by the
prime pi. Then,

ϕ(n) = n−

∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣ .
Using PIE, we can expand |A1 ∪ A2 ∪ · · · ∪ Ak| to I1 − I2 + · · · + (−1)kIk−1 = S, where
I1 is the sum of the intersections of the sets. Each Ii contains the multiples of the primes
p1j , p2j , · · · , pkj , thus the sum S can be expressed as

n

((
1

p1
+

1

p2
+ · · ·+ 1

pk

)
−

(
1

p1p2
+

1

p2p3
+ · · ·+ 1

pk−1pk

)
+ · · ·+

(
(−1)k−1 1

p1p2 · · · pk

))
.

Plugging this back into 3.1, the equation becomes

n

(
1−

(
1

p1
+

1

p2
+ · · ·+ 1

pk

)
+

(
1

p1p2
+

1

p2p3
+ · · ·+ 1

pk−1pk

)
+ · · ·+

(
(−1)k

1

p1p2 · · · pk

))
,

which simplifies to

n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
· · ·

(
1− 1

pk

)
.

■

This is one of the many applications of PIE and sieve methods in general, the following
sections will provide us with that insight.

4. Restriction and Permutation

4.1. Derangements. A very straightforward application of PIE is the derangement problem.
Let Sn denote the set of permutations of S. Then, how many ω ∈ Sn are there such that
ω(i) ̸= i? This type of permutation is what is known as a derangement. An example of
a derangement is the number of permutations of n objects into n boxes. Let D(n) denote
the number of ways to arrange n objects in n boxes such that no object ni is put in the ith
box. We now see the power of equation (3.4). By fixing an object and permuting the rest
of the objects, we are in effect finding the number of permutations that do not satisfy the
conditions (which we can then use to calculate the number of objects that do satisfy the
properties). Using equation (3.4), we can write D(n) = f=(∅) =

∑
U⊇S(−1)|U |f≥(S), where

S is the set of properties that ω(i) ̸= i for all i = 1, 2, . . . n. ω(i) maps the objects to the
boxes. It can be seen from this that D(n) =

∑
U⊇S(−1)|U |(n− |U |)!. Setting k equal to |S|,

we get the following equation

D(n) =
n∑

k=0

(
n

k

)
(−1)n−kk!, (4.1)

which can be rewritten as
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D(n) = n!

(
1− 1

2!
+

1

3!
+ · · ·+ (−1)n

1

n!

)
, (4.2)

Taking the limit as n approaches infinity of the previous equation yields an asymptotic
formula that may sometimes be preferred over the closed form we have just derived:

lim
n→∞

D(n) =
n!

e
. (4.3)

This equation also gives the closest integer to D(n) for all n ≥ 0. Furthermore, we can
express the closed form as a generating function as follows:∑

n≥0

D(n)
xn

n!
=

1

ex(1− x)
(4.4)

Permutations of this sort are known by the general category of permutations with restricted
positions. In the previous example of derangements, our restriction was ω(i) ̸= i, but many
such restrictions may arise.

4.2. Boards and Rook Polynomials. The terminology behind boards, rook numbers,
rook polynomials, etc. comes from the game of chess, all of which provide pathways to
restricted positions.

Definition 4.1 (Board). Define a Board B ⊆ [n]× [n].

Definition 4.2 (Graph). Define the graph G(ω) of ω ∈ Sn to be G(i, ω(i)) : i ∈ [n]).

Definition 4.3 (Rook Placement). Nj = |{ω ∈ Sn : j = |(B ∩G(w))|}|

Definition 4.4 (Rook Number). Define rk to be the number of k-subsets such that no two
elements have a single coordinate in common.

This is corresponding to placing k rooks onto a board B such that no two rooks attack
each.

We also define a rook polynomial by

rB(x) =
∑
k

rkx
k.

With all of this terminology set, we are ready for the following theorem.

Theorem 4.5.

Nn(x) =
n∑

k=0

rk(n− k)!(x− 1)k (4.5)

Proof. Note that Nj is simply the number of ways to place n rooks on [n] × [n] such that
exactly j of these rooks are on the board. ■

Example. Consider the board B = {(1, 1), (2, 2), (3, 3), (3, 4), (4, 4)}. Notice that we can find
each Nj. N0 = 6, N1 = 9, N2 = 7, N3 = 1, N4 = 1. From this, we can find out that the rook
polynomial rB(x) of this board is

rB(x) = 1 + 5x+ 8x2 + 5x3 + x4
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Each term in the polynomial rB(x) corresponds to placing k rooks into the board B. For
example, the term 5x3 represents the 5 ways to place 3 non-attacking rooks onto the board
B.

Notice how much simpler this is than manually trying to calculate the number of ways to
place k rooks onto a board B

Derangements, from the previous section, can also be described as computing N0 from the
board {(1, 1), (2, 2), . . . , (n, n)}. Plugging rk =

(
n
k

)
into the equation Nn(x) =

∑n
k=0 rk(n −

k)!(x− 1)k, gives us

N0 =
n∑

k=0

(−1)k
n!

k!

4.3. Ménage Problem. The ménage problem asks for the number of ways to seat couples
around a circular dining table such that men and women alternate and no one sits next to
their partner (ménage in French means household, referring to the couples).

In other words, this is asking for M(n) with the restriction that ω(i) ̸= i, i+1( (mod n)).
We are essentially being asked to find N0 of the board

{(1, 1), (2, 2), . . . , (n, n), (n, 1), (1, 2), (2, 3), . . . , (n− 1, n)}

which accounts for our restriction of ω(i) ̸= i, i + 1( (mod n)). This is simply counting the
number of ways to pick k points from a group of 2n points in a circle, such that no two are
consecutive.

Theorem 4.6. The number of ways to choose k points from a collection of 2n points in a
circle such that no two are consecutive is given by the formula

2n

2n− k

(
2n− k

k

)
Proof. Start by thinking about how many ways to choose if the point ai isn’t chosen. We
can picture this as having 2n− k points, containing ai, and inserting k new points into the
2n− k spaces available (this is an example of stars and bars). This can be done in

(
2n−k

k

)
. If

ai is to be chosen, we arrange 2n− k− 1 points around the circle and choose one of them to
be ai and “mark” it as chosen. Then we have to insert k − 1 points in

(
2n−k−1

k−1

)
. Summing

these two cases gives us(
2n− k

k

)
+

(
n− k − 1

k − 1

)
=

2n

2n− k

(
2n− k

k

)
■

Note that this proof is a purely bijective proof that we desire.

5. Ferrers Boards

This is a special class of boards known as ferrers boards, but to gain an appreciation for
their usefulness, we must first understand what they represent.
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5.1. Partitions. A partition, or more specifically an integer partition is very similar to what
it sounds like. It is the number of ways to split a number n into positive integers that add
up to n. For example for n = 4, we get

1 + 1 + 1 + 1

1 + 1 + 2

2 + 2

1 + 3

4

The order of the sum does not matter, but usually, it is given from least to greatest. A
simplified way of writing the partitioned sum, is using the following notation

1. If any number x is repeated n number of times, then represent it as xn

2. List out the integers, in accordance with rule 1
From that we get:

1 + 1 + 1 + 1 = (1, 1, 1, 1) = (14)

1 + 1 + 2 = (1, 1, 2) = (12, 2)

2 + 2 = (2, 2) = (22)

1 + 3 = (1, 3)

4 = (4)

Ferrers boards are used to describe the partitions. Each value is depicted by the number
of boxes in each row. For example, this is the Ferrers board for 1 + 1 + 2

Figure 3. Ferrers board of size (12, 2)

As you can see, each column matches with the number in the partition. This is also partly
why it is slick to have the sums from least to greatest.

5.2. Stirling Numbers. Stirling numbers of a second kind are of the form S(n, k), and
these numbers posses many interesting properties.

Definition 5.1. A Stirling number of the second kind is the number of partitions of an
n-element set into k non-empty disjoint subsets.

Definition 5.2. Let A = A1, A2, . . . , Ak. If A1 ∪ A2 ∪ · · · ∪ Ak = [n], then S(n, k) is the
number of ways to partition [n] into k groups. (Note that Ai must not be empty and must
be disjoint)
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Proposition 5.3.

S(n, k) =
∑

1≤a1≤a2≤···≤an−k≤k

a1a2 · · · an−k. (5.1)

This follows straight from our definition of Stirling numbers. We will not prove it in this
paper, as it is not essential to the core understanding.

Proposition 5.4.
S(n, 2) = 2n−1 − 1 (5.2)

for n ≥ 1.

Proof. We can choose some element k to be in set A and the rest of the n − 1 elements
have 2 choices for which subsets it goes into, either set A or B. Therefore, there are 2n−1 to
distribute the rest of the n− 1 elements. However, we have over counted, since set B cannot
be empty. Therefore, the total number of arrangements is 2n−1 − 1. ■

Note that there isn’t a simple closed form for Stirling numbers in general, but this is a
special case for Stirling numbers of the second kind.

Example. S(5, 3) = (1 ·1)+(1 ·2)+(1 ·3)+(2 ·2)+(2 ·3)+(3 ·3) = 1+2+3+4+6+9 = 25

An interesting property of these numbers is their recurrence:

Proposition 5.5.
S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k) (5.3)

Proof. Let us partition [n− 1] into subsets a1, a2, . . . , ak−1. We have n left over, and we can
partition [n] into k subsets with n being its own subset. Similarly, if we partition [n − 1]
into k different subsets, then the remaining n has k subsets to choose from. This constructs
a bijection between the right-hand side and the left-hand side. ■

5.3. Rook Numbers. Given integers 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, the Ferrers board F is defined
as

F = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ bi}.
Ferrers boards, like before using cartesian coordinates.

Theorem 5.6. Let (b1, b2, . . . , bn) denote the Ferrers board F .
∑

rkx
k is the rook polynomial

for the Ferrers board F . If si = bi − i+ 1, then

∑
k

rk(x)m−k =
n∏

i=1

(x+ si) (5.4)

Proof. To place k rooks on board B′, where B′ is the Ferrers board of shape {x + b1, x +
b2, . . . , x+ bn}. Therefore B′ = B ∪ C where C is the rectangle of dimension x× n directly
underneath B.

We can count the rook number rk(x)m−k in two different ways:

(1) We can place k of the m rooks B order in some k out of the total n columns, and
then place the remaining m − k rooks in C, in the remaining n − k columns, such
that no rooks attack each other. Placing rooks on B and C is equal to rk and (x)m−k

by definition, getting ∑
k

rk(x)m−k.
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x

m

C

B

Figure 4. Board B’

(2) There are x + bi ways to place a rook in the column ai of B, and x + bi−1 − 1 ways
to place a rook in the (i + 1)th column, such that it does not attack the first rook
placed, giving us

n∏
i=1

(x+ si)

Since both of these cases are different ways to count the same permutation, they are equal,
satisfying 5.4 as desired. ■

The following is a direct consequence of 5.6.

Corollary 5.7. Let T be the triangular board {(0, 1, 2, . . . ,m−1)}. Then rk = S(m,m−k).

Proof. From 5.6, and from the fact that si = 0 (since bi = i − 0), we have that xm =∑
rk · (x)m−k. We can see that from previous bit on Stirling numbers (of the second kind),

rk = S(m,m− k). ■

That was a simple plug-and-chug proof. The following is a combinatorially inclined proof.

Proof. Suppose we have a rook on (i, j), we define i and j to be in the same block of
the partition. We want to create a partition of [n] into n − k blocks to place k rooks on
board B, where B = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ i}. Notice that this corresponds to
rk = S(m,m− k). ■

For example, if we had rooks on (1, 3), (2, 4), (4, 5), (8, 9), then we have the blocks: {1, 3},
{2, 4, 5}, {6}, {7}, {8, 9}.

Theorem 5.8. For nonnegative integers 0 ≤ b1 ≤ b2 ≤ · · · ≤ bm. We let f(b1, b2, . . . , bm)
denote the number of Ferrers boards with every column occupied such that it has the same
rook polynomial as Ferrers board of shape (b1, b2, . . . , bm). Adding enough initial 0’s to
b1, b2, . . . , bm to get a shape (c1, c2, . . . , bn) = (0, 0, . . . , 0, b1, . . . , bm). From this, s1 = 0
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and si ≤ 0for2 ≤ i ≤ n from si = bi − i+ 1. For every i, suppose ai of the sj’s are equal to
−i, so that

∑
i≥1 = m+ 1. Then,

f(b1, b2, . . . , bm) =
∏
i≥1

(
ai + ai+1 − 1

ai+1

)
.

This theorem is quite a mouthful to understand, so before the proof, we will do a quick
example to get an intuition of the theorem.

Example. We want to find the number of Ferrers boards with the same rook polynomial
as the triangular board (1, 2, . . . , n). We can add a 0 to the beginning, such that si = −1
for i ≥ 2, and s1 = 0. This is necessary since we cannot have si = 0 (for all values of i).
Therefore, there are no other Ferrers boards, with the same rook polynomial as the triangular
board.

Proof. ■

Theorem 5.9. For x ∈ R,

xn =
n∑

k=0

S(n, k) · (x)k (5.5)

6. Involutions

An involution is any set (or function) that maps to itself. In algebraic terms, it is a function
that is its own inverse. In combinatorics, it is any mapping that results in a bijection.

Definition 6.1. An involutory function is a function f : Y → Y , such that f(f(x)) = x for
all x ∈ Y .

Example. An example of a non-trivial involution is the function f(x) = 1
x
, resulting in 1

x
→ x.

Also note that f(f(x)) = x, satisfying our condition.

Proposition 6.2. Let there exist some set Y , and let n be a non-negative integer. Then,∑
|Y |=2n

f≥(Y ) =
∑

|Y |=2n+1

f≥(Y ) + f=(∅). (6.1)

Proof. Note that f≥(Y ) denotes the number of objects that have at least the properties in
Y and f=(Y ) denotes the number of objects that have exactly the properties in Y . The
left-hand side of this equation is the cardinality of the set of objects x ∈ A, such that Z ⊆ Y
and |Y | is even. Denote this set as M . The right-hand side of this equation is the sums of
the cardinalities of the sets S and T , where S is the set of objects that do not satisfy the
properties, and T is the set of objects x′ ∈ A, such that Z ′ ⊆ Y and |Y | is odd. Mapping
δ : S ∪ T → M ′, δ = (x,∅,∅). Notice that the δ−1 is a bijection to δ, therefore we have our
desired bijective proof. ■

Definition 6.3. Fix(f) is the number of fixed points of the involution f : Y → Y . Therefore,
f(x) = x, where x ∈ Y

We get a very interesting property from fixed points and involutions is the following.

Proposition 6.4. Suppose f : Y → Y is an involution, with some finite set Y . Then,
|Y | ≡ |Fix(f)| (mod 2)
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Proof. Define Sx = {x, f(x)}. Using this, we can partition Y into disjoint subsets containing
1 or 2 elements, yielding the number of fixed points of size equal to the number of Sx’s that
have a size of 1. If we denote the number of fixed points as m, and the number of Sx’s of size
2 as n, we get that |Y | ≡ m+2n (mod 2). Since 2n ≡ 0 (mod 2), we get m ≡ |Y | (mod 2),
satisfying the condition. ■

This can be used to prove many consequences such as Fermat’s theorem on the sum of
two squares. Though, this is beyond the scope of this paper.

Proposition 6.5. Suppose f : Y → Y is an involution, with some finite set Y . Then,
|Y | ≡ |Fix(f)| (mod 2)

6.1. The Involution Principle. Suppose there is some finite set X, which is partitioned
into two disjoint subsets X+ and X−. These are called the “positive” and “negative” parts
of the set X respectively.

Then, X = X+ ∪ X−. τ is an involution on X such that if τ(X) = y and x ̸= y, then
one of x and y must be in X+ and X−. In other words, both x and y must be in different
subsets and both must be in one of the subsets (since they are disjoint) and if τ(x) = x,
then x ∈ X+.

Notice that for each non-fixed point, we have one in X+ and in X−. This can be described
by the weight function

ω(x) =

{
1, x ∈ X+

−1, x ∈ X− .

We can see from this can |Fix(τ)| = |X+| − |X−|.
Now suppose that we have another set Y , that is broken up into subsets Y + and Y −,

analogous to X. Let σ be the involution on Y , analogous to τ . Suppose we also have a
bijection f : X → Y . The result of this bijection is that |Fix(τ)| = |Fix(σ)|. This is what is
known as the involution principle.
We wish to find a bijection between Fix(τ) and Fix(σ), that results from our original

bijection.

6.2. Rogers-Ramanujan Identity. The involution principle (also known as the Garsia-
Milne involution principle), was used to construct a bijection for the Rogers-Ramanujan
identity.

Theorem 6.6. The partitions of n with parts congruent to 1 or 4 (mod 5) are equal to (i.e.
a bijection to) partitions of n with parts differing by at least 2.

We will let D denote the class of partitions with parts different by at least 2, and E
denote the class of partitions with parts congruent to 1 or 4 (mod 5). Each Ei will denote
parts congruent to i (mod 5). For example, E2 will denote parts congruent to 2 (mod 5).
E = E1 × E2 × E3 × E4 × E5. E

′ or E ′
i will denote that the parts must be distinct.

The idea of this proof was to use 3 different bijections to prove the identity. One of them
was by Schur, and the other two were thought up by A. M. Garsia and S. C. Milne. Notice
that we want a weight-preserving bijection between the class D and the class E1 × E4.

6.2.1. The Schur Involution.
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Definition 6.7 (Special Schur Pair of Type A). Given a positive integer n, the partitions

(1) E′ = (2n, 2n− 1, . . . , n+ 1), (6.2)

(2) D = (2n− 1, 2n− 3, . . . , 3, 1)

will be denoted by SSA(n)

Definition 6.8 (Special Schur Pair of Type B). Given an non-negative integer m, the
partitions

(1) E′ = (2m− 1, 2m− 2 . . . ,m), (6.3)

(2) D = (2m− 1, 2m− 3, . . . , 3, 1)

will be denoted by SSB(m)

Note that since m can be equal to 0, SSB(0) = (∅,∅).
Now let B = E′ ×D×E. The positive and negative of B will be denoted as B+ and B−

respectively. Suppose we have a subset of B with the form (SSA(n), E) or (SSB(m), E).
This can be denoted as SS× E, known as the Schur special set. Similarly, the positive and
negative parts of SS+ × E will be denoted as SS− × E respectively.
The Schur bijection is a permutation of B onto itself, which we will denote as S(β). S(β)

satisfies the following properties:

(1) S(β) operates only on the first two components of a triplet (E′, D,E)
(2) S(β) is an involution
(3) Fix(S(β) are the elements of SS× E.
(4) S(β) bijectively interchanges the sets B+ - SS+ ×E and B− - SS− ×E.

We can represent this using the following picture.

B+

B−

SS+ × E

SS+ × E

Figure 5. S(β) Bijection

This is just the introduction to the Rogers-Ramanujan bijection and the Schur Involution.
Check out [GM81] for further exploration on the bijections leading up to the proof of the
Rogers-Ramanujan Identity.
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7. Matrices and Determinants

7.1. Calculus of Finite Differences.

Definition 7.1. (Characteristic) Let 1 be the multiplicative identity and let 0 be the additive
identity. Define the characteristic of the fieldK to be the smallest positive integer n such that
the sum of 1 added to itself n times equals zero. If no such n exists then, the characteristic
is 0.

Let there be a function f : Z → K, where K is a field with characteristic 0. Define the
function ∆f(n) = f(n+1)− f(n). This is known as the first difference of f . ∆ is known as
the (first) difference operator. We can get the kth difference operator by the equation

∆kf = ∆(∆k−1f).

If we define Ef(n) = f(n+ 1) for the operator E, it can be seen that ∆ = E − 1. Then,

∆kf(n) = (E − 1)kf(n)

=
k∑

i=0

(−1)k−1

(
k

i

)
Eif(n)

=
k∑

i=0

(−1)k−1

(
k

i

)
f(n− 1)

=
k∑

i=0

(−1)k−1

(
k

i

)
Eif(n) (7.1)

For n = 0, we get the equation

∆kf(0) =
k∑

i=0

(−1)k−i

(
k

i

)
f(i), (7.2)

giving us a closed form for ∆kf(0) in terms of f(i). Note that we can express f(n) in terms
of f(0) as,

f(n) =
n∑

i=0

(
n

i

)
∆if(0). (7.3)

7.2. Inclusion-Exclusion Revisited. It is important to note that the Principle of Inclusion-
Exclusion can be described in a more algebraic way than the

Suppose a function f= satisfies f=(T ) = f=(T
′), when |T | = |T ′|. Let us set a(n − i) =

f=(T ) and b(n− i) = f≤(T ), when |T | = i.
Therefore, we get the following equations, analogous to equations 3.2 and 3.3 respectively,

b(m) =
m∑
i=0

(
m

i

)
a(i), (7.4)

a(m) =
m∑
i=0

(
m

i

)
(−1)m−ib(i), (7.5)

for 0 ≤ m ≤ n.
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Using calculus of finite differences, this is

a(m) = ∆mb(0),

for 0 ≤ m ≤ n.
This can be represented by a matrix A and its inverse A′. Suppose matrix A is a (n +

1)× (n+ 1) matrix with entries (i, j) satisfying (i, j) =
(
j
i

)
for 0 ≤ i, j ≤ n. Then, A′ must

have entries (i, j) satisfying (i, j) = (−1)j−i
(
j
i

)
for 0 ≤ i, j ≤ n.

Example.

1 1 1
0 1 2
0 0 1

−1

=

1 −1 1
0 1 −2
0 0 1

 since for (0, 1) and (2, 1), j − i is odd resulting in

(−1)j−i = -1.

Proposition 7.2. Let Sn be the set of n properties that elements of Bn may or may not
have, for n ∈ N. Let’s suppose that for every T ⊆ Sn, the number x ∈ f ≤ (Bn) for the
function f depends on |T | and not on n. If we let b(n) = |Bn|, and let a(n) = f=(∅) (i.e.
the number of objects in Bn that have none of the properties in Sn), then a(n) = ∆nb(0).

7.3. Descents. Define the descent of ω = ω1ω2 · · ·ωn for 1 ≤ i ≤ n− 1, to be ωi ≥ ωi−1.

Definition 7.3. (Descent Set) The descent set D(ω) is defined as D(ω) = {i : ωi ≥ ωi+1} ⊆
[n− 1].

Suppose S ⊆ [n− 1]. Then, let

α(S) = |{ω ∈ Sn : D(ω) ⊆ S}, (7.6)

β(S) = |{ω ∈ Sn : D(ω) = S}. (7.7)

Analogous to 3.5 and 3.6, we can express α(S) and β(S) as

α(S) =
∑
T⊆S

β(S), (7.8)

and

β(S) =
∑
T⊆S

(−1)|S−T |α(S), (7.9)

or more specifically,

αn(S) =
∑
T⊆S

βn(S),

and

βn(S) =
∑
T⊆S

(−1)|S−T |αn(S).

Proposition 7.4. For some S ⊆ [n− 1], let S = {s1, s2, . . . , sk}. Then,

α(S) =

(
n

s1, s2 − s1, s3 − s2, . . . n− sk

)
. (7.10)
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Proof. It can be see that we can choose ω1 ≤ ω2 ≤ · · ·ωs1 in
(
n
s1

)
ways. Essentially, we

can choose ωsi+1 ≤ ωsi+2 ≤ · · ·ωsi+1
in

(
n−si

si+1−si

)
ways. Since α(S) is the product of these(

n−si
si+1−si

)
’s, we get the multinomial

α(S) =

(
n

s1, s2 − s1, s3 − s2, . . . n− sk

)
,

as desired. ■

From our previous results, we get that

βn(S)
∑

1≤i1≤···≤ij≤k

(−1)k−j

(
n

si1 , si2 − si1 , . . . , n− sij

)
. (7.11)

This is not the only way 7.11 can be written as. Suppose we have the function defined by
[0, k + 1]× [[0, k + 1], so that f(i, i) = 1, and f(i, j) = 0 for i ≤ j. Then the sum is

Ak =
∑

1≤i1≤···≤ij≤k

(−1)k−jf(0, i1)f(i1, i2) · · · f(ij, k + 1) (7.12)

The terms in this sum are just the nonzero terms in the expansion of the determinant of
(i, j) → f(i, j + 1), (i, j) ∈ [0, k]× [0, k]. If f(i, j) = 1

(sj−si)!
, then we get that

βn(S) = n!

∣∣∣∣∣∣∣∣∣
a1 a2 a3 · · ·
ai aj ak · · ·
ap aq ar · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣ (7.13)

where each term ai is
1

(sj+1−si)!
, for (i, j) ∈ [0, k]× [0, k]

In other words,

βn(S) = n! · det
[

1

(sj+1 − si)!

]
= det

[(
n− si

sj+1 − si

)]
, (7.14)

where “det” denotes the determinant of the matrix, and (i, j) ∈ [0, k]× [0, k]

Definition 7.5. The q-analogue of a theorem is a generalization using a parameter q, such
that it returns the original theorem, identity or expression in the limit as q → 1

Using this definition, we can now obtain a q-analogue of the previous work. We need some
s(ω);ω ∈ Sn, with D(ω) ⊆ S such that

∑
ω∈Sn

qs(ω) =

(
n

s1, s2 − s1, . . . , n− sk

)
,

where S = 1 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ n− 1

Proposition 7.6. Let S be a set of properties {P1, P2 . . . Pn} and let T ⊆ S, where T =
{Ps1 , Ps2 . . . Psk}. Suppose that

f≤(T ) = h(n)[e(s0, s1)][e(s1, s2)] · · · [e(sk, sk+1])
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for a function h(n) and e in N × N. We set s0 = 0, sk+1 = n, e(i, i) = 1 and e(i, j) = 0 for
j ≤ i. This results in

f=(T ) = h(n)det[e(si, sj+1)] (7.15)

from 0 to k.

7.4. Lattice Paths. Let S ⊆ Zd, where a lattice path L in Zd has length of k, with steps
in S. Let the sequence of the lattice path be {s0, s1, . . . , sk}, so that any si+1 − si is a step
in S. The following figure is the lattice path from (0, 0) to (6, 6), with length 12.

(0, 0)

(6, 6)

Figure 6. Lattice Path from (0,0) to (6,6)

Proposition 7.7. Let v = (a1, . . . , ad) ∈ Nd, and let ei be the ith unit vector in Zd. The
number of lattice paths in Zd (from the origin to the point v) is given by

(
a1+···+ad
a1,...,ad

)
.

Proof. The sequences of steps are just aiei’s. Since we would like to find the permutations
of these steps Sn, we get

Sn =

(
a1 + · · ·+ ad
a1, . . . , ad

)
■

Definition 7.8. (Tuple) A tuple is a finite sequence of objects. An n-tuple is a tuple of n
elements, where n is a non-negative integer.

Definition 7.9. An n-path is an n-tuple L = (L1, L2, . . . , Ln) of lattice paths.

Example. The lattice path [(1, 2), (2, 2), (2, 4), (3, 4), (3, 5), (4, 5), (4, 1)] can be drawn as

Definition 7.10. For α, β, γ, δ ∈ Nb, let L be of type (α, β, γ, δ) if and only if L goes from
(βi, δi) to (αi, γi).

(n-path intersection)

Definition 7.11. An n-path is considered intersecting if Li and Lj have some point(s) in
common, where i ̸= j.
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(0, 0)

(5, 5)

Figure 7. Example: Lattice Path from (1,2) to (4, 1)

Definition 7.12. (Weight) The weight of L, denoted as Λ(L) is defined to be the product
of the horizontal steps of L.

Suppose we have some α = {α1, α2, . . . , αn} ∈ Nn, and ω ∈ Sn, then ω(α) = {αω(1), . . . , αω(n)}.
Let the path from (βi, δi) to (αi, γi) be in the set of all n-paths of type (α, β, γ, δ), denoted
by A. If we let m = αi − βi. Then, there is exactly one horizontal step from (j + βi − 1, kj)
to (j + βi, kj) (i.e. a horizontal step of length 1) for 1 ≤ j ≤ n and kr, where δi ≤ kr ≤ γi
and kr ≥ kr+1. If h(m; γi, δi) =

∑
xk1 · · ·xkm , it can be seen that

A(α, β, γ, δ) =
n∏

i=1

h(αi − βi, γi, δi), (7.16)

where A(α, β, γ, δ) is the sum of the weights of A(α, β, γ, δ). We get 7.16 as the result
because we are summing over the multiple possible sequences of kr.

Theorem 7.13. Let B(α, β, γ, δ) be the set of n-paths are a non-intersecting, and let B(α, β, γ, δ)
be the sum of the weights of B(α, β, γ, δ). Suppose we have (α, β, γ, δ) ∈ Nn such that for
ω ∈ Sn, β(ω(α), β, γ, ω(δ), for ω ̸= I, where I is the identity permutation. Then,

B(α, β, γ, δ) = det[h(αj − βi, γi, δj)] (7.17)

Proof. Let A(ω) = A(ω(α), β, γ, ω(δ)). We will construct a bijection from L to L′

(1) L′′ = L
(2) Λ(L′) = Λ(L)
(3) If L ∈ Au and L′ ∈ Av then sgn u = -sgn v.

“sgn” is known as signum and it is a function that indicates the sign of a number. It is
defined as 1 for positive numbers, 0 for zero, and -1 for negative numbers.

If we group terms in 7.17 into (L,L′) of intersecting n-paths, then we get that all unnec-
essary terms cancel revealing B(α, β, γ, δ). ■
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8. Further Enquiries

The story of sieve methods does not end here. As discussed, sieve methods have a very close
tie with the Principle of Inclusion-Exclusion, where instead of directly counting the objects,
we construct a system to strategically eliminate objects that do not satisfy our conditions.
Similarly to this, sieve methods have applications in probabilistic methods, where instead
of relying on randomness, we can again systematically remove objects that do not meet
our conditions. This provides us with asymptotic expressions, alike the formula we derived
for derangements. Sieve methods also are very useful in filtering through sets and objects
providing us with specific combinatorial structures and patterns. An example of this is the
Turán sieve, as it is derived directly from the Principle of Inclusion-Exclusion. In essence,
the Turán sieve estimates the size of sets of positive integers, expressed by congruences. For
further knowledge on sieve methods, check out [LM05], and for more thoughts on enumerative
combinatorics, check out [Sta11,SF99].
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