Symmetric Polynomials

Omer Ozcan

July 2023

	Ozcan

イロン イ理 とくほとう ほん

æ

Content

- Some Definitions
- Polynomial Ring
- Elementary Symmetric Polynomials
- Symmetric Polynomials

3

イロト イヨト イヨト イヨト

Field

A field is a commutative ring with unity (meaning that it has an identity element) where every element that is not zero is a unit.

Unit

It means having the multiplicative inverse,

$$\forall a \in \mathbb{R}, \exists a^{-1} \in \mathbb{R}$$

Unity

It means having an additive and multiplicative identity.

0			
0	mer	Ozc	an

3/14

The Polynomial Ring in N Variables

Suppose we have x_1, \ldots, x_n that are called variables. So we can think of a polynomial from x_1, \ldots, x_n . We also define $F[x_1, \ldots, x_n]$ as a set of all polynomials in $x_1 \ldots x_n$ with coefficients from F.

< □ > < □ > < □ > < □ >

Theorem

If we have field F a ring R that contains F, an $a_1 \dots a_n \in R$ then

$$f(x_1 \dots x_n) \mapsto f(a_1 \dots a_n)$$
 (2)

is a ring homomorphism.

mer	

Image: A match a ma

5/14

Example

Consider following polynomial $f(x)x^4 + r_1x^3 + r_2x^2 + r_3x + r_4 \in F$ has roots $r_1, r_2, r_3, r_4 \in F[x]$ as well. Then,

$$f = (x - r_1)(x - r_2)(x - r_3)(x - r_4)$$
(3)

If we multiply this out the coefficients can be expressed as,

$$r_1 = -(r_1 + r_2 + r_3 + r_4), \tag{4}$$

$$r_2 = (r_1r_2 + r_1r_3 + r_1r_4 + r_2r_3 + r_2r_4 + r_3r_4),$$
 (5)

$$r_3 = -(r_1r_2r_3 + r_1r_2r_4 + r_1r_3r_4 + r_2r_3r_4), \tag{6}$$

$$r_4 = r_1 r_2 r_3 r_4. (7)$$

6/14

イロト イポト イヨト イヨト 一日

Elementarty Symmetric Polynomials

Consider variables $x_1 \dots x_n$ that are distinct variables then,

$$\sigma_1 = x_1 + x_2 \cdots + x_n, \tag{8}$$

$$\sigma_2 = x_1 x_2 + x_1 x_3 \dots x_{n-1} x_n, \tag{9}$$

$$\sigma_r = \sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1} x_{i_2} \dots x_{i_r}, \qquad (11)$$

$$\sigma_n = x_1 \dots x_n \tag{12}$$

are called elementary symmetric polynomials.

	· · · · · · · · · · · · · · · · · · ·	
- ()mer	Ozcan

7/14

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Key Identity of Elementary Symmetric Polynomials

Proposition

Suppose we have variables x_1, \ldots, x_n over field F and another variable x we have,

$$(x-x_1)\dots(x-x_n) = x^n - \sigma_1 x^{n-1} + \dots + (-1)^r \sigma_r x^{n-r} + \dots + (-1)^n \sigma_n$$
(13)

8/14

< □ > < 同 > < 三</p>

Proof

Proof.

Start by multiplying out the left side of the equation (13) we will get the coefficient for each power of x. It follows that the term x_{n-r} are the product of where we chose x exactly n - r times. That means that choosing $-x_1$ for the $i_1st, \ldots i_rth$ factors and choosing x for remaining n-r factor(s). The product of these choices is

$$(-x_{i_1})(-x_{i_2})\dots(-x_{i_r})x^{n-r} = (-1)^r x_{i_1}x_{i_2}\dots x_{i_r}x^{n-r}.$$
 (14)

Sum over all possible ways of making the n choices we get that coefficient of x^{n-r} on the left-hand side as,

$$(-1)^{r} \sum_{1 \le i_{1} < \dots < i - r \le} x_{i_{1}} \dots x_{i_{r}} = (-1)^{r} \sigma_{r}.$$
 (15)

Suppose *f* is a monic polynomial,

$$f = x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} \in F[x].$$
(16)

That it has roots a_1, \ldots, a_n . This means that,

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = (x - a_{1})\dots(x - a_{n}).$$
 (17)

イロト 不得 トイラト イラト 一日

Then we can evaluate,

$$(x - a_1) \dots (x - a_n) = x^n - \sigma_1(a_1, \dots, a_n) x^{n-1} + \dots + (-1)^{n-1} \sigma_{n-1}$$
(18)
$$(a_1 \dots a_n) x + (-1)^n \sigma_n(a_1, \dots, a_n)$$
(19)

The coefficient of f can be written in terms of the roots $a_r = (-1)^r \sigma_r(a_1, \ldots, a - n).$

11/14

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Definition

A polynomial $f \in F[x_1, \ldots, x_n]$ is a symmetric polynomial if,

$$f(x_{\alpha(1)},\ldots,x_{\alpha(r)})=f(x_1,\ldots,x_n)$$
(20)

for all permutations in S_n .

On

ner Ozcan		
-----------	--	--

æ

イロト 不得 トイヨト イヨト

Fundamental Theorem of Symmetric Polynomials

Theorem

Any symmetric polynomial in $F[x_1, ..., x_n]$ can be written as a polynomial in $\sigma_1, ..., \sigma_n$ with coefficients from F.

Applications

- Polynomial factorization
- Combinatorics
- Representation theory
- Geometry
- Number Theory
- Symmetry analysis

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >