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Abstract

This paper serves as a helpful guide on exploring symmetric polynomials and Schur
functions.

1 Some Important Definitions
Definition 1.1. A Ring is a nonempty set R that provides two binary operations ⊕ and ⊗
that have to satisfy all the conditions following.

For all a, b, c ∈ R

1. a ⊕ b ∈ R

2. a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c

3. a ⊕ b = b ⊕ a

4. Element 0R ∈ R such that,

a ⊕ 0R = a, for all a ∈ R. (1)

5. For all a ∈ R, the equation
a ⊕ x = 0R (2)

6. If a ∈ R, and b ∈ R then a ⊗ b ∈ R.

7. a ⊗ (b ⊗ c) = (a ⊗ c) ⊗ b

8. a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

Definition 1.2. Lexicographic order especially in our case(, xa1
1 . . . xan

1 < xb1
1 . . . xbn

n is equal
to

∃j ∈ [1, n], (∀i ∈ N, 1 ≤ i < j ⇒ ai = bi), aj < bj. (3)
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2 The Polynomial Ring in N Variables
Let x ∈ x1, . . . , xn, be distinct variables. Suppose we have a polynomial in x1, . . . , xn

with coefficients in a field F is a finite sum of terms that are expressions of the form

cxa1
1 . . . xan

n , c in F, a1 . . . an ≥ 0 in Z

Multiplication of xa1
1 . . . xan

n is monomial so that a term is an element of F times a monomial.
A term is nonzero if the constant is nonzero.

Definition 2.1. A nonconstant polynomial F[x1 . . . xn] is irreducible over F if it is not the
product of nontrivial polynomials with a smaller degree than the polynomial.

Definition 2.2. An integral domain R is a Unique Factorization Domain if,

1. All nonzero element of R is either a unit or a product of irreducibles.

2. If r1 . . . rk = s1 . . . sl where r1 . . . rk and s1 . . . sl ∈ R are irreducible then k=l, and there
is a permutation such that for each 1≤ i≤ k there is a unit ai ∈ R such that r‘i =
aiSσ(i).

Corollary 2.3. If F is Field then F[x1 . . . xn] is a Unique Factorization Domain.

Theorem 2.4. Let f ∈ F[x1, . . . xn] be nonconstant. Then there are irreducible polynomials
α1 . . . αn ∈ F[x1, . . . xn] such that

f = g1 . . . gn (4)
If there is a second factorization of f into irreducibles

f = h1 . . . hj (5)

then r = j and the hi’s can be permuted so that each hi is a constant multiple of gi.

Proof. In the terminology of Unique Factorization Domain in Definition 1.2, this theorem
states that F[x1 . . . xn] is a Unique Factorization Domain, see Corollary 2.0.1

Theorem 2.5. Given a field F , a ring R containing F , and a1 . . . , an ∈ R, the evaluation
map (2.2) is a ring homomorphism F[x1 . . . xn]−→ R.

Proof. We can prove it by verifying,

(f + g)(a1 . . . , an) = f(a1 . . . , an) + g(a1 . . . , an), (6)

(fg)(a1 . . . , an) = f(a1 . . . , an)g(a1 . . . , an), (7)
Also clearly f +g denotes sum of polynomials and fg denotes the product of polynomials.
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3 The Elementary Symmetric Polynomials
Definition 3.1. Let x1 . . . , xn be variables over a field F then

σ1 = x1 + · · · + xn (8)

σ2 =
∑

1≤i<j≤n

xixj, (9)

... (10)

σr =
∑

1≤i1<···<ir≤n

xi1xi2 . . . xir , (11)

... (12)
σn = x1 . . . xn (13)

are the Elementary Symmetric Polynomials.

Proposition 3.2. Suppose x1 . . . xn be variables over field F . Then in field F , for variable
x we will have

(x − 1) . . . (x − xn) = xn − σ1x
n−1 . . . (−1)n − σn (14)

Proof. Given the equation in (11), we can see that the constant term is actually just
(−x1) . . . (−xn) = (−1n)σn. Similarly, the coefficient of xn−1 is easily seen to be −x1 −
· · · − xn = −σ1.

• For each of n factors x − x1, choose x or −x1.

• Take the product of n of them.

• Sum these products over all possible ways of making n choices

Suppose we have the term xn−p in the (11) ones that have xn−p we would need to take the
product of them n−p times. With the second bullet, this means that product of those choices
is

(−xi1) . . . (−xip)xn−p = (−1)pxi1 . . . xipxn−p (15)
When we sum up all possible choices with n that we can make as emphasized in the third
bullet, the coefficients of term xn − p in the left hand of (11) becomes

(−1)r
∑

1≤ir<···<ip≤n

xi1 . . . xip = (−1)rσr. (16)

and this completes the proof.
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4 Symmetric Polynomials
Definition 4.1.

Symmetric Polynomials are exactly what the name says. If we change any of the variables
of a function, we will get the same polynomial.
Definition 4.2. A polynomial f ∈ F [x1, . . . , xn] is a Symmetric Polynomial if

f [xτ(1), . . . , xτ(n)] = f [x1, . . . , xn] (17)

for all permutations τ .
Example 4.3. Let’s say we have a polynomial f such that, for permutations r = (345) in
the following polynomial

f = x2
1 + x2

2 + x2
3 (18)

It can be seen that no matter how many times we interchange the variables we will get the
same polynomial.

5 The Fundamental Theorem of Symmetric Polynomi-
als

In Chapter 3 we showed that σ1 . . . σn is symmetric, which gave us some clue about
what elementary symmetric polynomials are, now we will focus on how they are related
to symmetric polynomials other than the property of being symmetric. To be given a brief
history fundamental theorem of symmetric polynomials has its roots in the works of Evariste
Galois, Augustin-Louis Cauchy, and Joseph-Louis Lagrange. Before starting the proof, I
want to mention that proof below belongs to mathematician David Cox in his book of
Galois theory.
Theorem 5.1. Any symmetric polynomial in polynomial set F [x1 . . . xn] can be written in
terms of elementary symmetric polynomials.

The proof involves an inductive process it requires us to order monomials xa1
1 . . . xan

n in
x1, . . . xn. Using graded lexicographic order which is,

xa1
1 . . . xan

n < xb1
1 . . . xbn

n ⇐⇒ a1 + . . . an < b1 + · · · + bn, (19)
or a1 + · · · + an = b1 + · · · + bn, a1 < b1, (20)
or just the first terms are equal, a1 + · · · + an = b1 + · · · + bn, where,

(21)
a1 = b1 also a2 < b2 and so on. (22)

If we were to compare monomials, we would first compute total degree of each monomials
and in case these are equal we check two monomials and their exponent at a time. Examples
can be given as follow.

x5
1x2x3 < x2

1x
3
2x

3
3, because total degree is just smaller. (23)

x4
1x2x

2
3 < x4

1x
3
2x3, because x2 degree is just smaller. (24)
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Proof. We can now start by let f ∈ F [x1 . . . xn] be a symmetric polynomial with coefficient
c

cxa1
1 . . . xan

n . (25)
We can say that

a1 ≥ a2 · · · ≥ an. (26)
We can show it by remarking that f is a symmetric polynomial, which means that even if
we change any two or more variables we will get the same polynomial thus it can be written
in way like,

cxa1
1 . . . xai

i+1x
ai+1
i . . . xan

n (27)
Again with regard to the definition in Chapter (1) Lexicographic order is a total order
on the set of monomials, it helps us on determining the leading term of polynomials. It
is important to note that both monomials have the same total degree, considering (21,19).
Then this implies that ai+1 > ai, which again means that it is greater than the relationship in
(not added soon, order lexicographic). But there is a contradiction because the leading term
is (19) so proved by contradiction. Now we can consider the following elementary symmetric
polynomial l,

l = σa1−a2
1 σa2−a3

2 . . . σan
n . (28)

This is a polynomial that is in the form of (20). Notice that leading term of σr is x1 . . . xr,
it follows that leading term of l is,

xa1−a2
1 (x1x2)a2−a3(x1x2x3)a3−a4 . . . (x1 . . . xn)an (29)
= xa1−a2+a2−a3+···+an

1 xa2−a3+···+an
2 . . . x

an−1−an+an

n−1 xan
n (30)

= xa1
1 . . . xan

n . (31)

Don’t forget to do the distribution in Chapter (3) we have given examples of elementary
symmetric polynomials in there. With (31) we actually showed that f and cl have same
leading term, according to ordering in (19). Hence f1 = f − cl has smaller leading term with
coefficient c1 and exponents b1 ≥ · · · ≥ bn.
With repeating the same evaluation f1 instead of f . We can conclude f1 is symmetric as
well and now has coefficient c1 with exponents b1 ≥ · · · ≥ bn. It is like a recursive
calculation, which gives us an expression g1 in the elementary symmetric polynomials such
that f1 and c1g1 have same leading terms.
Which follows that,

f2 = f1 − c1l1 = f − cl − c1l1. (32)

As we did before with continuing the process we get,

f1 = c − l, f2 = f − cl − c1l1, f3 = f − cl − c1l1 − c2l2, . . . fn = f − cl = c1l2 . . . . (33)

In each stage we get smaller leading term. This process ends if we find some j that fj = 0.
On the other hand since we never have such f , that would give us an infinite sequence of
nonzero polynomials with strictly decreasing leading terms. The thing is above it has shown
that there are only finitely many monomials strictly smaller than the leading term of f.
Hence above process must stop at some point.
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For that some j, we obtain

f = cl + c1l1 + . . . . (34)

since fm = f − cl − c1l1 − · · · − cm−1lm−1. Each cli is product of the σj to various powers,
which proves that f is an elementary symmetric polynomial. And this was what we wanted
to show which completes the proof.

Example 5.2. Consider the polynomial in x1, x2, x3, x4, can be given,

f =
∑

4
x3

1x
2
2x3, (35)

this has 24 terms, David cox used that notation for what we did in Chapter(3), meaning that
using permutation. Edward Waring, one of the first mathematicians that studied symmetric
polynomials. In his book Meditationes Algebraice [6], he did really similar to what David
Cox did in his proof of FTSP. We can proceed as follows,
Step 1. Considering the leading term of f , x3

1x
2
2x3 = x3

1x
2
2x

1
3x

0
4, so that (28) becomes,

σ3−2
1 σ2−1

2 σ1−0σ
0
4 = σ1σ2σ3. (36)

So we can show that,

σ1σ2σ3 =
∑

4
x3

1x
2
2x

4
3 + 3

∑
4

x3
1x2x3x4 + 3

∑
4

x2
1x

2
2x

2
3 + 8

∑
4

x2
1x

2
2x3x4. (37)

f1 = f − σ1 − σ2 − σ3 = −3
∑

4
x3

1x2x3x4 − 3
∑

4
x2

1x
2
2x

2
3 − 8

∑
4

x2
1x

2
2x3x4. (38)

Step 2. The leading term of f1 is −3x3
1x2x3x4, and from that we get,

σ3−1
1 σ1−1

2 σ1−1
3 σ1

4 = σ2
1σ4 =

∑
4

x3
1x2x3x4 + 2

∑
4

x2
1x

2
2x3x4. (39)

f2 = f − σ1σ2σ3 + 3σ2
1σ4 = −3

∑
4

x2
1x

2
2x3x4. (40)

Step 3. Again when we expand (40) we get leading term of f2 as −3x2
1x

2
2x

2
3. We can obtain

f3 = f − σ1σ2σ3 + 3σ2
1σ4 = 4

∑
4

x2
1x

2
2x3x4. (41)

From that we see that leading term of f3 is 4x2
1x

2
2x3x4,

σ2σ4 =
∑

4
x2

1x
2
2x3x4, (42)

we see that.

f4 = f − σ1σ2σ3 + 3σ2
1σ4 + 3σ2

3 − 4σ2σ4 = 0. (43)

Conclusion. Since f4 = 0, the process terminates and we obtain the formula,

f = σ1σ2σ3 + 3σ2
1σ4 + 3σ2σ4. (44)

That means that we expressed f in terms of elementary symmetric polynomial σn.
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6 The Roots of a Polynomial
In Galois theory, symmetric polynomials are often evaluated at the roots r1, . . . , rn of

polynomial f .

Corollary 6.1. Letting f be a polynomial in polynomial ring, and the polynomial is monic
with degree more more than zero, with roots r1, . . . , rn, in the field L. Uhhh that was long
! For given symmetric polynomial s(x1, . . . , xn), that is in field F . Then we will have,

s(r1, . . . , rn) ∈ F. (45)

Proof. Again recalling the evaluation map F [x1, . . . , xn] → L is defined by p→ p(r1, . . . , rn).
This is actually a ring homomorphism. Which is proved in theorem (2.5).
Since s is symmetric polynomial in x1, . . . , xn. Fundamental theorem of symmetric
polynomials implies that s is a polynomial in the elementary symmetric polynomials.
When we wanted to evaluate r1, . . . , rn, it can be seen that s(r1, . . . , rn) is in elementary
symmetric polynomial.

Now, if we wanted to have some idea on how this corollary works.

Example 6.2. Suppose that f = x3 + 2x7 + x + 7 ∈ Q, considering this it has roots from
r1, . . . rn. Again we let s to be another polynomial that is monic with roots r1 + r2, r1 + r3
and r2 + r3, from here we can claim that s has to have coefficients in Q. In order to prove
this we can proceed as follows,

s(x) = (x − (r1 + r2))(x −( r1 + r3)(x − (r2 + r3)) (46)
= x3 − (2r1 + 2r2 + 2r3)x2 + (r2

1 + r2
2 + r2

3 + 3r1r2 + 3r1r+3r2r3)x. (47)
− (r1 + r2)(r2 + r3)(r1 + r3). (48)

Since ri are the roots of a polynomial with coefficients in Q. Corollary(6.1) strongly helps us
at claiming coefficients of s are in complex numbers. So s ∈ Q.

In more general if f = x3 + bx2 + cx + d, has roots from r1, . . . rn and again s is the
polynomial with roots from r1 + r2, r2 + r3, r1 + r3, we showed this (46)-(48). So s(x) is,

s(x) = x3 + 2bx2 + (b2 + c)x + bc − d. (49)

7 Uniqueness
We have proved FTSP. Which implied that every symmetric polynomials can be written

in terms of elementary symmetric polynomials. Now we will consider this and try to prove
that this expression is unique. So the new theorem would be as followed.

Theorem 7.1. Every symmetric polynomial from x1, . . . , xn can be written in terms of
elementary symmetric polynomials in σ1, . . . , σn, in only one way.(FTSP unique for each
symmetric polynomial).
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Proof. Recalling the polynomial ring F [u1, . . . , un], where ui’s are our new variables. Recall
our our theorem(2.5), yea seems useful. That mapping ui to σi inF [x1, . . . , xn] defines a ring
homomorphism,

φ : F [u1, . . . , un] → F [x1, . . . , xn]. (50)

Meaning that s = s(u1, . . . , un) is a polynomial in u1, . . . , un with coefficients in the same
field F , so φ(s) = s(σ1, . . . , σn).
Image of φ, is the set of all polynomials in the elementary symmetric polynomials. This
image can be shown as follows,

F [σ1, . . . , σn] ⊂ F [x1, . . . , xn]. (51)

So, F [σ1, . . . , σn] is subring of F [x1, . . . , xn]. Now φ can be written as a map.

φ : F [u1, . . . , un] → F [x1, . . . , xn]. (52)

This map must be surjective since it is elementary symmetric polynomial. Uniqueness of it
will be proved by showing that mapping is one to one.
In order to prove that it is one-to-one, it is enough to mention that its kernel is 0, meaning
the inverse image. So we must show if s is nonzero polynomial in ui then, s(σ1, . . . , σn) will
give us a nonzero polynomial. David cox does not give the rest of the proof but he wants
us to do it, he leaves us it as exercise in 3 sub problems. He actually gave us some hint on
how to prove it since he put them to the questions, which are necessary steps to complete
the proof. And now we will proceed as followed.
So the remaining goal is to prove that s(σ1, . . . , σn) is a nonzero polynomial from x1, . . . , xn.

a) If cub1
1 . . . ubn

n is a term of s, then show that leading term of cσb1
1 . . . σbn

n is cxb1+···+bn
1 xb2+···+bn

1 . . . xbn
n .

b) Show that (b1, . . . , bn) 7→ (b1 + · · · + bn, b2, . . . , bn, . . . , bn), is one to one.

c) To see why s(σ1, . . . , σn) is nonzero, consider the term of s(u1, . . . , un) for which the
leading term of cσb1

1 . . . σbn
n is maximal. Prove that this leading term is in fact the

leading term of s(σ1, . . . , σn), and explain how this proves what we want.

Proof. a) The leading term of a product is actually the product of the leading term of
the factors, and the leading term of σr is x1 . . . xn, then leading term of cσb1

1 σbn
n . . . σbn

n

is

(cσb1
1 . . . σbn

n ) = c(x1)b1(x1x2)b2 . . . (x1x2 . . . xn)bn . (53)
= cxb1+···+bn

1 xb2+···+bn
2 . . . xbn

n . (54)

b) Now consider sum of b1 + · · · + bn and so on b2 + · · · + bn, and so on. Generalize those
sum as ki. then we will have b1 = k1 − k2 since only differences between those sums is
b1 because k1 starts from b1. Same thing for b2 = k2 − k3. So this is from f : Z → Z
is defined by the statement that we try to prove which is now can easily seen that
bijective.
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c) If s ̸= 0 there must be a term cub1
1 . . . ubn

n of s so that leading term of cxa1
1 . . . xan

n

of cσb1
1 . . . σbn

n is maximal as we said before. And every other term c
′
u

b
′
1

1 u
b

′
2

2 . . . ub
′
n

n

of s is correcting (b′
!, . . . , b

′
n) ̸= (b1, b2, . . . bn) and the leading term c

′
x

a
′
1

1 . . . xa
′
n

n of
c

′
u

b
′
1

1 u
b

′
2

2 . . . ub
′
n

n is less than cxa1
1 . . . xan

n . I mean we know it is not greater and equal to
because (a1, . . . an) ̸=, we know it from (b) is bijective. We also previously mentioned
a lot from lexicographic order and graded one as well. With regard to that, monomials
being total order, xa1

1 . . . xan
n > x

a
′
1

1 . . . xa
′
n

n . Same thing for cxa1
1 . . . xan

n which is greater
than the leading terms of every other cσ

a
′
1

1 . . . σa
′
n

n of s(σ1, . . . , σn) ̸= 0, so greater than
every other term of that. In the end, I know that was long, they don’t cancel and we
left with s(σ1, . . . , σn).

We will talk more about symmetric polynomials with different definitions and different
applications in the section of Schur functions.

8 About Symmetric Polynomials
Since symmetric polynomials has studies by many mathematicians including Euler and

Waring, but Albert Girard was was one of the first one who studied on them. He showed
a clear definition of elementary symmetric polynomials in his book Invention Nouvelle en
l’algebre. He also gave some formulas for power sums in terms of elementary symmetric
polynomials. Now on Newton, yes famous one and somehow he is in everywhere, I had no clue
before I dive into symmetric polynomials that he studies them. In his book of Arithmetica
Universalis had parts focused on how elementary symmetric polynomials were related to
power sums. His identities were also pretty much related to symmetric polynomials. Waring
has studied the topic as well, in his book Meditationes Algebraice, he has used implicit
algorithm of what we did. FTSP were often used by 18th century, even though first formal
has done by Gauss in 19th century. The proof David cox used his proof as well, and Gauss
was also the first one who take the "uniqueness" to the scene. We owe him a lot

9 Schur Functions
Schur functions first studies by, German mathematician Carl Gustav Jacob Jacobi, as

skew symmetric polynomial by as, just as we showed in the last chapter. Their connection to
representation which I come across lots of time while learning the topic, was discovered by
Issai Schur. Schur functions or Schur polynomials are expelled from many different topics.
These polynomials are actually and there are many ways to define them, which is needed for
different applications of Schur Functions.

9



9.1 Tableaux
Definition 9.1. Partition λ = (λ1, . . . , λs) ⊢ n,(⊢ has many usages but in here we used
it for meaning that "λ is a partition of the integer n", which is the usage that used in
combinatorics), in here s must be greater than 1. Introducing Ferrers diagram which is used
to represent the partition λ as dots in determined rows. And ith row contains i number of
squares.

Example 9.2. Recalling partitions λ = (5, 4, 3, 3, 1), in Ferrers diagram its representation
is as follows,

(55)

To make more useful diagrams sometimes or often we might need to fill inside the
tableaux. It is defined as followed.

Definition 9.3. Let µ = (µ1, . . . , µnk) is denoted as filling diagrams. And µj appears j
times.

Example 9.4. With regard to definition 9.3, we can make a Ferrers diagram with λ =
(5, 3, 3, 2), µ = (4, 4, 5). Which is illustrated as,

1 2 1 2 1
1 2 2
3 3 3
3 3

This is a completely filled Ferrers diagram, for now it does not matter how the numbers have
distributed.

9.2 Alternating Polynomials
Definition 9.5. Multi-index is used for shortening expression where lots of variables con-
tained. A multi-index α is an n-tuple of integers ai, where i starts from 1 to n.α =
(α − 1, . . . , αn). |α| is sum of all ai.

Definition 9.6. Let finite variables x1, . . . , xn, and alternating polynomials is form of,

f(x1, . . . , xn) =
n∑

a=1
caxa, (56)

c(aω(1), . . . , aω(n)) = ϵ(ω)c(a1, . . . , an) for all multi-index, with all permutation in symmetric
group Sn. ϵ denotes the sign function, where it just returns sign of a real number either 1, −1.
In alternating polynomials signs are reversed upon changing the order of any variables.
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Lemma 9.7. For any multi-index if αi = αj where they i and j are not equal, then we get
cα = 0. All monomials in the form of alternating polynomial must be made with distinct x.
Implies to that polynomial will be made with decreasing multi-indices, so it makes sense.
Definition 9.8. Again beginning with variables x1, . . . , xn. Letting xα = xa1

1 , . . . xan
n be a

monomial, and consider the polynomial aα is obtained by antisymmetryizing, meaning that,

aα = aα(x1, . . . , xn) =
∑

ω∈Sn

ϵ(ω)ω(xα) (57)

ϵ(ω) is sign either 1 or -1 of all permutation ω, and aα is called skew symmetric. With all
those,

ω(aα) = ϵ(ω)aα. (58)
For all ω in the symmetric group. Therefore aα disappear till all a’s are different than any
other. We can also assume that from 1 to n they are in decreasing order. So it can be written
as a = λ + δ. Where δ is from n − 1 to 0, where λ ≤ n. Then we will get,

aα = aλδ =
∑
ω

ϵ(ω)ω(xλ+δ), (59)

which is can also be interpreted as determinant,
aα+δ = det(xδj+n−j

i ). (60)
This is divisible by xi − xj where i is smaller than j, hence with the product of them we get,

Π1≤i<j≤n(xi − xj) = det(xn−j
i ) = aδ. (61)

From here we conclude that aδ+λ can be divided by aδ which is in Z[x1, . . . , xn]. So quotient
is,

sλ = sλ(x1, . . . , xn) = aδ+λ

aδ

. (62)

This is symmetric as well then, which is called Schur Function with the variables from
x1, . . . , xn. This adds up to partition λ and homogeneous since variables by some power.

Mentioned earlier but now we will look at some other definitions of Schur Functions.
Which might be better to have the idea where an example of it will be illustrated.
Definition 9.9. For fix λ, bound N the size of the entries in all semistandard tableau T . A
tableau is semistandard if entries weakly increase along each row and strictly increase down
in each column. Let xT = ΠN

i=1x
j
i , where j represents number of i’s in tableau T . From here

Schur Polynomial defined as sδ(x1, . . . , xn) := ∑
semistandard xT .

Example 9.10. It is easier to see with grids. Let δ = (2, 1). Then the list of possible
tableaux in the shape of δ where N = 3 are,

1 1
2

1 1
3

1 2
2

1 2
2

1 3
3

2 2
3

2 3
3

1 3
2

Now, we have given definition for Schur Polynomial, it not okay till we give the corresponding
polynomial.

s(2,1)(d1,x2,x3)=x2
1x2+x2

1x3+x1x2
2+x1x2x3 (63)
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