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Abstract

In this paper, we explore some well-known geometric inequalities, along with a class
of problems known as isoperimetric problems, which deal with finding the maximum
area of a figure given a fixed perimeter. We hope to shed some light on a topic at the
intersection of geometry and algebra, along with providing some very nice inequalities
to consider.
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Part I. Inequalities on Triangles

1 Triangle Inequality

One of the foundations of Euclidean geometry is the following seemingly obvious
fact: the shortest distance between two points in the plane is the straight line
segment between them. In fact, this observation does not hold on different
geometric sets (i.e. the shortest distance between two points on a sphere is not
a straight line). So, how does one go about proving the fact rigorously? We
resort to using analytic geometry.

Theorem. The shortest distance between two points in the plane is the straight
line segment between them.

Proof: Let A = (x1, y1), B = (x2, y2), and C = (x, y). We want to show that
the shortest distance between A and B occurs when we use the straight line
distance between them, and not when two segments are involved. So, what we
want to show is that AB ≤ AC+BC. First, we note that we can shift and rotate
the points so that C becomes the origin (these two preserve distance). Let our
points now be A = (a1, b1), B = (a2, b2), and C = (0,0). Using the distance
formulas, we obtain that this is equivalent to

√
(a1 − a2)2 + (b1 − b2)2 ≤

√

a21 + b
2
1 +

√

a22 + b
2
2.

Squaring both sides and rearranging gives

−2a1a2 − 2b1b2 ≤ 2
√

a21 + b
2
1

√

a22 + b
2
2.

Squaring this and dividing by 4 gives

(a1a2 + b1b2)
2
≤ (a21 + b

2
1)(a

2
2 + b

2
2).

For those knowledgable about inequalities, it is easy to note that is the
Cauchy-Schwarz inequality when n = 2.

Now, we live in a 3-dimensional space. In our world, it also seems fairly
obvious that the shortest distance between two points is a straight line (ignoring
the fact that we live on a curved surface). So, how would we extend the triangle
inequality to 3 dimensions? We can simply do the same thing we did in 2D. Let
A = (a1, b1, c1), B = (a2, b2, c2), and C = (0,0,0). By distance formulas, we get
that

√
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 ≤

√

a21 + b
2
1 + c

2
1 +

√

a22 + b
2
2 + c

2
2.

Expanding this and doing some rearranging will gives us that the inequality
is equivalent to
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(a1a2 + b1b2 + c1c2)
2
≤ (a21 + b

2
1 + c

2
1)(a

2
2 + b

2
2 + c

2
2).

This is just Cauchy-Schwarz for n = 3. In fact, the Triangle Inequality in k
dimensions just reduces to Cauchy-Schwarz for n = k. Therefore, the triangle
inequality is true in all n-dimensional spaces for n ≥ 2. Since Cauchy-Schwarz is
always true, we do indeed have the original inequality being true. Note that the
equality case of Cauchy-Schwarz occurs when a1∶ b1∶ c1, a2∶ b2∶ c2, . . . an∶ bn∶ cn,
which implies that A, B, and C are collinear when equality occurs.

The importance of this theorem cannot be understated. Immediately from it,
we obtain one of the most fundamental properties of triangles.

Corollary (Triangle Inequality). In a non-degenerate △ABC, let a, b, and c
be the sidelengths of BC, CA, and AB respectively. Then,

a > b + c,

b > a + c,

c > a + b.

Proof: Since A does not lie on BC, the first inequality follows from the theorem.
The other inequalities follow similarly.

There exist generalizations generalizations of the triangle inequality. We state
one for complex numbers without proof. For complex numbers z1, z2, . . . zn,

n

∑
i=1
∣zi∣ ≥ ∣

n

∑
i=1

zi∣ .

2 Erdos-Mordell Inequality

Theorem (Erdos-Mordell Inequality). Let P be a point on the interior of
△ABC. Let D, E, and F be the foots from P to BC, CA, and AB respec-
tively. Then,

PA + PB + PC ≥ 2(PD + PE + PF ),

with equality holding when △ABC is equilateral and P is the center of △ABC.

Proof: Let M and N be the projections of E and F onto line PD. Note that
PA is the diameter of cyclic quadrilateral AFPE, so by law of sines,

EF

sinA
= 2R = PA Ô⇒ EF = PA sinA.
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Fig. 1: FN and ME are perpendicular to PD

Note that BDPF is cyclic, so ∠B =∠FPN . This means that

FN

FP
= sinFPN = sinB Ô⇒ FN = PF sinB.

Similarly, EM = PE sinC. Note that EF ≥ FN+EM by Pythogorean Theorem,
so PA sinA ≥ PE sinC +PF sinB Ô⇒ PA ≥ PE ⋅ sinC

sinA
+PF ⋅ sinB

sinA
. Doing this

same process on quadrilaterals FPBD and EPDC, we get the following set of
inequalities:

PA ≥ PE ⋅
sinC

sinA
+ PF ⋅

sinB

sinA
,

PB ≥ PF ⋅
sinA

sinB
+ PD ⋅

sinC

sinB
,

PC ≥ PD ⋅
sinB

sinC
+ PE ⋅

sinA

sinC
.

Adding them all gives

PA+PB+PC ≥ PD (
sinB

sinC
+
sinC

sinB
)+PE (

sinC

sinA
+
sinA

sinC
)+PF (

sinA

sinB
+
sinB

sinA
) .

Applying AM-GM on sinB
sinC

+ sinC
sinB

and cyclic variants, we get that

PA + PB + PC = 2(PD + PE + PF ).
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3 Ciamberlini’s Inequality

Theorem (Ciamberlini’s Inequality). In non-obtuse triangles, we have that

s ≥ 2R + r,

with equality when the triangle is right-angled. In obtuse triangles, we have that

s < 2R + r.

To prove this, we will prove the following property of triangles:

Theorem. In any triangle, we have that

s2 − (2R + r)2

4R2
= cosA cosB cosC.

Proof: We will use the well-known fact that 1 + r
R
= cosA + cosB + cosC.

s2 − (2R + r)2

4R2
=
1

4
(
s

R
)
2

−
1

4
(
2R + r

R
)

2

=
1

4
(

a

2R
+

b

2R
+

c

2R
)

2

−
1

4
(2 +

r

R
)
2

=
1

4
[(sinA + sinB + sinC)2 − (1 + cosA + cosB + cosB)2]

=
1

4
[(sin2A + sin2B + sin2C + 2 sinA sinB + 2 sinB sinC + 2 sinC sinA)

− (1 + 2 cosA + 2 cosB + 2 cosC + 2 cosA cosB

+ 2 cosB cosC + 2 cosC cosA + cos2A + cos2B + cos2C)]

=
1

4
(− cos 2A − cos 2B − cos 2C + 2(sinA sinB − cosA cosB + sinB sinC

− cosB cosC + sinC sinA − cosC cosA − cosA − cosB − cosC) − 1)

=
1

4
[− cos 2A − cos 2B − cos 2C + 2(− cos(A +B) − cos(B +C)

− cos(C +A) − cosA − cosB − cosC) − 1]

=
1

4
[−2 cos(A +B) cos(A −B) − 2 cos2C + 1

+ 2(cosC + cosA + cosB − cosA − cosB − cosC) − 1]

= −
1

2
(− cosC cos(A −B) + cos2C)

=
1

2
[cosC(− cosC + cos(A −B))]

=
cosC

2
(cos(A +B) + cos(A −B))

= cosA cosB cosC.
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From this, we get that s2 = (2R+r)2+4R2 cosA cosB cosC. Note that when
the triangle is acute, (2R+ r)2 + 4R2 cosA cosB cosC > (2R+ r)2, so s > 2R+ r.
When the triangle is right-angles, (2R + r)2 + 4R2 cosA cosB cosC = (2R + r)2,
so s = 2R + r. when the triangle is obtuse, (2R + r)2 + 4R2 cosA cosB cosC <
(2R + r)2, so s < 2R + r.

There exist many more inequalities that relate these quantities in a triangle.
One can find more about these inequalities here [1].

Part II. Inequalities on Quadrilaterals

In this section, we look at two inequalities that are based on the lenghts of a
quadrilateral.

4 Ptolemy’s Inequality

Theorem (Ptolemy’s Inequality). For any quadrilateral ABCD, the following
inequality holds, and equality occurs when the four points are concyclic:

AB ⋅CD +BC ⋅DA ≥ AC ⋅BD.

Proof: Let E be the point such that △ACD ∼△AEB. From this, we have that

AC

AE
=
CD

EB
=
DA

BA
Ô⇒ EB =

BA ⋅CD

DA
.

Now note that ∠EAC = ∠AEB + ∠BAC = ∠CAD + ∠BAC = BAD and
DA
AC
= BA

AE
. This implies that △EAC ∼△BAD, which further implies that

CE

AC
=
BD

AD
Ô⇒ CE =

BD ⋅AC

AD
.

Now, from the triangle inequality we get that CE ≤ EB +BC. Substituting
our expressions for EB and CE, we get that

BD ⋅AC

AD
≤ EB =

BA ⋅CD

DA
+BC Ô⇒ AB ⋅CD +BC ⋅CA ≤ AC ⋅BD,

which is what we wanted to prove. Note that equality occurs when CE =
EB + BC, meaning B, C, and E are collinear. This implies that ∠ADC =
∠ABE = 180○ − ∠ABC, where the first equality comes from similar triangles.
This means equality occurs when ABCD is cyclic.
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5 Euler-Pythagoras Inequality

Theorem (Euler-Pythagoras Theorem). In a quadrilateral ABCD, we have
the following inequlity, with equality when ABCD is a parallelogram:

AB2
+BC2

+CD2
+DA2

≥ AC2
+BD2.

Fig. 2: P bisects AC, DF , and BE

Proof: Let P be the midpoint of AC. Let E be the point such that ABCE
is a parallelogram, and F be the point such that ADCF is a parallelogram.
Note that since ADCF is a parallelogram, DF and AC bisect each other at P .
Similarly, BE and AC bisect each other at P . But this implies that DF and
BE bisect each other at P , so BDEF is a parallelogram.

Note that

∠DAC =∠ACF

∠DAE +∠EAC =∠ACB +∠BCF

∠DAE +∠EAC =∠EAC +∠BCF

∠DAE =∠BCF.

Similarly, ∠DEA =∠CBF , and since BC = AE, △DEA ≅△BCF .
Consider an arbitrary parallelogram ABCD. By law of cosines, we have that

AC2
= AB2

+BC2
− 2 ⋅AB ⋅BC cos∠ABC (1)
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and

BD2
= AB2

+AD2
− 2 ⋅AB ⋅AD cos∠BAD. (2)

We have that AD = BC and cos∠ABC = − cos∠BAD, so we can rewrite
(2) as

BD2
= AB2

+BC2
+ 2 ⋅AB ⋅BC cos∠ABC. (3)

Adding (1) and (3) we get that

AC2
+BD2

= 2AB2
+ 2BC2.

Applying this to parallelogram ADCF , BDEF , and AECB, we obtain that

2AD2
+ 2CD2

= AC2
+DF 2,

2BD2
+ 2DE2

= BE2
+DF 2,

2AB2
+ 2BC2

= AC2
+BE2.

Subtracting the first two equations and rearranging gives

2AD2
+ 2CD2

= 2BD2
+ 2DE2

+AC2
−BE2.

Adding the third eqaution to this and dividing by 2 gives

AB2
+BC2

+CD2
+DA2

= AC2
+BD2

+DE2,

which implies our desired inequality. Note that DE is equal to 0 when
ABCD is already a parallelogram, so that’s when equality occurs.

Part III. Inequalities on Circles

6 Euler’s Inequality

This inequality relates the inradius and circumradius, and is a nice application
of power of a point and similar triangles.

Theorem (Euler’s Inequality). Let △ ABC have inradius r and circumradius
R. Then

R ≥ 2r

with equality when △ ABC is equilateral.

This theorem is a direct result of the following theorem, which is what we
will prove first:
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Fig. 3: △AFI ∼△KBL

Theorem. Let △ ABC have inradius r and circumradius R, incenter I and
circumcenter O. Then we have that

OI2 = R(R − 2r).

Proof: Denote (ABC) and ω. Rewriting the condition, we get that

R2
−OI2 = 2Rr.

The left is exactly the power of I with respect to ω. Let ray AI intersect ω
at L. By power of a point,

AI ⋅ IL = R2
−OI2 = 2Rr,

so it suffices to prove thar AI ⋅ IL = 2Rr. Rewriting the condition gives
AI
r
= 2R

IL
.

Let F be the foot of the perpendicular from I to side AB. Note that the
left side of our condition is the ratio AI

IF
. Now draw the diameter OL and let

it intersect ω and K ≠ L. Note that KL = 2R, and by the incenter-excenter
lemma, BL = IL, so the ratio KL

BL
is exactly the ratio on the right side of our

condition. Finally, note that ∠AFI = ∠KBL = 90○, and ∠BAL = ∠BKL by
cyclic quadrilaterals. Thus, △AFI ∼△KBL, giving
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AI

FI
=
AI

r
=
2R

IL
=
KL

BL
.

Euler’s Inequality immediately follows from the above theorem. Simply note
that the left is nonnegative, and since R is positive, R−2r must be nonnegative,
implying the inequality. When R = 2r, OI = 0, so the circumcenter and incenter
are the same point. This only occurs in an equilateral triangle.

7 QM-AM-GM-HM on a Semicircle

Using a semicircle and constructing certain lengths, one can prove two variable
QM-AM-GM-HM. We will show how to do so. As reminder, the QM-AM-GM-
HM inequality for two variables states that

√
a2 + b2

2
≥
a + b

2
≥
√
ab ≥

2
1
a
+ 1

b

.

Proof: Let ω be a semcircle, with a diameter who’s endpoints are A and B. Let
D be the center of the semicircle, and let E be the midpoint of arcÎAB. Let C
be an arbitrary point on segment AB (Here we assume it’s to the right of D for
convenience). Let F be the intersection of ω and the perpendicular to AB at
C. Let G be the foot of C to FD. Let AC = a and BC = b.

Fig. 4: Orange - QM, Red - Am, Green - GM, Blue - HM

We now go length chasing. Note that AB = a + b, so the radius of ω is
a+b
2
. Therefore, ED = a+b

2
. We have that DC = AC −AD = a − a+b

2
= a−b

2
. By

Pythagorean Theorem on △EDC,
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EC =

¿
Á
ÁÀ
(
a + b

2
)

2

+ (
a − b

2
)

2

=

√
a2 + 2ab + b2

4
+
a2 − 2ab + b2

4
=

√
a2 + b2

2
.

By Triangle Inequality, EC ≥ ED +DC, so EC ≥ ED Ô⇒

√
a2+b2

2
≥ a+b

2
,

which established QM-AM.

Note that △ACF ∼ △FCB (∠FBC = 90○ − ∠CFB = ∠AFC), so BC
FC
=

FC
AC

Ô⇒ BC ⋅ AC = FC2 Ô⇒
√
ab = FC. Since FC ≤ ED, we have that

√
ab ≤ a+b

2
, establishing AM-GM.

Note that △FGC ∼ △FCD, so FG
FC
= FC

FD
Ô⇒ FG = FC2

FD
. Note that FD is

a radius, so FD = a+b
2
. Then,

FG =
ab
a+b
2

=
2ab

a + b
=

2
1
a
+ 1

b

.

By Triangle Inequality on △FGC, FC ≥ FG+GC, so FC ≥ FG Ô⇒
√
ab ≥

1
1
a+ 1

b

, which establishes GM-HM.

Part IV. Isoperimetric Problems

As early as the Greeks, the question of the maximum possible area a closed
curve can have given a fixed perimeter was studied. The first mathematician
make serious progress into proving the answer was Jacob Steiner. Steiner was
able to prove that the shape had to be convex and symmetric. However, there
were some flaws in Steiner’s proof, so the proof of the problem had to wait
until the machinery of calculus was created, allowing for expressions of area of
general planar curves. In this section, we will take a look at this problem, first
for triangles, then for n-gons, and finally tackle the isoperimetric problem in its
full generality.

8 Isoperimetric Problem For Triangles

Our goal is the find a triangle which maximizes area given a perimeter. Messing
around with different triangle configurations, a reasonable conjecture would be
that an equilateral triangle maximizes the area. This is indeed the triangle that
maximizes the area. To prove this, we used a smoothing argument (we are
motivated to do this since the perimeter is fixed, and we can easily use Heron’s
formula for the triangle area).

Theorem. Given a fixed perimeter p, the triangle with maximum area with
perimeter p is an equilateral triangle.
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Proof: Let p = a + b + c, where a, b, and c are the side lengths of the triangle.
By Heron’s formula, we have that

A =
√
s(s − a)(s − b)(s − c),

where s is the semiperimeter of the triangle. Rewriting the area in terms of
a, b, and c gives

A =

√

(
a + b + c

2
)(

a + b − c

2
)(

a − b + c

2
)(
−a + b + c

2
).

Now assume without loss of generality that a > b. Pick ϵ such that a−ϵ ≥ b+ϵ.
We let a′ = a − ϵ and b′ = b + ϵ, and we plug a′ in for a and b′ in for b. The first
two terms under the square root remain the same, but the last two change. The
last two become (ignoring the 2s in the denominators)

(a − b − 2ϵ + c)(−a − b + 2ϵ + c) = −(a − b − 2ϵ)2 + c2.

Comparing this to the expansion of the orginial last two terms, −(a−b)2+c2,
we see that the expression has grown larger. Thus, when we push two of the
variables closer together, we get that the area increases. Thus, the maximum
area is achieved when all the variables are equal, or when the triangle is equi-
lateral.

Corollary. The maximum area of a triangle with given perimeter p is p2
√
3

36
.

Simply let each side have length p
3
and use the area formula for an equilateral

triangle.

9 Isoperimetric Problem For n-gons

Let p be the fixed perimeter of an n-gon S, and let A be the area of S. Let’s
assume we’ve guessed that for the general isoperimetric problem, the maximum
area is achieved with a circle (this is for the purpose of motivation). We want to
know the maximum area for an n-gon, so it’s reasonable to guess that the area
is maximized wehn S is as “circular” as possible. We know that regular n-gons
can be inscribed in circles, so we guess that a regular n-gon maximizes the area.
We will prove that A is maximized when S is regular. To do so, we need to
establish three things: S is convex, S is equilateral, and S is equiangular.

First note that if S is not convex, we can make it convex with the same
perimeter. Find a nonconvex portion of the polygon and reflect over a the line
connecting the two end vertices of this nonconvex portion. Thus, S must be
convex.

Now consider two consectuve sides of S. Let the endpoints of these sides be
A, B, and C. We claim the area of △ABC is maximized when AB = AC. Note
that B lies on an ellipse with foci at A and C. Varying B on this ellipse lets
you increase the area while keeping the perimeter fixed.
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Fig. 5: Example for a pentagon

Let Γ be an ellipse centered at the origin with equation (x
a
)
2
+ (

y
b
)
2
= 1,

where a and b are arbitrary reals with a > b. We are interested in the triangle
with vertices at the foci of Γ and some point on the ellipse. Since the distance
between the foci is fixed, we need to find a point that maximizes the height
along the ellipse. This is clearly the point on the ellipse with the maximum y
value. In particular, y = b. Note that when we place B at this point, the side
lengths BA and BC (where A and C are the foci) are the same length. Thus,
when the area is maximized, the side lengths are the same length, which is what
we wanted.

Fig. 6: Configuration with max area
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Fig. 7: Example for pentagon, all sides are equal

Now consider three consecutive sides, with vertices A, B, C, and D. We
know that AB = BC = CD. We claim the area is maximized when the angles
∠ABC =∠BCD.

Consider Bretschneider’s Formula, which states that for any quadrilateral, its
area is equal to

√

(s − a)(s − b)(s − c)(s − d) − abcd ⋅ cos2 (
α + γ

2
),

where s is the semiperimeter, a, b, c, and d are the side lengths, and α and
γ are opposite angles. Note that when ABCD is cyclic, the area is maximized,
since the term abcd ⋅ cos2 (α+γ

2
) vanishes. Therefore, we want to position the

four vertices such that they are cyclic.

Consider ABCD once it is cylic, and let ∠ABC + ∠ADC = 180○. Since
AB = BC = CD, each side cuts out an arc of equal degree. In particular, letting
O be the center of the circle, we have that ∠AOB = ∠BOC = ∠COD. This
means △AOB ≅ △BOC ≅ △COD, so ∠ABO = ∠OBC = ∠OCB = ∠DCO.
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Fig. 8: Configuration with max area

Since ∠ABC = ∠ABO +∠OBC, we have that ∠ABC = ∠BCD. Thus, when
the area of the quadrilateral is maximized, the angles are equal.

Thus, the area of a polygon S with fixed perimeter p is maximized when S is
regular.

Corollary. The maximum area of an n-gon with perimeter p is p2/n
4 tan(180/n) .

Proof: Decompose the regular n-gon (it has the max area) into n congruent
isoceles triangles, with the base vertices as two consecutive vertices on the n-
gon and the other vertex being the center of the n-gon. The vertex angle is 360

n
,

and the other two angles are 90○ − 180
n
. We know that the side opposite of the

vertex is p
n
. The area of a triangle with all angles and one side is A = a2 sinB sinC

2 sinA
,

where a is opposite A. Plugging in our values, we obtain that the area of one
of these triangles is
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A =
(p/n)2 sin2 (90○ − 180

n
)

2 sin ( 360
n
)

=
(p/n)2 cos2 ( 180

n
)

4 sin ( 180
n
) cos ( 180

n
)

=
(p/n)2

4 tan(180/n)
.

Multiplying this by n for the n triangles gives us the desired area.

10 Isoperimeteric Problem

We now tackle the original Isoperimetric Problem. We will prove the following
inequality:

l2

4π
≥ A,

where l is the length of the curve and A is the area of the curve. Equality
occurs when the curve is a circle.

We first prove some lemmas.

Lemma 1. Given a closed curve C, let c(t) = (x(t), y(t)) be its parametrization,
with t ∈ [a, b] and c(a) = c(b). Let the area bounded by the curve be A. Then,

A = ∫
b

a
xy′ dt = −∫

b

a
x′y dt,

Proof: By Green’s Theorem, we have that

A = ∮
C
xy′ = −∮

C
x′y.

Evaluating these gives the desired conclusion.

Lemma 2. Let x, y, and z be functions of t with continuous first derivatives.
We have that

(xy′ − zx′)2 ≤ (x2
+ z2)((x′)2 + (y′)2)

Proof: By the Trivial Inequality,

0 ≤ (xx′ + zy′)2

= x2
(x′)2 + 2xx′zy′ + z2(y′)2

= x2
(x′)2 + x2

(y′)2 + z2(x′)2 + z2(y′)2 − (x2
(y′)2 − 2xy′zx′ + z2(x′)2)

= (x2
+ z2)((x′)2 + (y′)2) − (xy′ − zx′)2.

Equality occurs when xx′ = −zy′.
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We are now ready for the main proof. Let c(t) = (x(t), y(t)) be the parametriza-
tion of the positively oriented closed curve C with length l. Let I = [−r, r]
such that x(t) ∈ I (graphically, these are two parallel lines tangent to C such
that C is entirely between them, as seen below). Without loss of generality, let
x(0) = x(l) = r and x(m) = −r for some 0 <m < l. Define k(t) = (x(t), z(t)) to be

a circle with radius r (z(t) =
√
r2 − x(t)2 for 0 < t ≤m and z(t) = −

√
r2 − x(t)2

for m < t ≤ l).

Let A be the area of C and B the area of the circle. By Lemma 1, we have
that

A = ∫
l

0
x(t)y′(t)dt

and

B = −∫
l

0
x′(t)z(t)dt = πr2.

Adding these together gives

A + πr2 = A +B = ∫
l

0
xy′ − x′z dt

≤ ∫

l

0

√
(xy′ − x′z)2 dt

≤ ∫

l

0

√
(x2 + z2)((x′)2 + (y′)2)dt

= ∫

l

0
r dt = rl,

where the second inequality comes from Lemma 2, and the second to last
equality comes from x2 + z2 = r2 and (x′)2 + (y′)2 = 1, since the curve is
parametrized by arc length. By AM-GM,

rl = A + πr2 ≥ 2
√
Aπr2 Ô⇒ r2l2 ≥ 4Aπr2 Ô⇒

l2

4π
≥ A,

as desired.

To find out when equality occurs, we note that since we used AM-GM at the
end, A has to equal πr2, which means l = 2πr. By Lemma 2, equality between
the second and third integral occurs when −xx′ = zy′. Note that x2 + z2 = r2

and (x′)2 + (y′)2 = 1. From here, we reduce the equality (xy′ − zx′)2 = (x2 +

z2)((x′)2 + (y′)2) into a function of y′.

(xy′ − zx′)2 = (x2
+ z2)((x′)2 + (y′)2) Ô⇒ x2

(y′)2 − 2zx′xy′ + z2(x′)2 = r2
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Ô⇒ x2
(y′)2+2(x′)2x2

+z2(x′)2 = r2 Ô⇒ x2
(y′)2+(x′)2x2

+(x′)2x2
+z2(x′)2 = r2

Ô⇒ x2
((x′)2 + (y′)2) + (x′)2(x2

+ z2) = r2 Ô⇒ x2
+ (x′)2(x2

+ (r2 − x2
))

Ô⇒ x2
+ (x′)2r2 = r2 Ô⇒ x2

= r2(1 − (x′)2) Ô⇒ x2
= r2(y′)2 Ô⇒ x = ±ry′.

Now we show that y = ±rx′. We now basically repeat the entire above
argument from proving the inequality to achieving this equality case, except
when we parametrize C, we now bound it by two parallel lines except these
parallel lines will be perpendicular to the intial two parallel lines. The lines will
bound the curve in an interval I = [−r′, r′], and the curve will be parametrized as
c′(t) = (w(t), y(t)), where y(t) is the same as above. Repeating the procedure
we get that A = π(r′)2, but A has the same area in both cases, so r′ = r.
Similarly, −xw′ = yy′, so after the equality calculation, we get that y ± rx′ (this
whole entire paragraph is basically saying that we are switching the x and y-axes
in our initial parametrization).

Finally, squaring both equalities with x and y and adding them gives

x2
+ y2 = r2((x′)2 + (y′)2) = r2,

which is a circle, so we are done.

Interestingly enough, isoperimetric problems can be generalized to higher di-
mensions, where instead of perimeter and area, n − 1-dimensional measure and
n-dimensional measure are used. This topic is beyond the scope of this paper,
so it won’t be covered, but more info can be found here [2].
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