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1. Abstract

This paper will go into detail in explaining unoriented lines, kinematic measure, Poincare’s
Formula for Lines, as well as other fundamentals in integral geometry. Interesting examples
will also be provided as well as intuitive insight.
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2. Introduction

Integral geometry is defined as the study of measures on geometric spaces that are invariant
on a symmetry group. Integral geometry has always fascinated me because it allows us to
carry out calculations that seem super interesting, like on the way objects collide or the
expected number of intersections of lines within a convex region, but seem super difficult
to approach in other ways. One of the most famous problems in Integral Geometry is the
Buffon’s Needle Problem, which involves the following conditions:

(1) There is a plane, with infinite parallel lines on it, each a distance d apart
(2) There is a needle, of length l ≤ d

The question is, if the needle is randomly dropped on the plane, what is the probability that
it touches one of the lines? To solve this problem, we need to use the techniques of integral
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geometry. An illustration of this problem is shown below.

Caption: An illustration of Buffon’s Needle. Credit: Wolfram MathWorld

Another application of integral geometry can be used to solve the following problem involving
two cubes of equal size: if two cubes of equal size randomly collide, what is the probability
that the collision is corner to face?
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Integral can give us the answer to this problem: the probability of a corner to face collision
is approximately 0.46.

3. Brief History

Integral geometry was first worked on by Luis A. Santalo and Wilhelm Blaschke. From
integral geometry came many other fields of study, including geometric measure theory,
stereometry, and tomography. These fields of study can have interesting applications in even
x-rays.

4. Kinematic Measure

In integral geometry, it is often useful to be able to accurately describe all lines in a way
that they can be measured equally. Therefore, we use unoriented lines, defined as follows.

Definition 4.1. An unoriented line L in the plane is given by two variables, p ≥ 0 and
0 ≤ θ < 2π, where p is the closest distance from a point on L to the origin and θ is the
angle formed between the segment connecting the closest point and the positive x-axis (or,
equivalently, the ranges −∞ < p < ∞ and 0 ≤ η < π may be used). This is shown in the
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following diagram:

Image Credit: http://www.math.utah.edu/ treiberg/IntGeomSlides.pdf

Consider the point P on the line L which is closest to the origin. It is clear that the
coordinates of P must be (p cos θ, p sin θ). Furthermore, the segment from the origin to P
has slope

m =
p sin θ

p cos θ
=

sin θ

cos θ
.

This segment is perpendicular to the line L, and it follows that the slope of the line L must
be

− cos θ

sin θ
.

Therefore, the equation of line L is

cos(θ)x+ sin(θ)y = (p cos θ cos θ) + (p sin θ sin θ)

cos(θ)x+ sin(θ)y = p(cos2 θ + sin2 θ)

cos(θ)x+ sin(θ)y = p(1)

cos(θ)x+ sin(θ)y = p.

Note that this allows us to, given a point on an unoriented line as well as the angle of that



INTEGRAL GEOMETRY EXPOSITORY PAPER 5

line, find the value of p easily.

Proposition 4.2. A rigid motion M on an unoriented line is a translation by (x0, y0) fol-
lowed by a rotation by an angle ϕ. Specifically, we have the following:

(
x′

y′

)
= M

(
x
y

)
=

(
x0

y0

)
+

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

Therefore, the following describes the inverse of rigid motion, M−1

(
x
y

)
= M−1

(
x′

y′

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x− x0

y − y0

)
.

To do integral geometry, it is necessary to find a measure on unoriented lines that is invariant
under rigid motion. This measure will be called kinematic measure.

Definition 4.3. For an unoriented line in (p, θ) coordinates, the kinematic measure is given
by

dK = dp ∧ dθ.

We will now prove the following theorem:

Theorem 4.4. (Kinematic Measure of Unoriented Lines is invariant under rigid motion)
Suppose L is an unoriented line. Then we have the following:

dK(L) = dK(M(L))

where M is a rigid motion.

Proof. Let’s say that the rigid motion consists of first a rotation about the origin by an
angle ϕ as well as a translation by (x0, y0). Following the rotation, our line given by (p, θ)
coordinates is just (p, θ + ϕ) as the distance from the line to the origin is preserved. After
the translation, the angle is preserved, and we have

p′ = p+ cos(θ + ϕ)x0 + sin(θ + ϕ)y0.

Hence, the new line L′ = M(L) is determined by

(p′, θ′) = (p+ cos(θ + ϕ)x0 + sin(θ + ϕ)y0, θ + ϕ).

The Jacobian Formula for change in measure gives the following

dK(L′) = |J |dK(L).
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where

J =
∂(p′, θ′)

∂(p, θ)
=

∣∣∣∣∣∂p
′

∂p
∂p′

∂θ
∂θ′

∂p
∂θ′

∂θ

∣∣∣∣∣ =
∣∣∣∣1 ∗
0 1

∣∣∣∣ = 1.

Hence, dK(L′) = dK(L), implying the kinematic measure is invariant under rigid motion,
as desired. ■

Alternatively, this can be proven using properties of the wedge product. The wedge prod-
uct is a skew product, implying that it satisfies the following properties:

Proposition 4.5. (Properties of a Skew Product *)

(1) a ∗ a = 0 for all a.
(2) Distributes over addition.

From here we can prove the following about the skew product:

Lemma 4.6. For a skew product ∗ and for all a, b, we have (a ∗ b) = −(b ∗ a).

Proof. We have the following

0

= (a+ b) ∗ (a+ b)

= (a ∗ a) + (a ∗ b) + (b ∗ a) + (b ∗ b)
= 0 + (a ∗ b) + (b ∗ a) + 0

= (a ∗ b) + (b ∗ a).

■

From here it follows that

(a ∗ b) = −(b ∗ a).

Next, we note that

p′ = p+ cos(θ + ϕ)x0 + sin(θ + ϕ)y0

θ′ = θ + ϕ.

From here it follows

dp′ = dp+ (− sin(θ + ϕ)x0) + (cos(θ + ϕ)y0).

dθ′ = dθ.
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Therefore, we have

dp′ ∧ dθ′

= (dp+ (− sin(θ + ϕ)x0) + (cos(θ + ϕ)y0dθ) ∧ dθ

= dp ∧ dθ + ((− sin(θ + ϕ)x0) + (cos(θ + ϕ)))(dθ ∧ dθ)

= dp ∧ dθ + 0

= dp ∧ dθ

This completes the alternative proof of the invariance of kinematic measure. ■

5. Proof of Poincare’s Formula for Lines 1896

Let C be a piecewise C1 curve in the plane.

Definition 5.1. For an unoriented line L in the plane, n(L∩C is the number of intersectoin
points between the line L and the curve C. If C contains a linear segment that agrees with
L, then n(L ∩ C) is taken to be ∞.

In the definition it does say that n(L ∩ C) can have a value of ∞, but this will not
matter when considering the the measure of unoriented lines meeting a curve, in Poincare’s
Formula. Intuitively, if a curve happens to have a straight line segment, then there will be
an unoriented line agreeing with that curve, but in the scope of all unoriented lines, this
will not matter when integrating, as the dK-measure of such lines will be 0. Now, we state
Poincare’s Formula for Lines.

Theorem 5.2. Let C be a piecewise C1 curve. Then, the measure of unoriented lines meeting
C, counting with multiplicity, is given by

2L(C) =

∫
{L:L∩C ̸=∅}

n(C ∪ L)dK(L).

Proof. We will first solve the problem for C1 curves, then we can add the integrals together
to get the any curve C.

Assume C is a C1 curve. We parameterize C by arclength as Z(s) = (x(s), y(s)). Therefore
there are x(s), y(s) ∈ C1[0, s0] such that the tangent vector

Ż = (ẋ, ẏ)

satisfies |Ż| = 1 (because we have parameterized by the arc length).

In order to prove Poincare’s Formula for Lines, we will consider a flag that is the set of
pairs (L,Z) where L is a line in the plane and Z ∈ L is a point on the line L. The set of
points and lines that we are interested in is the following subset of the flag

S = {(L,Z);L ∩ C ̸= ∅, Z ∈ L ∩ C}.
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The line L is determined by the coordinates (p, θ). The point Z ∈ L is determined by an arc
length coordinate q along L from the foot point of the line L which is (p cos θ, p sin θ). The
following diagram illustrates how the set S is being determined this way.

Caption: In this diagram, the curve C is shown and one of the lines L meeting C at at
least one point is also shown. Futhermore, the possible locations Z ∈ L ∩ C are shown.

In this way of describing S, we are first picking a line that intersects with C and then looking
at the intersection points. From here, we get the following:

∫
L:L∩C ̸=∅

n(C ∩ L)dK(L) =

∫
L:L∩C ̸=∅

( ∑
Z∈L∩C

1

)
dK(L)

To prove Poincare’s Formula, we will look at another way to determine S. This is by first
selecting the point (x, y) = Z ∈ C and then taking L to be any unoriented line such that
Z ∈ L having an angle 0 ≤ η < π (we are only going up till π because otherwise we will get
two orientiations of the same line passing through Z. We have
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p̃ = x(s) cos η + y(s) sin η.

Again, we can alternatively use −∞ < p̃ < ∞ and 0 ≤ η < π instead of p ≥ 0 and
0 ≤ θ < 2π. The motivation for choosing this new range is that it is unclear if the value
of p̃ will be positive or negative for the line L we choose passing through Z. The following
diagram illustrates this concept, as well as the concept of picking unoriented lines through
the same point Z.

Caption: In this diagram, we can clearly see, for the point Z which is on the curve C, the
value of p will be negative. Furthermore, this diagram illustrates the other method of

looking at unoriented lines, by first selecting a point on the curve then looking at all the
unoriented lines that pass through it.
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It might seem as though by picking unoriented lines through a point on the curve C we
might pick the same line multiple times. However, it is important to note that the number
of times we pick the same line L is just n(L ∩ C), the number of intersection points, which
is exactly what we want.

We proceed, taking the differential of p̃ as follows

dp̃ = (ẋ(s) cos η + ẏ(s) sin η)ds+ (−x(s) sin η + y(s) cos η)dη

Recall that we have chosen x(s), y(s) such that the magnitude of the tangent vector is 1.
Therefore, we can describe (ẋ(s), ẏ(s)) as (cosϕ(s), sinϕ(s)).
From here it follows that

dp̃dη

= |
∣∣∣∣cosϕ cos η + sinϕ sin η ∗

0 1

∣∣∣∣ |dsdη
= | cos(ϕ(s)− η)|dsdη

Then, we can evaluate the following integral∫
L:L∩C ̸=

(∑
Z∈L

1

)
dK

=

∫
Z:Z∈C

∫
L:Z∈L

dp̃dη

=

∫ s0

0

∫ π

0

| cos(ϕ− η)|dηds

= 2

∫
C

ds

= 2L(C)

To evaluate the integral of | cos(ϕ− η)| we can make the observation that it will always be 2
no matter what ϕ is because it will always come out to equal the area of the positive section
of the cosine function in one period. This completes the proof of Poincare’s Formula. ■

6. Sylvester’s Problem

Theorem 6.1. (Sylvester’s Problem) If Ω is a bounded convex region and ω is another
bounded convex region such that ω ⊂ Ω, then let P be the probability that a line meets ω
given that it meets Ω. P is given by

P =
L(ω)

L(Ω)
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Proof. Since ω and Ω are convex regions, almost all lines that meet them will intersect the
boundary twice. Furthermore, if any line meets ω, it must also meet Ω, as ω is a subset.
Therefore, we can apply Poincare’s Formula for Lines to get the following

P =
2L(ω)

2L(Ω)

=
L(ω)

L(Ω)

■
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