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Motivation

▶ The study of lattice paths and their enumeration comes
a long way, from the works of Leibniz and De Moivre,
to being a well-studied combinatorial subject worked on
by some of the best combinatorialists from the last
half-century.

▶ A d-dimensional lattice path (or lattice walk) is a
sequence of lattice points in Zd , with d-dimensional
vectors that join consecutive points in the sequence
(called steps).

▶ The step set of a lattice path model is a fixed set
containing all possible steps in the paths of interest.

▶ We present an example: Dyck paths.
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Motivation (Example: Dyck paths)

▶ Dyck paths: paths from (−n, 0) to (n, 0) that do not
go below the x-axis where the steps are in
{⟨1, 1⟩, ⟨1,−1⟩}.

▶ Dyck paths are enumerated by the Catalan numbers,
given by Cn := 1

n+1

(2n
n

)
.

▶ There are numerous ways of deriving the enumeration
of Dyck paths. One common method is to recursively
compute Cn by strong induction on n, whence we
approach the recursion

Cn+1 =
n∑

i=0

Ci · Cn−i .
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Motivation (generating functions for
enumeration)

▶ Given a sequence {ai}i≥0, its generating function is the
power series given by

f (x) :=
∑
i≥0

aix
i .

▶ In most enumerative combinatorics problems, finding a
generating function that enumerates a combinatorial
object of interest is useful.

▶ The reason why generating functions are so useful is
because they can be manipulated in various ways
that combinatorial quantities cannot.
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Motivation (generating functions for
enumeration)

Example

As an example, we consider Dyck paths. Using only
elementary methods (such as bijections) we find the
recurrence

Cn+1 =
n∑

i=0

Ci · Cn−i .

Let the generating function for Dyck paths by C (x). From
power series multiplication we quickly find that

C (x) = xC (x)2 + 1,

from which we can solve for C (x) as C (x) = 1−[1−4x]1/2

2x .
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▶ Unfortunately, most lattice path models cannot be
easily enumerated by elementary methods (e.g.
bijections and recursions). However, by the means of
manipulation of generating functions, we can extract
much information about the sequences that enumerate
various lattice path models.

▶ Here “information” can be things like:
▶ explicit forms of sequences for enumeration;
▶ explicit forms of their corresponding generating

functions;
▶ determination of algebraicity/transcendence and

D-finiteness of generating functions, etc.
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Prerequisites

We briefly go over some general terminology that will be
used extensively in the remainder of this talk.

▶ Analytic prerequisites

▶ Generating functions as combinatorial objects
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Prerequisites – Analytic Terminology

Definition (Generating Functions)

The generating function of a d-dimensional sequence
{av}v∈Zd

≥0
is the d-variate power series

F (x1, . . . , xd) =
∑

⟨j1,...,jd ⟩∈Zd
≥0

a⟨j1,...,jd ⟩x
j1
1 · · · x jdd .

Definition (Diagonals)

Consider the generating function F from the above definition
where d = 2. Then the diagonal △F of F is

△F (x) :=
∑
i≥0

a⟨i ,i⟩x
i .
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Prerequisites – Analytic Terminology

Definition (Algebraicity)

We say that a Laurent series F (X ) = {an}n≥−n0 is algebraic
over the field of characteristic 0 (K[X ]) if for some integer d
there exists polynomials A0(X ), . . . ,Ad(X ) with coefficients
in K and not all 0 such that

d∑
i=0

Ai (X )F (X )i = 0.

Laurent series that are not algebraic are called
transcendental.

1
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Prerequisites – Analytic Terminology

Definition (D-finite functions)

A function f = f (x) is called D-finite (or holonomic) if there
exist polynomials 0 ̸= a0(x), . . . , ar (x) ∈ K[X ] such that

r∑
k=0

ak(x)f
(k)(x) = 0.

A useful fact on the D-finiteness of bivariate power series is
the following.

Theorem

If f (x1, x2) is a D-finite generating function, then so is its
diagonal △f (x).
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Prerequisites – Analytic Terminology

Theorem (Lagrange inversion)

Let G (t) be any element of C[[t]]. Then the equation
f (y) = yG [f (y)] has a unique solution in C[[y ]], and

⟨yn⟩(f (y))n =
k

n
⟨tn−k⟩(G (t))n ∀n, k > 0 (1)

⟨yn⟩ (f (y))k

1− yG ′(f (y))
= ⟨tn−k⟩(G (t))n ∀n, k ≥ 0 (2)
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Prerequisites – Generating functions in
combinatorics

▶ Now we look at generating functions as combinatorial
objects.

▶ In general, operations such as multiplication,
differentiation, and diagonalization have combinatorial
significance.
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Prerequisites – Generating functions in
combinatorics

Example (Distributions)

Show that the number of solutions in nonnegative integers
to a1 + . . .+ ak = n is

(n+k−1
k−1

)
.

Proof.

▶ The generating function for the number of solutions is
f (x) := (1 + x + x2 + . . .)k = (1− x)−k .

▶ Upon routine power series manipulation, it is easy to
see that the coefficient of xn is f is indeed

(n+k−1
k−1

)
.
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Introduction to Kernel Methods

▶ For a lattice path model with step set S, we say its
characteristic polynomial is the Laurent polynomial

S(z) =
∑
i∈S

wiz
i.

By default, the weights wi are set to 1.

▶ We define a kernel K (t, z) for each model. The
definitions may vary, but they are generally similar, in
that they are a function of t and S(z).

▶ In several general lattice path models, we can derive
several kernel equations that contain kernels. This
gives us a way of computing generating functions that
count certain lattice paths.
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Unrestricted models

▶ Unrestricted walks have no restriction on steps.

▶ In this case, the kernel is K (x , t) = 1− txS(x).

▶ Let

W (z, t) :=
∑
n≥0

(∑
i∈Zd

fi,nz
i

)
tn,

where fi,n represents the number of walks in the lattice
model of interest which consists of n steps and end at a
lattice point i ∈ Zd .

▶ The kernel equation in this case is

W (z, t) · K (z, t) = zp.
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Unrestricted models

Example

The number of walks that both start and end at the origin
has its generating function given by

E (t) = [z0]W (z, t)

= △W (z, z1z2 · · · zd t)

= △
(

zp

1− t(z1 · · · zd) · S(z)

)
,

which is D-finite since diagonals preserve D-finiteness.
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One-dimensional excursions

▶ Now we consider walks on a one-dimensional scale
where steps are contained in Z. These are called
one-dimensional excursions.

▶ We say that the small roots of a equation solving for
power series in t are the roots that approach 0 as t
approaches 0.

▶ Here we consider kernel K (x , t) = 1− txS(x).
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One-dimensional excursions

Theorem (kernel equation for one-dimensional
excursions)

Let S ⊂ Z be a step set with smallest element −m where
m > 0. The generating function E (t) that enumerates walks
with steps in S which begin and end at the origin is given by

E (t) = t
m∑
i=1

r ′j (t)

rj(t)
,

where r1(t), . . . , rm(t) are the small roots of
K (x , t) := 1− tS(x) in x.
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Walks in Half-space

▶ Now we consider walks with step set S ′ ⊂ Zd restricted
to half-space (i.e. Zd−1 × N).

▶ As a way to count walks that can end at an arbitrary
point, or walks ending on the hyperplane zd = 0, we can
simply project all of the steps onto the dth coordinate.

▶ This induces a new weighted step set S.
▶ Let H(x , t) ∈ R[x ][[t]] be the power series defined by

H(x , t) =
∑
n≥0

∑
i≥0

hi ,nx
i tn,

where hi ,n enumerates the weighted half-space walks of
length n on the steps in S ending at a point with
x-coordinate i .

▶ We can now deduce a kernel equation for this model; in
this case, the kernel is K (x , t) = 1− tS(x).
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Walks in Half-space

▶ Now we consider walks with step set S ′ ⊂ Zd restricted
to half-space (i.e. Zd−1 × N).

▶ As a way to count walks that can end at an arbitrary
point, or walks ending on the hyperplane zd = 0, we can
simply project all of the steps onto the dth coordinate.

▶ This induces a new weighted step set S.

▶ Let H(x , t) ∈ R[x ][[t]] be the power series defined by

H(x , t) =
∑
n≥0

∑
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where hi ,n enumerates the weighted half-space walks of
length n on the steps in S ending at a point with
x-coordinate i .

▶ We can now deduce a kernel equation for this model; in
this case, the kernel is K (x , t) = 1− tS(x).
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Walks in Half-space

Theorem (kernel equation for walks in half-space)

We have

K (x , t)H(x , t) = 1− t
m−1∑
j=0

S<−j(x)x
j⟨x j⟩H(x , t).
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Walks in Half-space

Example (Dyck paths and prefixes in half-space)

Let S = {1, 1} be the unweighted step set with
characteristic polynomial S(x) = x−1 + x . By the kernel
equation for walks in half-space,

(1− t(x−1 + x))H(x , t) = 1− tx−1⟨x0⟩H(x , t)

= 1− tx−1H(0, t).

We can find from the above that

H(0, t) =
1− [1− 4t2]1/2

2t2
=

∞∑
k=0

Ckt
2k .

Conceptually, the number of walks of length 2n with step set
S is Cn.
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Walks in the Quarter-plane

▶ We consider walks on a weighted step set S ′ ⊂ Zd

restricted to the quarter-space Zd−2 × N2.

▶ Rather than taking an arbitrary unweighted step set S,
we restrict our model to a short step model. This
effectively sets S ⊂ {−1, 1, 0}d .

▶ The main difference between this new model and the
other discussed models is that our kernel becomes a
quadratic in its three variables.
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Walks in the Quarter-plane

▶ The main difference between this new model and the
other discussed models is that our kernel becomes a
quadratic in its three variables.

Theorem

The kernel equation for walks in the quarter-plane is given by

xy(1− tS(x , y))Q(x , y , t)

= xy − tI (y)− tJ(x) + 1(−1,−1)∈StQ(0, 0, t),

where I (y) := y(⟨x−1⟩S(x , y))Q(0, y , t) and
J(x) := x(⟨y−1⟩S(x , y))Q(x , 0, t).
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Walks in the Quarter-plane

Theorem

The kernel equation for walks in the quarter-plane is given by

xy(1− tS(x , y))Q(x , y , t)

= xy − tI (y)− tJ(x) + 1(−1,−1)∈StQ(0, 0, t),

where I (y) := y(⟨x−1⟩S(x , y))Q(0, y , t) and
J(x) := x(⟨y−1⟩S(x , y))Q(x , 0, t).

▶ The additional variable in the kernel for quadrant walks
is a new conflict because we need to consider algebraic
surfaces defined by K (x , y , t) = 0. To avoid this
conflict, we introduce the algebraic kernel method,
where we don’t have to solve for the kernel.
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Introduction

▶ We use group models to use the algebraic kernel
method. In this we introduce a group G consisting of
substitutions that fix K .

▶ Let G be generated by the involutions Ψ and Φ under
composition.

▶ For example, we can consider step set
{(0,±1), (±1, 0)}, where G is generated by
Ψ(x , y) = (x−1, y) and Φ(x , y) = (x , y−1).
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Finite Group Models

▶ Finite group models (models with finite-sized G) apply
to 23 of the 79 quadrant models up to isomorphism.

Theorem

The kernel equation for finite group models is∑
g∈G

sgn(g)g(xyQ(x , y , t)) =
1

1− tS(x , y)

∑
g∈G

sgn(g)g(xy).

Theorem (a condition for finite groups)

Let S be a 2-dimensional short step model not contained in
the half-plane. Then:

1. There is a unique vanishing point of S(x , y) with positive
coordinates (a, b).

2. If G is finite then
Sxy (a,b)√

Sxx (a,b)Syy (a,b)
= cos(θ) for some rational

multiple θ of π.
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Infinite Group Models

▶ Infinite group models (models where infinitely G has
infinitely many elements) apply to 56 of the 79
quadrant models up to isomorphism.

▶ For each of these 56 models S, the following holds.

Theorem (non-D-finiteness criterion)

Let S be a two-dimensional small step model not contained

in a half-plane. As long as
Sxy (a,b)√

Sxx (a,b)Syy (a,b)
cannot be written

as cos(θ) for some rational multiple θ of π, the generating
function Q(0, 0, t) in t is non-D-finite.
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A Factorization Result of Gessel

In 1978, Gessel showed that each Laurent series
f ∈ C[[y , y/t]] with constant term 1 has a unique
decomposition f (t) = f−f0f+, where f− contains only
negative powers of t (and constant term 1), f+ contains only
positive powers of t (and constant term 1), and f0 is
independent of t (and constant term 1). Furthermore, he
proved an explicit factorization for certain f :

Lemma (Gessel)

Let h(t, y) =
∑∞

i=0 ai t
i , where a0, a1 ∈ yC[[y ]] and

ai ∈ C[[y ]]. Then the equation α = h(α, y) has a unique
solution in α ∈ yC[[y ]]. Define f := [1− t−1h(t, y)]−1.
Then in the decomposition of f = f−f0f+, we have
f− = [1− t−1α]−1 and f0 =

α
a0
. Furthermore, for k > 0,

αk =
∞∑
n=1

k

n
⟨tn−k⟩[h(t, y)]n.
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A Factorization Result of Gessel

Lemma (Gessel)

Let h(t, y) =
∑∞

i=0 ai t
i , where a0, a1 ∈ yC[[y ]] and

ai ∈ C[[y ]]. Then the equation α = h(α, y) has a unique
solution in α ∈ yC[[y ]]. Define f := [1− t−1h(t, y)]−1.
Then in the decomposition of f = f−f0f+, we have
f− = [1− t−1α]−1 and f0 =

α
a0
. Furthermore, for k > 0,

αk =
∞∑
n=1

k

n
⟨tn−k⟩[h(t, y)]n.

▶ We will give the above technical lemma a combinatorial
counterpart via lattice paths and use well-known lattice
path models to demonstrate examples of the lemma.
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Terminology

▶ We will give the above technical lemma a combinatorial
counterpart via lattice paths and use well-known lattice
path models to demonstrate examples of the lemma.

▶ Here we examine lattice paths over Z2, and let S be a
step set over Z2.

▶ We say that the point (a, b) of a lattice path over Z2

has height a− b.

▶ The endpoint of a path π is the point at which it ends,
denoted by (ex(π), ey (π)).

▶ We can also take products of paths; given two paths π1
and π2, their product π1π2 is the path π1 followed by
π2.

▶ A head of a path π is any π1 such that there exists π2
where π1π2 = π.
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Terminology

Definition (enumeration function)

For a set P of lattice paths over Z2, we define its
enumeration function by

ϑ(P)(t, y) =
∑
π∈P

tex (π)−ey (π)y ey (π).

Furthermore, we write ϑ(p) = ϑ({p}) where p is any path.

Here is a basic lemma on the above.

Lemma

For any two paths π1 and π2, we have the following:

ϑ(π1π2) = ϑ(π1)ϑ(π2) (3)
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Terminology

Definition (sign classes)

The sign classes consists of the following three classes of
paths, all starting at the origin.

▶ A minus-path is either the empty path or a path such
that its endpoint has a negative height less than that of
any other head on the path.

▶ A zero-path is a path such that its endpoint has height
zero and all other heads on the path have nonnegative
height.

▶ A plus-path is a path such that its endpoint has a
positive height greater than that of any other point on
the path.
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Unique Decomposition of Paths

Theorem (path decomposition)

Let π be a lattice path over Z2 starting at the origin. Then
π has a unique decomposition π = π−π0π+, where π− is a
minus-path, π0 is a zero-path, and π+ is a plus-path.

Proof.

▶ Take π− to be a head of π with minimal height and
smallest y -coordinate.

▶ Let π = π−σ for some path σ. Then take π+ as the
head of σ with largest y -coordinate and a height of 0.

▶ Now clearly there exists a unique selection of π+, which
we use. This gives us a construction.

▶ Take ϑ of both sides of the equivalence π = π−π0π+
and apply our initial lemma to conclude that our
construction is indeed unique.
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Let π be a lattice path over Z2 starting at the origin. Then
π has a unique decomposition π = π−π0π+, where π− is a
minus-path, π0 is a zero-path, and π+ is a plus-path.

Proof.

▶ Take π− to be a head of π with minimal height and
smallest y -coordinate.

▶ Let π = π−σ for some path σ. Then take π+ as the
head of σ with largest y -coordinate and a height of 0.

▶ Now clearly there exists a unique selection of π+, which
we use. This gives us a construction.

▶ Take ϑ of both sides of the equivalence π = π−π0π+
and apply our initial lemma to conclude that our
construction is indeed unique.
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Decomposition of Enumeration Function

Theorem

Let S be a step set, and let S−, S0, and S+ be sets of
minus-, zero-, and plus-paths with their step set being a
subset of S. Then ϑ(S−) = [ϑ(S ′)]−, ϑ(S0) = [ϑ(S ′)]0, and
ϑ(S+) = [ϑ(S ′)]+.

Proof.

From the initial lemma and the multiplicative nature of ϑ,
we have ϑ(S ′) = ϑ(S−)ϑ(S0)ϑ(S+). The desired statement
follows from the fact that the decomposition a function in
C[[y , y/t]] is unique.
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A Decomposition Lemma

A useful corollary of our initial lemma is the following.

Lemma (explicit decomposition)
Let f = f (t, y) = (1 − t − t−1y − z)−1, where z ∈ yC[[y ]]. Then,

f− = [1−t−1·
1 − z − [(1 − z)2 − 4y ]1/2

2
]−1 = 1+

∞∑
k=1

∞∑
n=0

∞∑
j=0

t−k yn+k z j
k

2n + j + k

(
2n + j + k

n + k, n, j

)
;

(4)

f0 =
1 − z − [(1 − z)2 − 4y ]1/2

2y
= 1 +

∞∑
n=0

∞∑
j=0

ynz j
1

2n + j + k

(
2n + j + 1

n + 1, n, j

)
; (5)

f+ = [1 − t ·
1 − z − [(1 − z)2 − 4y ]1/2

2y
]−1 = 1 +

∞∑
k=1

∞∑
n=0

∞∑
j=0

tk ynz j
k

2n + j + k

(
2n + j + k

n + k, n, j

)
.

(6)
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Examples

Example (Catalan and Ballot numbers)

Consider the step set S = {(0, 1), (1, 0)}. Now,
ϑ(S ′) = [1− t − t−1y ]−1. By the prior lemma, we evaluate
ϑ(S0) as

ϑ(S0) =
1− [1− 4y ]1/2

2y
=

∞∑
n=0

(2n
n

)
n + 1

yn =
∞∑
n=0

Cny
n,

which returns the Catalan numbers Cn, and we evaluate
ϑ(S+) as

ϑ(S+) =

(
1−t·

1 − z − [1 − 4y ]1/2

2y

)−1
= 1+

∞∑
k=1

∞∑
n=0

tk yn
k

2n + k

(
2n + k

n

)
=

∞∑
k=0

∞∑
n=0

Bk,nt
k yn,

returning the ballot numbers Bk,n.
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Potential Extensions of the Factorization Method

Some extensions are:

▶ Considering a height of 1 instead of a height of 0. This
scenario was worked on by Gessel in a paper about the
q-analogue of Lagrange inversion.

▶ Changing the definition of height to (a, b) → a− kb.
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Introduction

A well-known problem in lattice path enumeration is the
following.

Problem

Let k = a
b be a rational number so that gcd(a, b) = 1. How

many up-right lattice paths are there from (0, 0) to (bn, an)
below the line y = kx for integers n > 0?

▶ In the 1950s, Bizley and Grossman independently
computed two formulae that give the number of paths
above the line.

▶ We start with Bizley’s formulation.
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The Formulae of Bizley and Grossman

Theorem (Bizley, 1954)

Denote by f (bn, an) the number of up-right paths from
(0, 0) to (bn, an) weakly above y = a

bx. Then

f (bn, an) = ⟨tn⟩exp
n∑

j=0

1

(a+ b)

(
(a+ b)j

a

)
t j

▶ Bizley’s proof involved using a generating function in
conjunction with the cycle lemma on permutations.

▶ Grossman’s formulation was done by casework on
appearances of up-steps and right-steps, resulting in a
summation over integer partitions of n.
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Integer Slope Case

Theorem

Let an,k be the number of walks from (0, 0) to (n, kn) under
the line y = kx, where k is a fixed positive integer. Let

fk(t) :=
∞∑
n=0

an,kt
n.

Then fk(t) satisfies the functional equation

t · fk(t)k − fk(t) + 1 = 0 (7)

for all t ∈ [0, kk

(k+1)k+1 ].
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Integer Slope Case (proof)

We outline a probabilistic proof.

▶ Start at (1, 0), and every second flip a coin. Suppose
the coin flips heads with probability p and tails with
probability 1− p.

▶ For each ’head’ occurrence, move 1 unit up, and for
every ’tail’ occurrence, move 1 unit to the right.

▶ Terminate the process once the endpoint of the path is
on the line y = kx .

▶ Using Chebyshev’s inequality, it can be shown that the
probability of the process terminating at some point is 1
when p ∈ [ k

k+1 , 1].

▶ This probability is

∞∑
n=0

an,kp
nk+1(1− p)n = 1.
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Integer Slope Case (proof, cont.)

▶ This probability is

∞∑
n=0

an,kp
nk+1(1− p)n = 1.

▶ This rewrites as

f (pk(1− p)) =
1

p

for all p ∈ [ k
k+1 , 1].

▶ Note that g : [ k
k+1 , 1] 7→ [0, kk

(k+1)k+1 ] defined by

g(x) = xk(1− x) is a bijective map.

▶ Thus, for all t ∈ [0, kk

(k+1)k+1 ], t · fk(t)k − fk(t) + 1 = 0.

□
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Integer Slope Case

Corollary

We have the following explicit representation:

an,k =
1

1 + nk

(
nk

n

)
.

The proof is just Lagrange inversion applied to the prior
theorem.
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A Useful Bijection

Theorem

Let α = a
c and β = b

c for positive integers a, b, and c with
gcd(a, b, c) = 1. Then there is a bijection that maps the
up-right walks that begin at (0, 0) and stay weakly below
y = αx + β to the walks that begin at (0, b) that have step
set {(1, a), (1,−c)} and are above the x-axis.
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Lattice Paths under Lines of Slope 2/5

Theorem

Consider walks in N2 with step set {−2,+5}. The number
of such walks starting at altitude 3 and ending at altitude 0
is given by the generating function F (x), and altitude 4 and
ending at altitude 1 is given by the generating function
G (x). Let P(z) = z−2 + z5 and the kernel 1− xP(z) = 0
have small roots (for z) of r1(x) and r2(x). We have

F (x) = − r1r2(r
4
1 − r42 )

x(r1 − r2)

and

G (x) =
r61 − r62

x(r1 − r2)
.
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Lattice Paths under Lines of Slope 2/5

Theorem

Denote An and Bn by the number of paths beginning at the
origin and ending at (5n − 1, 2n − 1) that respectively stay
weakly below y = (2/5)x + 1/5 and stay weakly below
y = (2/5)x; then we have

An + Bn =
2

7n − 1

(
7n − 1

2n

)
.

Remark. An and Bn have rather ugly forms, and it is fairly
surprising as to why their sum is so nice! There are a
number of factors that contribute to this result.
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Conclusion

In conclusion, we surveyed a number of topics in the modern
combinatorial field of lattice path enumeration. In particular,
we looked upon:

▶ kernel methods for various models;

▶ finite and infinite group models for the algebraic kernel
method;

▶ Laurent series factorization and a combinatorial
counterpart;

▶ counting walks under lines of rational slope, in
particular the Grossman-Bizley formulae, integer slopes,
and the case when the slope is 2/5.
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Thanks for attending my talk!
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