
LATTICE PATH ENUMERATION

NEIL KOLEKAR

Abstract. In this paper we discuss various lattice path models and derive useful information about
algebraic objects that enumerate them. In particular, we prove results on explicit forms, algebraicity,
and the D-finiteness of generating functions that enumerate these paths, and occasionally compute
closed-form sequences that count them.

1. Introduction

1.1. Motivation. The study of lattice paths and their enumeration comes a long way, from the
works of Leibniz and De Moivre, to being a well-studied combinatorial subject worked on by some of
the best combinatorialists from the last half-century, such as Banderier, Flajolet, Gessel, Bousquet-
Mélou, and many others.

To simply put it, a d-dimensional lattice path (or lattice walk) is a sequence of lattice points in
Rd, with d-dimensional vectors that join consecutive points in the sequence (called steps). One of
the most elementary and well-known examples of lattice paths are Dyck paths ; these are paths from
(−n, 0) to (n, 0) not going below the x-axis where the steps are in {⟨1, 1⟩, ⟨1,−1⟩}. Dyck paths are
enumerated by the Catalan numbers, given by Cn := 1

n+1

(
2n
n

)
.

There are numerous ways of deriving the enumeration of Dyck paths. One common method is to
recursively compute Cn by strong induction on n, whence we approach the recursion

Cn+1 =
n∑

i=0

Ci · Cn−i.

As in most enumerative combinatorics problems, we find a generating function that enumerates
these lattice paths. The reason for its involvement is that generating functions can be manipulated
in ways that combinatorial quantities cannot. As such, the generating function associated with
Dyck paths is

∞∑
i=0

Cnx
n =

1− [1− 4x2]1/2

2x
.

Unfortunately, most lattice path models cannot be easily enumerated by elementary methods,
such as bijections and recursions. However, by the means of manipulation of generating functions, we
can extract much information about the sequences that enumerate various lattice path models. This
“information” can be things like explicit forms of sequences for enumeration, explicit forms of their
corresponding generating functions, determination of algebraicity or transcendence of generating
functions, D-finiteness of generating functions, et cetera.

1.2. Prerequisites.
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1.2.1. Generating functions as combinatorial objects. As a final prerequisite, we discuss how gener-
ating functions are used as a way to enumerate various combinatorial objects.

One of the key ways generating functions enumerate combinatorial objects is that their coef-
ficients correspond to sequences that enumerate these objects. In particular, the operations of
multiplication, exponentiation, and diagonalization have combinatorial significance.

Example (Distributions). Show that the number of solutions in nonnegative integers to a1+. . .+ak =
n is

(
n+k−1
k−1

)
.

Proof. The generating function for the number of solutions is f(x) := (1+x+x2+ . . .)k = (1−x)−k,

since upon expansion, each monomial
∏k

i=1 x
ai has its exponents forming a solution to a1+. . .+ak =

n in nonnegative integers. From routine power series manipulation (or simply use of the extended
Binomial Theorem), it is easy to see that the coefficient of xn is f is indeed

(
n+k−1
k−1

)
. ■

1.2.2. Analytic prerequisites. Although we defined generating functions in the univariate sense, we
can naturally extend this to several variables. The cases of 2 and 3 variables are of particular
interest in this extension.

Definition 1.1 (Generating Functions). The generating function of a d-dimensional sequence
{av}v∈Zd

≥0
is the d-variate power series

F (x1, . . . , xd) =
∑

⟨j1,...,jd⟩∈Zd
≥0

a⟨j1,...,jd⟩x
j1
1 · · ·xjd

d .

In general, the notation ⟨xj1
1 · · ·xjd

d ⟩F (x1, . . . , xd) consistent with the above form of F is a reference
to the coefficient a⟨j1,...,jd⟩.

Definition 1.2 (Diagonals). Consider the generating function F from the above definition where
d = 2 (that is, when F is bivariate). Then the diagonal △F of F is the univariate generating
function given by

△F (x) :=
∑
i≥0

a⟨i,i⟩x
i.

We can define algebraicity of Laurent series in a similar way we do for algebraic real numbers.

Definition 1.3 (Algebraicity). We say that a Laurent series F (X) = {an}n≥−n0 is algebraic over
the field of characteristic 0 (K[X]) if for some integer d there exists polynomials A0(X), . . . , Ad(X)
with coefficients in K and not all 0 such that

d∑
i=0

Ai(X)F (X)i = 0.

Laurent series that are not algebraic are called transcendental.

Definition 1.4 (D-finite functions). A function f = f(x) is called D-finite (or holonomic) if there
exist polynomials 0 ̸= a0(x), . . . , ar(x) ∈ K[X] such that

r∑
k=0

ak(x)f
(k)(x) = 0.

The following result is a technical fact about D-finiteness.

Lemma 1.5. If f(x1, x2) is a D-finite generating function, then so is its diagonal △f(x).
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Theorem 1.6 (Lagrange inversion). Let G(t) be any element of C[[t]]. Then the equation f(y) =
yG[f(y)] has a unique solution in C[[y]], and

(1.1) ⟨yn⟩(f(y))n =
k

n
⟨tn−k⟩(G(t))n ∀n, k > 0

(1.2) ⟨yn⟩ (f(y))k

1− yG′(f(y))
= ⟨tn−k⟩(G(t))n ∀n, k ≥ 0

1.3. Overview. In this exposition we discuss:

• Kernel methods in lattice path enumeration: the conventional methods and the algebraic
kernel method,

• An application of results on Laurent series factorization to enumerating lattice paths which
have a restriction with respect to the line y = x,

• Lattice paths under a line of rational slope: a proof of Bizley’s formula, the explicit closed-
form and generating function for the number of up-right walks under a line of integer slope
through the origin, and results on the walks under a line of slope 2/5.

2. Conventional Kernel Method

2.1. Unrestricted models. Unrestricted models are models in Zd where there is not restriction
on where the walk can go.

Define

W (z, t) :=
∑
n≥0

(∑
i∈Zd

fi,nz
i

)
tn,

where fi,n represents the number of walks in the lattice model of interest which consists of n steps
and end at a lattice point i ∈ Zd. The kernel method gives us a way of evaluating W (z, t).
We further define

Wn(z) := ⟨tn⟩W (z, t) =
∑
i∈Zd

fi,nz
i.

It is not difficult to see the recurrence

(2.1) Wn+1(z) = Wn(z)

(∑
i∈Zd

zi
)
.

In fact, multiplying (2.1) by tn+1, followed by summation over all nonnegative n returns

W (z, t)−W0(z) = t

(∑
i∈Zd

zi
)
W (z, t),

rearranging to

(2.2)

(
1− t

(∑
i∈Zd

zi

))
W (z, t) = zp.

For the sake of future reference to expressions involved in the above equations, we define the
following.

Definition 2.1 (Kernel). We denote S(z) by

S(z) =
∑
i∈Zd

zi.

The kernel of this lattice path model (not necessarily restricted) is the expression

1− tS(z).
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Now equation (2.2) rewrites as

(2.3) K(z, t) ·W (z, t) = zp.

Definition 2.2 (unrestricted kernel equation). For unrestricted models, their kernel equation is
equation 2.3: K(z, t) ·W (z, t) = zp.

In the more complex models that follow, we derive similar kernel equations.

Example (walks starting and ending at origin). The number of walks that both start and end at
the origin has its generating function given by

E(t) = [z0]W (z, t) = △W (z, z1z2 · · · zdt) = △
(

zp

1− t(z1 · · · zd) · S(z)

)
,

which is D-finite since diagonals preserve D-finiteness.

2.2. One-dimensional excursions. One-dimensional excursions are walks with steps in Z on the
integer number line. Here we exemplify a kernel analysis more interesting than that of restricted
models.

Theorem 2.3 (kernel equations for one-dimensional excursions). The generating function E(t) that
enumerates walks with steps in S which begin and end at the origin is given by

E(t) = t
m∑
i=1

r′j(t)

rj(t)
,

where r1(t), . . . , rm(t) are the small roots of K(x, t) := 1− tS(x) in x.

Proof. For sufficiently small positive t, the only small roots rj(t) of K(x, t) lie inside |x| = 1. In
general, a root r(t) of the kernel satisfies

(2.4) S ′(r(t)) = − 1

t2r′(t)

by differentiating S(r(t)) = 1
t
with respect to t. By Cauchy’s residue theorem,

E(t) =
m∑
j=1

Resx=rj(t)

(
1

K(x, t)

)
,

which evaluates to t
∑m

i=1

r′j(t)

rj(t)
upon application of equation (2.4), as desired. ■

2.3. Walks in the Half-space. Now we consider walks with step set S ′ ⊂ Zd restricted to half-
space (i.e. Zd−1 ×N). As a way to count walks that can end at an arbitrary point, or walks ending
on the hyperplane zd = 0, we can simply project all of the steps onto the dth coordinate. This
induces a new weighted step set S. Let H(x, t) ∈ R[x][[t]] be the power series defined by

H(x, t) =
∑
n≥0

∑
i≥0

hi,nx
itn,

where hi,n enumerates the weighted half-space walks of length n on the steps in S ending at a point
with x-coordinate i.

In a way similar to that in section 2.1, we may compute a recurrence for Hn(x, t):

Hn+1(x) = S(x)Hn(x)− t

m−1∑
j=0

S<−j(x)x
j⟨xj⟩H(x, t).
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This induces the kernel equation

K(x, t)H(x, t) = 1− t
m−1∑
j=0

S<−j(x)x
j⟨xj⟩H(x, t),

where K(x, t) = 1−−tS(x) is the kernel for this model.

Example (Dyck paths and prefixes in half-space). Let S = {1, 1} be the unweighted step set with
characteristic polynomial S(x) = x−1 + x. By the kernel equation for walks in half-space,

(1− t(x−1 + x))H(x, t) = 1− tx−1⟨x0⟩H(x, t)

= 1− tx−1H(0, t).

We now solve for H(0, t). First we solve the kernel 1− t(x−1 + x) in x and obtain the small root

r1(t) =
1− [1− 4t2]1/2

2t

and the large root

R1(t) =
1 + [1− 4t2]1/2

2t
.

Since r1(t) s a power series with no constant term, it is applicable as a substitution for x in the
kernel equation for this model. This substitution yields

H(0, t) =
1− [1− 4t2]1/2

2t2
=

∞∑
k=0

Ckt
2k.

Conceptually, the number of walks of length 2n with step set S is Cn.

3. The Quarter-plane Case: Algebraic Kernel Method

The quarter-plane lattice walks are perhaps the most popular and often used model. Here we
consider walks on a weighted step set S ′ ⊂ Zd restricted to the quarter-space Zd−2 × N2. Rather
than taking an arbitrary unweighted step set S, we restrict our model to a short step model, where
we add the restriction S ⊂ {−1, 1, 0}d. The primary difference between this new model and the
models discussed in section 2 is that our kernel becomes a quadratic in each of its three variables.

Definition 3.1. The generating function that allows us to enumerate paths in the quarter-plane
models is:

Q(x, y, t) =
∑

i,j,n≥0

qi,j,nx
iyjtn,

where qi,j,n denotes the number of walks in the quarter-plane of length n with steps in S which
starts at the origin and ends at (i, j). We similarly define the characteristic polynomial

S(x, y) =
∑

(i,j)∈S

xiyj ∈ Z[x−1, y−1, x, y].

The kernel is the function K(x, y, t) = 1− tS(x, y).

Theorem 3.2 (conventional kernel equation for quarter-plane models). The kernel equation for
walks in the quarter-plane is given by

xy(1− tS(x, y))Q(x, y, t) = xy − tI(y)− tJ(x) + 1(−1,−1)∈StQ(0, 0, t),

where

I(y) := y(⟨x−1⟩S(x, y))Q(0, y, t)
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and
J(x) := x(⟨y−1⟩S(x, y))Q(x, 0, t).

(Here our kernel is K(t, x, y) = (1− tS(x, y)).)

The additional variable in the kernel for quadrant walks is a new conflict because we need to
consider algebraic surfaces defined by K(x, y, t) = 0. To avoid this conflict, we introduce the
algebraic kernel method, where we don’t have to solve for the kernel. In the algebraic kernel, we
utilize a group model, where we designate a group to the model. Specifically, we introduce a group
G consisting of substitutions that fix K.

Definition 3.3 (group of short-step quarter-plane model). The group G of the lattice path model
determined by S is the group of transformations in the xy-plane that are generated by two involu-
tions Ψ and Φ. These involutions are defined as follows: suppose that we can write

S(x, y) = xA1(y) + A0(y) + xA−1(y) = yB1(x) +B0(x) + yB1(x).

There are 79 step sets that determine a unique lattice path model for the quadrant-plane models.
Of these models, 23 of them have finite groups and 56 of them have infinite groups. We classify them,
derive kernel equations – including a test for determining finiteness/infiniteness of corresponding
groups – and overview a result on D-finiteness.

3.1. Finite Group Models. We start off with an example of how to find the groups for certain
finite group models.

Example (N-S-E-W Quarter-plane walks). Let S = {(±1, 0), (0,±1}. Then
S(x, y) = x−1 + x+ y−1 + y.

By Theorem 3.1,

xy(1− t(x−1 + x+ y−1 + y))Q(x, y, t) = xy − tyQ(0, y)− txQ(x, 0).

We can easily find Ai(x) and Bi(x) for i ∈ {±1, 0}, from which A−1(x) = A1(x) and B−1(x) = B1(x).
Thus Ψ(x, y) = (x−1, y) and Φ(x, y) = (x, y−1) generate G.
Theorem 3.4 (orbit equation for finite group models). Suppose that the group G of a quarter-plane
model is finite. Then,∑

g∈G

sgn(g)g(xyQ(x, y, t)) =
1

1− tS(x, y)

∑
g∈G

sgn(g)g(xy).

Proof. Let Ψ(x, y) = (X(x), y) and Φ(x, y) = (x, Y (y)). Then, applying id, Ψ, and Φ◦Ψ to Theorem
3.1, we obtain

(3.1) id ⇒ xy(1− tS(x, y))Q(x, y, t) = xy − tI(y)− tJ(x) + 1(−1,−1)∈StQ(0, 0, t)

(3.2) Ψ ⇒ xy(1− tS(X, y))Q(X, y, t) = Xy − tI(y)− tJ(X) + 1(−1,−1)∈StQ(0, 0, t)

(3.3) Φ ◦Ψ ⇒ XY (1− tS(X,Y ))Q(X,Y, t) = XY − tI(Y )− tJ(X) + 1(−1,−1)∈StQ(0, 0, t).

Note that both the terms −tI(y) and −tJ(X) are present in the RHS of both (3.2) and (3.3), so
we can take an alternating sum of the three equations so both terms cancel. More generally, the
maps Ψ and Φ each fix one coordinate, so considering the distinct compositions of group generators
in an alternating fashion effectively cancels all functions of the form I(Y0) and J(X0), all of which
appear on the right side. Since G is finite and has even order, taking an alternating composition of
these generators will eventually return the identity, which gives rise to the desired equation. ■



LATTICE PATH ENUMERATION 7

4. Correlation with Factorization of Laurent Series

The factorization of Laurent series is extremely useful in analysis, to the extent that it gives us
a proof of the Lagrange inversion formula (see [Ges80]). As such, [Ges80] notes that each Laurent
series f ∈ C[[y, y/t]] with constant term 1 has a unique decomposition f(t) = f−f0f+, where f−
contains only negative powers of t (and constant term 1), f+ contains only positive powers of t (and
constant term 1), and f0 is independent of t (and constant term 1). The following technical lemma,
a variant of Lagrange inversion, is of significance.

Lemma 4.1 (Gessel). Let h(t, y) =
∑∞

i=0 ait
i, where a0, a1 ∈ yC[[y]] and ai ∈ C[[y]]. Then the

equation α = h(α, y) has a unique solution in α ∈ yC[[y]]. Define f := [1− t−1h(t, y)]−1. Then in
the decomposition of f = f−f0f+, we have f− = [1− t−1α]−1 and f0 =

α
a0
. Furthermore, for k > 0,

αk =
∞∑
n=1

k

n
⟨tn−k⟩[h(t, y)]n.

In this section, we give Lemma 4.1 a combinatorial counterpart via lattice paths and use well-
known lattice path models to demonstrate examples of the lemma. Thus we have yet another
approach to enumerating certain restricted walks.

Here we examine lattice paths over Z2, and let S be a step set over Z2. We say that the point
(a, b) of a lattice path over Z2 has height a− b. Furthermore, the endpoint of a path π is the point
at which it ends, denoted by (ex(π), ey(π)). (In addition, we also allow for the addition of an empty
path, which consists of no points or steps.) We can also take products of paths; given two paths π1

and π2, their product π1π2 is the path π1 followed by π2.

Definition 4.2 (enumeration function). For a set P of lattice paths over Z2, we define its enumer-
ation function by

ϑ(P )(t, y) =
∑
π∈P

tex(π)−ey(π)yey(π).

Furthermore, we write ϑ(p) = ϑ({p}) where p is any path.

A basic property of Definition 4.2 is that

(4.1) ϑ(π1π2) = ϑ(π1)ϑ(π2)

for any two paths π1 and π2.
Now for a step set S, let S ′ be the set of all paths such that each path has its step set being a

subset of S. In particular,

(4.2) ϑ(S ′) =
∞∑
n=0

(ϑ(S))n = [1− ϑ(S)]−1.

With the addition of the enumeration function as well as its multiplicative nature, we may define
the Laurent series f−, f0, f+ in this context. In order to do so, we need to consider three classes of
paths over Z2 that start at the origin.

Definition 4.3 (sign classes). The sign classes consists of the following three classes of paths, all
starting at the origin.

• A minus-path is either the empty path or a path such that its endpoint has a negative height
less than that of any other point on the path.

• A zero-path is a path such that its endpoint has height zero and all other points on the path
have nonnegative height.
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• A plus-path is a path such that its endpoint has a positive height greater than that of any
other point on the path.

The main advantage in defining these classes is that, under the injective map ϑ, minus-paths,
zero-paths, and plus-paths are mapped to Laurent series containing only negative powers of t (and
constant term 1), series independent of t (and constant term 1), and series containing only positive
powers of t (and constant term 1), respectively.

Claim 4.4 (unique decomposition of paths). Let π be a lattice path over Z2 starting at the origin.
Then π has a unique decomposition π = π−π0π+, where π− is a minus-path, π0 is a zero-path, and
π+ is a plus-path.

Proof. As a construction, let π− be the path whose head ■

Theorem 4.5. Let S be a step set, and let S−, S0, and S+ be sets of minus-, zero-, and plus-
paths with their step set being a subset of S. Then ϑ(S−) = [ϑ(S ′)]−, ϑ(S0) = [ϑ(S ′)]0, and
ϑ(S+) = [ϑ(S ′)]+.

Proof. From Claim 4.4 and equation (4.1), we have ϑ(S ′) = ϑ(S−)ϑ(S0)ϑ(S+). The desired state-
ment follows from the fact that the decomposition a function in C[[y, y/t]] is unique. ■

Although Theorem 4.5 on its own seems quite powerful, we can find the explicit decomposition
of functions in yC[[y, t/y]] as a consequence of Lemma 4.1, and then evaluate ϑ(S−), ϑ(S0), and
ϑ(S+) using it.

Corollary 4.6 (explicit decomposition). Let f = f(t, y) = (1− t− t−1y − z)−1, where z ∈ yC[[y]].
Then,

(4.3)

f− = [1− t−1 · 1− z − [(1− z)2 − 4y]1/2

2
]−1 = 1 +

∞∑
k=1

∞∑
n=0

∞∑
j=0

t−kyn+kzj
k

2n+ j + k

(
2n+ j + k

n+ k, n, j

)
;

(4.4) f0 =
1− z − [(1− z)2 − 4y]1/2

2y
= 1 +

∞∑
n=0

∞∑
j=0

ynzj
1

2n+ j + k

(
2n+ j + 1

n+ 1, n, j

)
;

(4.5) f+ = [1− t · 1− z − [(1− z)2 − 4y]1/2

2y
]−1 = 1 +

∞∑
k=1

∞∑
n=0

∞∑
j=0

tkynzj
k

2n+ j + k

(
2n+ j + k

n+ k, n, j

)
.

With the assistance of Corollary 4.6, we can compute both the closed-form of the sequences that
enumerate certain lattice paths, and also find a closed-form for their generating functions.

Example (Catalan and Ballot numbers). Consider the step set S = {(0, 1), (1, 0)}. Now, ϑ(S ′) =
[1− t− t−1y]−1. By Corollary 4.6, we evaluate ϑ(S0) as

ϑ(S0) =
1− [1− 4y]1/2

2y
=

∞∑
n=0

(
2n
n

)
n+ 1

yn =
∞∑
n=0

Cny
n,

which returns the Catalan numbers Cn, and we evaluate ϑ(S+) as

ϑ(S+) =

(
1− t · 1− z − [1− 4y]1/2

2y

)−1

= 1 +
∞∑
k=1

∞∑
n=0

tkyn
k

2n+ k

(
2n+ k

n

)
=

∞∑
k=0

∞∑
n=0

Bk,nt
kyn,

returning the ballot numbers Bk,n.
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Example (Motzkin numbers). Consider the step set S = {(2, 0), (1, 1), (0, 2)}. Then, ϑ(S) = [1 −
t−2y2 − y − t2]−1, so

ϑ(S0) =
1− y − (1− 2y − 3y2)1/2

2y2

=
∑
n=0

∑
j=0

y2n+j 1

2n+ j + 1

(
2n+ j + 1

n+ 1, n, j

)
,

=
∞∑
n=0

yn
∑
m≤n

2

1

n+ 1

(
n+ 1

m+ 1,m, n− 2m

)

returning the Motzkin numbers Mn. (The Motzkin numbers Mn are the number of walks with step
set S = {(2, 0), (1, 1), (0, 2)} from (0, 0) to (n, n) weakly below y = x.)

5. Walks under Lines of Rational Slope

5.1. Integer slopes. As a starting point, we solve the problem for the case of when the line has
integer slope and passes through the origin. We first prove a polynomial functional equation in
the generating function fk(x) that enumerates the paths under y = kx for some positive integer k,
hence proving its algebraicity. Furthermore, with the aid of the Lagrange inversion formula, we can
evaluate its coefficients in closed-form.

In this section, we use denote an,k by the number of walks from (0, 0) to (n, kn) weakly below
the line y = kx, where k is a fixed positive integer.

Theorem 5.1 (integer slopes). Let

fk(t) :=
∞∑
n=0

an,kt
n.

Then fk(t) satisfies the functional equation t · fk(t)k − fk(t) + 1 = 0. Furthermore, an,k =
((k+1)n

n )
kn+1

.

Proof. We present a probabilistic proof. In this approach, we use the following random process.
Start at (1, 0), and every second flip a coin. Suppose the coin flips heads with probability p and

tails with probability 1 − p. For each “head” occurrence, move 1 unit up, and for every “tail”
occurrence, move 1 unit to the right. Finally, terminate the process once the endpoint of the path
is on the line y = kx.

Using Chebyshev’s inequality, it can be shown that the probability of the process terminating at
some point is 1 when p ∈ [ k

k+1
, 1]. Thus the probability of the process terminating for p ∈ [ k

k+1
, 1] is

∞∑
n=0

an,kp
nk+1(1− p)n = 1.

This rewrites as

f(pk(1− p)) =
1

p

for all p ∈ [ k
k+1

, 1]. Note that g : [ k
k+1

, 1] 7→ [0, kk

(k+1)k+1 ] defined by g(x) = xk(1 − x) is a bijective

map. Thus, for all t ∈ [0, kk

(k+1)k+1 ], t · fk(t)k − fk(t) + 1 = 0. ■
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5.2. The formulae of Bizley and Grossman. In the 1950s, Bizley and Grossman independently
computed two different formulae for the number of up-right paths from (0, 0) to (bn, an) weakly
above y = a

b
x. Bizley computed a generating function as the exponential of a power series whose

coefficients are explicitly given, and Grossman derived, without proof, a summation over partitions
of n. It is not difficult to derive Grossman’s formula using casework; however, Bizley had a more
instructive proof using the cycle lemma, followed by rewriting as a coefficient extraction from a
generating function. We present Bizley’s proof.

Theorem 5.2 (Bizley, 1954). Denote by f(bn, an) the number of up-right paths from (0, 0) to
(bn, an) weakly below y = a

b
x. Then

f(bn, an) = ⟨tn⟩ exp
∞∑
j=1

1

j(a+ b)

(
(a+ b)j

aj

)
tj

Proof. In our proof, we let fj(bn, an) be the number of up-right paths from (0, 0) to (bn, an) weakly
below y = a

b
x with j contacts (not including the origin). We call such a path a a

b
-path. A highest

point of a path is a point on the path that follows and precedes different steps. Additionally, we
say that a cyclic shift of a path can be obtained by removing the section of the path from (0, 0) to
some (r, s) on the path, and moving that section to the other end so that (0, 0) is moved to (bn, an).
The key idea is that the highest points on the path are not affected by cyclic shifts, and there are
exactly j cyclic shifts that transform a a

b
-path with j highest points to a a

b
-path with j contacts,

vice versa. Thus the number of paths with t highest points is

(5.1)
1

j
n(a+ b)fj(bn, an).

For notational purposes, define

Fn(a, b) :=
1

n(a+ b)

(
(a+ b)n

an

)
.

We sum equation (5.1) over 1 ≤ j ≤ k to obtain

(5.2) Fn(a, b) =
n∑

j=1

1

j
fj(bn, an).

Let gj(bn, an) be the number of paths from (0, 0) to (bn, an) with j highest points. Then,

(5.3) fj(bn, an) =
∑

ga1(bn, an) · . . . · gaj(bn, an),

where the sum is taken over all j-tuples (a1, . . . , aj) of nonnegative integers with sum n. Equation
(5.3) rewrites as

(5.4) fj(bn, an) = ⟨tn⟩[P (t)]j,

where

P (t) :=
∞∑
i=1

gi(bn, an)t
n.

Hence,

(5.5) Fn(a, b) = ⟨tn⟩
n∑

i=1

1

i
[P (t)]i = ⟨tn⟩

∞∑
i=1

1

i
[P (t)]i = −⟨tn⟩ log(1− P (t)).

Isolating P (t), we obtain

P (t) = 1− e−F1t−F2t2−....
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Now fj(bn, an) = ⟨tj⟩(1− e−F1t−F2t2−...)j, so

f(bn, an) =
n∑

j=1

⟨tn⟩(1− e−F1t−F2t2−...)j = ⟨tn⟩eF1t+F2t2+...,

which proves the desired result. ■

5.3. Slope of 2/5. We approach the case of slope 2/5 based on [Cyr20]. A useful lemma when
dealing with non-integer slopes is the following.

Lemma 5.3. Let α = a
c
and β = b

c
for positive integers a, b, and c with gcd(a, b, c) = 1. Then there

is a bijection that maps the up-right walks that begin at (0, 0) and stay weakly below y = αx+ β to
the walks that begin at (0, b) that have step set {(1, a), (1,−c)} and are above the x-axis.

Proof. Note that the affine transform (x y)T 7→ (x + y ax − cy + b)T has nonzero determinant.
Furthermore, the condition y < αx + β is mapped to a new condition of the y-coordinate being
positive. This is sufficient to imply the conclusion. ■

Now we consider up-right walks under lines of slope 2/5 and y-intercept c/5 for integral c. From
Lemma 5.3, it suffices to consider paths with step set {(1,−2), (1,−5)}. Thus our characteristic
polynomial is S(x) = x−2 + x5. By the kernel equation for walks in half-space, followed by solving
a linear system of equations, we have the following.

Theorem 5.4. Consider walks in N2 with step set {−2,+5}. The number of such walks starting
at altitude 3 and ending at altitude 0 is given by the generating function F (x), and altitude 4 and
ending at altitude 1 is given by the generating function G(x). Let P (z) = z−2 + z5 and the kernel
1− xP (z) = 0 have small roots (for z) of r1(x) and r2(x). We have

F (x) = −r1r2(r
4
1 − r42)

x(r1 − r2)

and

G(x) =
r61 − r62

x(r1 − r2)
.

Using a Computer Algebra System, the following may be derived.

Theorem 5.5. Denote An and Bn by the number of paths beginning at the origin and ending at
(5n−1, 2n−1) that respectively stay weakly below y = (2/5)x+1/5 and stay weakly below y = (2/5)x;
then we have

An +Bn =
2

7n− 1

(
7n− 1

2n

)
.
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