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Infinite Dimensional Vector Spaces and Norms

When talking about vector spaces, there are cases where finite
dimensions are not enough to describe what we want.
Defining Norms: A norm is a way to define the size of a vector in a
vector space.

Definition 1: Norm

A norm ∥·∥ is a map from a vector space V to a field of scalars K
such that

∥λv∥ = λ∥v∥ for all v ∈ V , λ ∈ K
∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥
∥x∥ = 0 if and only if x = 0



Dual Spaces and Functionals

What is a functional?

Definition 2

A functional is a function f : V → K from a vector field to a field
of scalars.

What is a Dual space?

Definition 3

The dual space of a vector space V is the vector space of all
functionals. It Is denoted with a V ∗
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Hahn Banach Extensions

Extending Fuctionals

Hahn-Banach

Let V be a normed vector space with V0 a subspace. Let f be a
continuous linear functional on V0. Then there exists a continuous
linear functional F from V to R such that F extends f and

∥f ∥ = ∥F∥



Overview of Proof

We first start off by showing that we can continuously extend f .

To do this, we extend f from V0 to V0 +Kx
Then, using Zorn’s lemma we show that there exists a maximal
extension.
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Overview of proof cont’d . . .

Proof of Maximal element
We define chains in V for the purpose of this proof by pairings
(Vn, fn) where Vn ⊇ V0 and fn extends f.

We then define a partial ordering on these pairings by
(Vn, fn) ≤ (Vm, fm) is Vn ⊆ Vm and fm extends fn.
We then define an upper bound for these chains by (Vmax , g) by

Vmax =
⋃
n

(Vn) and g extends all fns

.
Now, by Zorns lemma, we have a maximal element (V ,F ), which
by its maximality extends f to all of V
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Axiom of choice and other requirements for proof

Axiom of choice

The Axiom of choice allows us to choose elements from multiple
sets without explicitly saying what we are choosing.

Banack Tarski Theorem

A three-dimensional Euclidean ball can be finitely cut and
rearranged into two copies of itself.

Axiom of choice is equivalent to Zorn’s lemma (i.e, it implies Zorns
and vice versa), but stronger than Hanh-Banach since we use it to
prove Hahn-Banach.
However, there are theorems between Axiom of choice and
Hahn-Banach. For example, Banach-Alaoglu,Ultra filter lemma,
etc . . .
Hahn-Banch is one of the weakest theorems that can be used to
prove Banach-Tarski.
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Well defined functionals in Dual spaces

Example:

There exists a functional on vector space V such that
∥φ∥ = 1 and ∥φ(v)∥ = φ(v) for all v ∈ V

This leads to some interesting results. Namely, that the map
from V to V ∗∗ is isometric.
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Relation to Measure

Measure

Definition 4

µ is a measure on the σ − algebra of X if

for all A in the sigma algebra, µ(A) ≥ 0, with µ(∅) = 0

for all countable collections of disjoint {En}∞n=1

µ(
∞⋃
n=1

En) =
∞∑
n=1

µ(En)

Using Hahn-Banach one can construct a non-measurable set.
Which is how Hahn-Banach implies Banach-Tarski
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Hahn-Banach Separation

There is a separate set of Hahn-Banach Theorems which are called
the Hahn-Banach Separation Theorems.

They all stem from the
geometric version of the Hahn-Banach theorem which goes as
follows

Geometric Hahn-Banach Theorem

Let X be a topological vector space over R, N a linear subspace of
X, and O a non-empty open convex subset of X such that N ∩ O
= ∅, then there exists a closed hyperplane H of X such that

N ⊆ H and H ∩ O = ∅

This gives us a way to extend a separation between O and N to
separation between O and a hyperplane.
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Hahn-Banach Separation Theorems cont’d. . .

Using the geometric Hahn-Banach theorem we can separate convex
sets.

Separation of two convex sets

If A is an open subset of X and B is a subset of X , then there
exists and separating function p : X → R such that there exists an
k such that p(a) < k ≤ p(b) for all a ∈ A, b ∈ B

This also further implies that any two points, if one can find an
open convex set around them, can be separated.
Furthermore, if B is a cone we can set k = 0.
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The Weak Topology

What is the weak topology?

The weak topology is the coarsest topology making X ∗ a
continuous dual space.

The weak topology gives us a nice property for a vector space.
Namely, that the space is locally convex.

With this, we get the following property about vector spaces.

Proposition 1

A vector space under the weak topology is a Hausdorff space.

Hausdorff Topology

A Hausdorff topology is a topology where any two points x , y ∈ X
have neighborhoods U,V such that U ∩ V = ∅
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The moment problem

Definition 5

The nth moment mn of a measure µ be a non-negative Borel
measure defined on R is defined by

mµ
n =

∫
R
xnµ(dx)

This gives us a way to define moments in terms of a measure.
The moment problem asks the same question in reverse.

Let C be a closed subset of R with m := (mµ
n )∞n=0. Does there

exist a measure µ such that the moment of the measure is m
where a mn is defined as

mn =

∫
C
xnµ(dx) for all n ∈ N
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Moment problem cont’d...

We can rephrase the moment problem in terms of linear
functionals by rephrasing the moments as linear functionals.

Moment Problem With Linear functionals

Let C be a closed set of R an L : R[x ] → R. Does there exist a
measure µ such that

L(p) =

∫
R
p(x)µ(dx) for all p ∈ R[x]

Now that we have the problem in terms of linear functionals. This
allows us to use Hahn-Banach and change the problem to ask
something different.
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New moment Problem

New version of the moment Problem

Let L : R[xD ] → R linear.If MS is archemidean then, there is a
KS -representing measure µ for L if and only if L(MS) ≥0.

For this version of the problem
KS is {xD ∈ R[xD ] : gi (xD) ≥
0 for all gi in a finite set of polynomials S}
and MS is {

∑s
i=0 σigi : σi ∈

∑
R[xD ]2, i = 1, 2, 3 . . . s}



Questions

Any Questions?

.


