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Abstract. In this paper, we will first go through some preliminary definitions and go
through some important results about Banach Spaces and Dual spaces. Then we will intro-
duce the Hahn-Banach extension theorem and some of its equivalents. Using the extension
theorem we will discuss the functional implications and then move on to the Hahn-Banach
Separation theorems. Using this we will discuss open problems related to Hahn-Banach.

1. Introduction

The Hahn-Banach theorem is one of the central tools in functional analysis. It arose
from attempts to solve problems that require infinite systems of equations. From when
it was discovered in 1927, it has undergone some more generalizations, extending from a
theorem about continuous, linear, real-valued functionals to a theorem that can be applied
to sublinear, complex-valued functionals and even found its way into the study of convex
spaces and convex geometry.
For, the first part of this paper we will introduce some preliminary concepts and some theory
about Banach spaces. In the following sections, we will discuss the axiom of choice and
some properties of weak and weak∗ topologies, with the main result for this section being
Banach Alaoglu’s theorem. We will then introduce the Hahn-Banach theorem for extending
functionals, its relation to measure, and introduce some preliminary concepts about measure
that will be used later.
The last section of this paper will focus on the geometric Hahn-Banach theorem and the
Hahn-Banach separation theorems and its relationship to locally convex sets. And then we
will focus on two open problems. One discusses the unique extensions of functionals in Lp

spaces. And the other problem is the moment problem. We will see how Hahn-Banach
allowed us to change the moment problem into a different, hopefully easier problem to solve.

Prerequisite Knowledge

To discuss the Hahn-Banach theorem and the corresponding Banach spaces we need to
define both what a vector space is and what a Cauchy sequence is. Unlike in normal linear
algebra, where the vector spaces are of finite dimension. However, for the Hahn-Banach
theorems and Banach spaces the dimensions of the vector spaces aren’t necessarily finite.

Definition 1.1. Vector Space A vector space V over a field of scalars K with elements v
called vectors satisfying the two following properties.

• There exists a binary operation + such that For any two elements v, v1 in a vector
space V , v + va = vb

• There exists an operation · such that a× v = vn for all a ∈ K
For the sake of this paper the field of scalars K will either be the field C or R

Date: June 2023.
1



2 NATHAN SHKOLNIK

Definition 1.2. A Cauchy sequence is a bounded sequence {Xα}α∈A such that there exists
an n ∈ N such that |xn − xm| < ε for some m,n ∈ A where m > n

2. Banach Spaces

When talking about vector spaces there are certain subsets which has nice properties. The
first type of space is a Banach space. A Banach space is a complete vector space which will
be formally defined below.

Definition 2.1. A Norm on a space is an operation ∥·∥ on a vector space V over a field of
scalars F such that the following three properties are satisfied.

• Subadditivity ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ V
• Absolute Homogeneity ∥αx∥ = α∥x∥ for all x ∈ V and α ∈ K
• Positive definiteness ∥x∥ = 0 if and only if x = 0

One of the classic examples and often used norms are the ℓpnorms. Which are defined as

∥·∥p = (
∑
n

|an|p)1/p

where the a′ns are elements of a vector and 1 ≤ p < ∞. The familiar example of an ℓp

norm is the ℓ2 norm which is the euclidean distance norm that is defined on euclidean space.
Under this norm distances between two vectors x, y is defined as ∥x−y∥2 which is analogous

to
√

x2 − y2. If we include the ∞ for the value of p we get the ℓ∞ norm, which is otherwise
known as the max norm. It is defined by

∥·∥∞ := sup{|a1|, |a2|, |a3|, . . . |an|, |an+1| . . . }

. One can show that the limit as p approaches ∞ converges to the infinity norm.
When we have a sequence that is an infinite sum, we run the risk of having norms whose
values aren’t finite.So, in order to get rid of the vectors whose norm is infinite we define ℓp

spaces as follows.

Definition 2.2. An ℓp space is a space containing all infinite sequences {xi : ∥xi∥p < ∞}

In a normed space, we can also define a metric using norms. Given two points x.y ∈ V , a
metric d(x, y) id defined to be ∥x− y∥ which, by the triangle inequality is less then or equal
to ∥x∥ − ∥y∥

Definition 2.3. A Banach Space X is a normed vector space such that all Cauchy sequences
{xn} → x ∈ X.

Theorem 2.4. If A ⊆ X is a closed subset of a Banach Space X it is also a Banach Space

Proof. Let {vi}i be a Cauchy sequence in A. Since X is a Banach space and {vi}i is a Cauchy
sequence in X {vi}i → v ∈ X. However, since A is closed in X, any sequence {vn}n ∈ A
converges to a v ∈ A. This means that every sequence in A converges in A. □

Proposition 2.5. A linear operator T : X → Y is a continuous function between two
Banach Spaces if and only if there exists a C ∈ F such that

(1) ∥Tx∥ ≤ α∥x∥ for all x ∈ X
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Proof. First we show that if T is a bounded linear operator then it is continuous. Take a
sequence vn → v for some v ∈ X. Then by (1) there exists a C such that

∥Tvn − Tv∥ ≤ C∥vn − v∥
and since vn → v in X that means that as n → ∞, ∥vn − v∥ → 0. And since the norm op-
erator is always non negative and since ∥Tvn − Tv∥ ≤ 0 as shown by the limit above. That
means that as n → ∞,∥Tv−Tvn∥ → 0 which means that the sequence Tvn is convergent in
Y which means that T is continuous.

Now we show the other way around. Let T : X → Y be continuous function between
X and Y . This means that

T−1(BY (0, 1)) = {x ∈ X : Tx ∈ BY (0, 1)}
. Then since T (0) = 0 and 0 is in BY (0, 1) that means that 0 is in T−1(BY (0, 1)) and
since the T is continuous, there exists an BX(0, ε) which is contained T−1(BY (0, 1)) which
implies that T (BX(0, ε))is contained in BY (0, 1). Now we take any v ∈ V \ {0} (since 0 ≤
0 means that the 0 vector already satisfies the boundedness property.) Then, scaling v by
ε

2∥v∥ will give a vector contained in BX(0, ε) which implies T ( ε
2∥v∥v) ∈ BY (0, 1) and therefore

∥T ( ε
2∥v∥v)∥ ≤ 1 and pulling out scalars and through using the homogeneity of the norm we

get that ∥Tv∥ ≤ 2
ε
∥v∥ which means that T is bounded by C = 2

ε
□

Definition 2.6. We define ∥f∥, the norm of f to be {sup∥f(v)∥ : ∥v∥ ≤ 1}. This is called
the operator norm.

Definition 2.7. We call a series summable if
∞∑
n

vn < ∞

and we call the series absolutely summable if
∞∑
n

∥vn∥ < ∞

Theorem 2.8. If
∑

n vn is summable, then the sequence of sums of the form {
∑m

n=1 vn}∞m=1

is a Cauchy sequence.

Proof. LetNa denoted {
∑m

n=1 vn}m=a. So then, using this definition we see that |Na−Na+1| =
va+1. Since the series

∑
n vn is summable that means that limn → ∞vn = 0 which means

that there is eventually an a such that va+1 → 0 □

Theorem 2.9. A Vector space is a Banach Space if and only if every absolutely summable
series is summable.

Proof. We will start by proving the forwards direction. let V be a Banach Space, then, since
V is complete, any absolutely summable series is Cauchy in V and therefore converges in V .
Now we go the other way. Assume that every absolutely summable series in V is summable.
Take a sequence {vn} ∈ V . Them we just need to show that there exists a subsequence in
{vn} that converges, since that will imply that entire series converges since there is only a
finite number of elements not in the subsequence. This will therefore imply a convergent
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Cauchy sequence.
So let’s choose an Nk ∈ N such that for any two n,m ≥ Nk.

∥vm − vn∥ < 2−k

We now define

sk = N1 +N2 + · · ·+NK

We now have a sequence of nk where for all k ∈ N, nk < nk+1 and now we can show that
this series converges since for nk > Nk

∥vnk
− vnk+1

∥ < 2−k

and therefore the series ∑
k∈N

∥vnk+1 − vnk
∥ =

∑
k∈N2−k

= 1

by how we defined the nk. This implies that the sequence of partial sums∑
k = 0m(vnk+1

− vnk
) = vnm+1 − vn1

and now we can add back vn1 and since that is one finite element that doesn’t change
convergence. And means that we found a summable subsequence which shows that we
found a convergent sequence. And this means that we have our Cauchy property of a
Banach space. □

This is something that is easier to check then checking for Cauchy convergence. And we
will use this definition of Banach space to describe a space of bounded linear operator.

Theorem 2.10. B(X, Y ) the space of all bounded linear functions from X to Y is a Banach
space if Y is a Banach space

Proof. For this proof we will used the previous theorem and show that every absolutely
summable series in B(X, Y ) is summable.
So we choose a sequence of linear operators {Tn} such that

S =
∑
n

∥Tn∥ < ∞

This gives us an absolutely summable series of ∥Tn∥s, where the norm of Tn is just the
operator norm. Now to show that this space is a Banach space we just need to show that∑

n Tn is summable.
So, lets find our series convergent candidate. Firstly, we know that for any x ∈ X, m ∈ N

m∑
n=0

∥Tnx∥ ≤
m∑

n=0

∥Tn∥∥x∥ ≤ ∥x∥
m∑

n=0

∥Tn∥ = S∥v∥

Thus, we have a convergent sequence of partial sums of nonnegative real numbers for any
Tnx ∈ Y .An since

∑
n Tnx is an absolutely summable series in Y and since Y is a Banach

space we have that
∑

n Tnx is a summable series in Y . Now we define the sum of all these
operators to be its own operator T : X → Y where T is defined as

Tx = lim
m→∞

m∑
n=0

Tnx
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and this is our candidate for the summation convergence. So let’s show that this is in fact
a bounded linear operator. So first let’s show linearity.
To do this we will chose any λ1, λ2 ∈ K and any x1, x2 ∈ X and

T (λ1X1 + λ2x2) = lim
m→∞

m∑
n=0

Tn(λ1x1 + λ2x2)

and now since each Tn is linear

= lim
m→∞

λ1

m∑
n=1

Tnx1 + lim
m→∞

λ2

m∑
n=1

Tnx2

which then converges to

= λ1Tx1 + λ2Tx2

Thus, Tv is a linear operator.
And we now show that this operator is a bounded operator. Let x ∈X the

Tx = lim
m→∞

∥
m∑

n=1

Tnx∥ ≤ lim
m→∞

m∑
n=1

∥Tnx∥

and now, by the triangle inequality, this is bounded by

∥
m∑

n=1

∥Tn∥∥x∥∥ ≤ S∥x∥

and thus, T is a bounded linear function.
Now that we have confirmed that our candidate meets the requirements of a bounded linear
operator, it remains to show that the series of Tn actually converges to our candidate.
Take any x ∈ X with ∥x∥ = 1 then we get that

∥Tx−
m∑

n=1

Tnx∥ = ∥ lim
m′→∞

m′∑
n=1

Tnx−
m∑

n=1

Tnx∥ = ∥ lim
m→∞

m′∑
n=m+1

Tnx∥

and now we bring the norm inside the sum and since ∥x∥ = 1 we use the triangle inequality
to get

≤ lim
m′→∞

m′∑
n=m+1

∥Tn∥

and now we get that this is a series of nonnegative numbers

=
∞∑

n=m+1

∥Tn∥

And now, taking the supremum over all v with unit length that

∥T −
m∑

n=0

Tn∥ ≤
∞∑

n=m+1

∥Tn∥ → 0

Therefore, we have a convergent series, since
∑∞

n=m+1∥Tn∥ is the tail of a convergent series.
So we do indeed have convergence with respect to the operator norm. □



6 NATHAN SHKOLNIK

Definition 2.11. A linear functional φ on a vector space V is a function φ : X → K is
a linear map from a vector space to a field of scalars. (i.e a map from V to K such that
φ(λ1v1 + λ2v2) = λ1φ(v1) + λ2φ(v2) for all λ ∈ K, v1, v2 ∈ V

Functionals are any functions that quantify the vector space. Functionals like norms,
measures, and integrals are examples of functionals and being able to describe these is one
the reasons that the Hahn-Banach theorem is powerful.

Definition 2.12. A dual space of a vector space V denoted V ∗ is the space consisting of all
linear functionals on V .

Theorem 2.13. The dual space V ∗ of a vector space V is a vector space.

Proof. This theorem is simple to check but takes quite some space so it’s left to the reader. □

Theorem 2.14. The continuous dual space V ′ is a Banach space

Proof. This follows directly from theorem 2.13 and theorem 2.10. □

Now with this one can describe functionals on a space and begin to talk about functionals
on a Vector space. To begin to proof the Hahn-Banach theorem we will use the AC and its
equivalents.

3. Axiom of Choice and its equivalents

The axiom of choice is a axiom in the ZFC axiomatic framework. It allows one to choose,
via a choice function, certain elements in a collection of sets. A more formal definition is
given below.

Definition 3.1. (Axiom of choice)For all {Xα}α∈A there exists a choice function f : A →⋃
α∈A XA.

There are also some statements that can be taken to be equivalent to the Axiom of Choice.
And these are the statements that we will need later in order to prove some of the theorems
in this paper.

Theorem 3.2. (Zorns Lemma) If every nonempty chain C in a set (H,≤) with a partial
ordering has an upper bound then there exists a maximal element in H.

Theorem 3.3. (Tychnoffs theorem) Let {Uα}α∈A be a collection of non empty compact sets.
Then Πα∈AUα is compact.

There are also statements which are strict weaker than the axiom of choice. This means
that the axiom of choice implies theses statements but the same can’t be said in reverse.
The ones we will use are mentioned below.

Theorem 3.4. (Ultrafilter Lemma)Every filter F on a set A has an ultrafilter G containing
F

There is another theorem that is weaker that the axiom of choice which we will discuss
later on in the paper.
One of the reasons that the Hahn-Banach theorem is so widely used is that it acts as a sort
of weaker version of the axiom of choice. It means that if one doesn’t wish to use the axiom
of choice, they can still use Hahn-Banach.
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Topologies on The dual space

When talking about vector spaces it is sometimes useful to consider them as topologi-
cal spaces with the properties of vector spaces. These vector spaces that have a topological
structure on them are called topological vector spaces. There are three main types of topolo-
gies on the dual space that we will focus on for this section. The first is the strong topology.
This is the topology that unless said otherwise is usually used by default.

Definition 3.5. The strong topology, or norm topology on a Topological Vector Space V is
the topology induced by open balls of the form B(v, r) := {u ∈ V : ∥v − u∥ ≤ r}

We define the strong topology on V ′ in a similar manner to how we will define the weak∗

topology in the sense that the relationship with the weak and weak∗ topology is analogous
to the relationship between the strong topology and the strong topology on the dual space.
There are two weak topologies that we are going to discuss. One of them is the ”weak
topology” and the other is the weak∗ topology.

Definition 3.6. The weak topology which is induced by the dual space X ′ is the coarsest
topology on X such that for all x′ ∈ X ′, x′ is continuous.

The weak∗ topology is defined in a similar manner but instead of being a topology on
the initial set it is a topology on the dual space of a vector space V . However to make this
definition we need to define a dual space V ∗∗ of V ∗ functions on V ∗ which go from V ∗ to K.
And we define the following function.

Tv(v
′) = v′(v)

Definition 3.7. Let V be a vector space and V ∗ be the dual space. The weak∗ topology on
V ∗ is the coarsest topology on V ∗ such that the maps Tv(v

′) are continuous.

4. Banach-Alaoglu

The Banach-Alaoglu theorem is a theorem describing the dual space of a vector space
with respect to the weak∗topology. It is a theorem which is weaker than the axiom of choice
but is equivalent to the Ultrafilter lemma. This theorem gives important results on the
reflexivity and compactness of normed vector spaces. Using this theorems we can show weak
convergence of bounded theorems in reflexive spaces.

Theorem 4.1. Let X be a normed vector space. Then, the closed unit ball under the operator
norm in X ′ is compact with respect to the weak∗ topology.

To prove this theorem we will need one extra bit of information on how to represent a
collection of functions. We can represent the collection of functions from X to K as Πx∈XK.

Proof. To proof this theorem we will begin by assuming the following proposition which leads
almost directly to the theorem.

Proposition 4.2. Let X be vector space over a field of scalars K. Then we define U to be
a subset of X. Now let r be a real number and Br = {k ∈ K |k| ≤ r}. Endow Br with its
usual topology. Then define

U# := {f ∈ X∗ : sup
u∈U

|f(u)| ≤ 1}
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If for every x ∈ X,rx > 0 is a real number such that Urx contains x then U∗ is a closed and
compact subspace of Πx∈XBrx, the family of functions from X to the balls of radius rx. and
since this product topology is equivalent to the weak∗ topology that means that U# is closed
and compact with respect to the weak∗ topology as well.

Now we show that the Banach Alaoglu theorem follows from the proposition above and
then we will prove the proposition itself.

Let X be a topological vector space and U a subspace of X around the origin. Since U
contains the origin, for every x ∈ X there exists an rx such that x ∈ Urx. Now, the above
proposition implies that U# is compact with respect to the weak topology. now we show that
U# is in X ′, the continuous dual space on X. To show this we just note that any function
is U# is bounded and by Proposition 4.2 is continuous.

Now we will prove the proposition stated above.

Using Tychnoffs theorem we know that Πx∈XBrx is compact since each Brx is compact.
Since closed and bounded subsets of compact spaces are compact we can just show that
U# = {f ∈ X ′ : f(U) ⊆ B1} is a closed subset of Πx∈XBrx and to show this we can just
proof the two following statements.

• U# ⊆ Πx∈XBrx

• U# is a closed subset of Πx∈XK
Proof of first statement
Let πz := Πx∈XK → K be a projection function to the zth coordinate of the product space.
Then to show that statement 1 holds we just need to show that the πx(U

#) ⊆ Brx holds
for all x ∈ X. So let x be fixed. Then, since πx(f) = f(x) for all f ∈ U# is is sufficient to
show that f(x) ∈ Brx .Since, by definition of rx in the proposition, x ∈ rxU we can define
ux = x ∗ 1

rx
∈ U . Since sup(f(x)) ≤ 1:

1

rx
|f(x)| = |f( 1

rx
x)| = |f(u)| ≤ sup

u∈U
f(u) ≤ 1

which implies f(x) ≤ rx and therefore f(x) ∈ Brx

Now we will show that proposition 2 holds.
Since X∗ is a closed subset of Πx∈XK the set

UB1 := {(fx)x∈X ∈ Πx∈XK : fu ∈ B1 for all u ∈ U}

= Πx∈XCx ,where Cx :=

{
B1 if x ∈ U

K if x /∈ U

is closed under the product topology on Πx∈XK since it is a product of closed sets. And
therefore UB1 ∩X#U# is closed since it is the intersection of two closed sets. □

An important theorem that follows from this is Jame’s theorem.

Theorem 4.3. (James’ Theorem) A Banach space X is reflexive if and only if for all f ∈ X ′

there exists an a ∈ X with ∥A∥ ≤ 1 such that f(a) = ∥f∥
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By the way that we will define reflectivity and double duals, we can infer that this meas
that a Banach space is reflexive if and only if the closed unit ball in X is weakly compact.
Banach-Alaoglu as a statement is strictly stronger than Hahn-Banach which means that
we can prove Hahn-Banach By using Banach-Alaoglu or it’s equivalents, namely Ultrafilter
lemma. [Lux62]

5. Hahn-Banach extension theorems

The Hahn-Banach theorem arose from attempts to solve infinite systems of linear equa-
tions. Infinite systems were needed to solve problems such as the Fourier cosine problem,
or the moment problem. It was built on the back of other theorems. The first mention
of something that can be said to be the precursor to the Hahn-Banach theorem was in a
1907 paper by Frigyes Riesz. However, it was later in the 1920s when Eduard Helly laid the
basis of what would become proof of the Hahn-Banach theorem. Eduard Helly had been
interested in finding a proof for the Hamburger problem(a type of moment problem) and his
way to the solution led him to come across a trick that Banach would later use to prove his
theorem. Helly proved a theorem which worked for only a specific class of cases. In his 1927
paper, Banach proved a Hahn-Banach theorem and gave some credit to Helly. He then in
1932 proved another version of the Hahn-Banach theorem but wasn’t as generous with his
crediting.
The Hahn- Banach theorem is one of the most important theorems in functional analysis. It
allows one to define specific functionals on a vector space. There are many versions Hahn-
Banach theorem which have very similar statements, uses, and proofs. Since the proofs
are similar throughout most of the theorems we will give a proof for the continuous norm
preserving version over C and the other proofs follow a similar line of reasoning.

Theorem 5.1. Let V be a normed vector space, and let M ⊆ V be a subspace. If u : M → Cis
a linear map such that |u(t)| ≤ C∥t∥ for all t ∈ H (in other words, we have a bounded linear
functional), then there exists a continuous extension U : V → C (which is an element of V ′)
such that U |H = u and ∥U(t)∥ ≤ C∥t∥ for all t ∈ V (with the same C as above).

To prove this theorem we will use the following lemma to first show that it is possible
to continuously extend a linear functional to a larger subspace of a vector space and then
we will show that after extending this functional we eventually get to a functional which is
defined on the whole space.

Lemma 5.2. Let V be a normed space, and let M ⊆ V be a subspace. Let u : M → C be
linear with |u(t)| ≤ C∥t∥ for all t ∈ M. If /∈ M, then there exists a function ua : Ma → C
which is linear on the space Ma = M + Cx = {t + ax : t ∈ M,a ∈ C}, with ua|Ma = u and
|ua(ta)| ≤ C|ta| for all ta ∈ Ma.

Proof. Proof of lemma. First we’ll show that any element ma ∈ Ma can be represented
uniquely as a t+ ax for t ∈ M,x ∈ Ma \M and a ∈ C. To see this assume that

t+ ax = t1 + a1x =⇒ t− t1 = (a1 − a)x

which implies that x ∈ M which is a contradiction unless a = a1 which then means that
t = t1. This means that we have a well-defined way to define our continuous extension. Now
we choose a λ ∈ C such that

u1(x+ ta) = u(t) + aλ
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and this map is well defined on M1 and therefore the map u1 is linear. If the bounding
constant C is 0 then the extension map is just the zero function which isn’t interesting. To
simply the further proof we can (without loss of generality) assume that C = 1. For there
to be a continuous extension we need to show that there exists a λ such

|u(t) + aλ| ≤ ∥t+ ax∥
holds for all t ∈ M,a ∈ C. We can ignore the case when a = 0 because then the inequality
is in M which we know holds by the requirements for the theorem. So now we can divide by
|a| to get

|u( t

−a
) + λ| ≤ ∥ t

−a
+ x∥

since a is a scalar we know that t
−a

∈ M and that means it is sufficient to show that

|u(t)− λ| ≤ ∥t− x∥
for all t ∈ M for this we will split λ into its real partα and its imaginary part iβ for α, β ∈ R.
We will do the real part first and the imaginary part can be done in the same manner. We
first show that

|g(t)− α| ≤ ∥t− x∥
where g(t) is the real part of u(t). Now notice that Re |g(t)| ≤ |u(t)| ≤ ∥t∥ since by
assumption u(t) is bounded by a C of 1. Since g is real valued

|g(t1)| − |g(t2))| ≤ |g(t1 − t2)| ≤ ∥t1 − t2∥
. And using the triangle inequality and the previous equation we get that

g(t1)− g(t2) ≤ ∥t1 − x∥+ ∥t2 − x∥ =⇒ g(t1)− ∥t1 − x∥ ≤ g(t2) + ∥t2 − x∥
by taking the supremum of the left hand side and the infinum of the right hand side we get
that

sup
t∈M

g(t))− ∥t− x∥ ≤ inf
t∈M

g(t) + ∥t− x∥

Now we insert an α ∈ R between the inequality giving us

sup
t∈M

g(t)− ∥t− x∥ ≤ α ≤ inf
t∈M

g(t) + ∥t− x∥

and now we rearrange this equation to get that for all t ∈ M

−∥t− x∥ ≤ α− g(t) ≤ ∥t− x∥ =⇒ |g(t)− α ≤ ∥t− x∥
And we can repeat this process but instead of using x we will instead use ix this defines a
function u1 on M1 which is an extension of the original u function. □

And we have now shown that it is possible to extend a function from a subspace to a larger
subspace. Now we have to show that it is possible to extend this function to a function that
goes over the whole space. To do this we will use Zorn’s lemma.

Proof. Proof of Hahn-Banach extension theorem. We will define a space E to be the space
of all continuous extensions of u

E := {(v,H) : vis a continuous extension ofuandM ⊆ H ⊆ V }
We the define a partial ordering ≼ on the elements of E defined by

(va, Ha) ≼ (vb, Hb) if Ha ⊆ Hb, vb|Ha = va
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one can check that this is a partial order for themselves. Now, in order to be able to use
Zorns lemma we have to in some way create chains in E. So let C = (vi, Hi)i∈I be a chain
and i be an indexing set. We claim that every chain C has an upper bound.
Let H =

⋃
i∈I Hi. We will check that this is a subset of E. First we take two elements

x1, x2 ∈ H and then z1, z2 ∈ C. Then let’s take two sets Ni1 , Ni2 such that x1 ∈ Ni1 , x2 ∈ Ni2

be the partial ordering defined on Ni and since Ni ∈ C we know that x1, x2 ∈ Ni2 . And
now since the Ni’s are closed we know that z1x1 + z2x2 ∈ Ni2 ⊆ N and this makes N a
subset. Now we have to show that (v,N) is a maximal element for chains in E. And we
define v to be the extension of u to that acts ion N . More formally v : N → C so that
for any ti in Ni , v(ti) = vi(ti). And for any n ∈ Niv(n) = vi(n) and therefore when v is
restricted to any Ni it is defined as the respective vi which means that any (vi, Ni) ≼ (v,N)
making (v,N) a upper bound for any chain. Now we have the prerequisites needed to use
Zorns lemma. First let (U,N) be a maximal element in E. We claim that N = V . Suppose
that this isn’t the case. Then using the above lemma, there exists an x such that there is
a continuous extensionU1 of U to N + Cx. However, this would contradict (U,N) being a
maximal element since (U1, N = Cx) ≼ (U,N). Therefore, N = V and U is a continuous
extension of u acting on all of V □

The following theorem deals with sublinear functionals dominating other functionals and
this therefore acts as a more generalized version of the above proof.

Definition 5.3. A function p : X → K is called sublinear if

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X
• p(λx) = λp(x) for all λ ∈ K, x ∈ X

Theorem 5.4. (Hahn-Banach Sublinear functional) Let p be a sublinear function from E to
R. Let E0 be a vector subspace of E and let f0 be a linear function from E0 to R for which

f0(x) ≤ p(x) for all x ∈ E0

Then there exists a linear function f from E to R that extends f0and for which

f(x) ≤ p(x) for all x ∈ E.

When we have that f(x) ≤ p(x) for all x ∈ E we say that f is dominated by p

Theorem 5.5. (Hahn-Banach Theorem for normed spaces Version) Let E be a normed
vector space and let E0 be a vector subspace of E. Let f0 be a continuous linear function from
E0 to R. Then there exists a continuous linear function from E to R that extends f0such that

∥f(x)∥ = ∥f0(x)∥

We won’t write out the full proof for these two scenarios since the proofs are practically the
same as the previous proof and there is not much reason to repeat the steps. However, the
fact that there are many types of Hahn-Banach extension theorems means that depending
on what properties we want the functional to have. This is one of the reasons that the
Hahn-Banach theorem is such a powerful theorem for functional analysis. It allows us to
define functionals on the entire vector space based solely on how the function is defined on
a specific subspace. One simple example of how the Hahn-Banach theorem can be used to
define functionals in the dual space is the following proposition.

Corollary 5.6. Let V be a normed vector space then, for all v ∈ V there exists a function
ϕ such that ∥φ∥ = 1 and ∥φ(v)∥ = v
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Proof. Define a functional ϕ : Cv → C by ϕ(λv) = λ∥v∥.Then |ϕ(z)| ≤ ∥z∥ for any z ∈ Cv
and clearly ϕ(v) = ∥v∥. Therefore by Hahn-Banach extension theorem.(We use the version
that we proved). There exists a φ in V ∗ extending ϕ such that ∥φ(z)∥ ≤ ∥z∥ for all z. So,
now we’ve found our desired functional φ with ∥φ(v)∥ = ∥v∥ and ∥φ∥ = 1 □

This corollary shows how there is, in a sense a way to have well defined elements in the
dual space of a vector space, that allows one to choose specific functionals as they fit their
need. This corollary also implies the following proposition.

Definition 5.7. We call a operator T : V → W isometric, or measure preserving is for all
v ∈ V , ∥v∥ = ∥Tv∥

Proposition 5.8. There exists a natural map from V to V ∗∗ which is isometric.

We will define the elements of the dual space Tv : V
′ → C by Tv(v

′) = v′(v) for any v ∈ V
and any v′ ∈ V ′.

Proof. We will leave it as an exercise to the reader to check that v 7→ Tv is a linear operator.
We will show that v 7→ Tv is bounded.
Take any Tv(v

′) then

|Tv(v
′)| = |v′(v)| ≤ ∥v∥∥v′∥

Using this we see that ∥Tv∥ ≤ ∥v∥ and therefore ∥T∥ ≤ 1 Now we need to show that ∥T∥ = 1.
To do this we show that ∥v∥ ≤ ∥Tv∥ So now using corollary 31 we know there exists some
φ ∈ V ′ such that ∥φ = 1∥ and φ(v) = ∥v∥ and therefore we have that

∥v∥ = f(v) = |f(v)| = Tv(f) ≤ ∥Tv∥∥f∥
and therefore we have that ∥v∥ = ∥Tv∥ and therefore T is isometric. □

Corollary 32 also leads us to another interesting result.

Proposition 5.9. For a closed subspace A ⊆ X there exists an f ∈ X∗ on every x ∈ X/A
such that ∥f∥ = 1, f |A = 0 and f(x) = infa∈A∥x− a∥

Using the above proposition we can define an indicator which will give us 1 when we are
in the desired subspace and otherwise.

Proof. The proof for this proposition is very similar for the proof for the above corollary.
Just define the function f to be the infimum of the distance from any point x to a point
a ∈ A □

Definition 5.10. We call a space reflexive if the map V 7→ V ∗∗ is bijective.

Reflexive spaces will come up later and are spaces where there is, in a sense the same
amount of elements in V and V ∗

The ℓp space is reflexive for all 1 < p < ∞ (since the dual of p is q and the dual of q is p
again). However, using Hahn-Banach we can show that the ℓ1 and ℓ∞ are not reflexive since
the dual of ℓ∞ isn’t ℓ1. [Mel21] Another form of Hahn-Banach that acts is a similar way to
the form of .

Theorem 5.11. (Dominated Hahn-Banach) Let ρ be a function between a vector space X
and R. And let f : M → R where M ⊆ X. Such that |f(x)| ≤ ρ(x) for all x ∈ M . Then
there exists and F so that |F (x)| ≤ |ρ(x)| X for all x in
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We will not show the proof for this version of the theorem as well since it is very similar
to the above proof.
The main difference between this version of the Hahn-Banach theorem and the initial Hahn-
Banach theorem that we mentioned is that this version of the theorem doesn’t require there
to be a norm on the vector space and also doesn’t require for the functional on the vector
space to be continuous functional.

6. Measure and Banach

One of the fields where Hahn-Banach is used is in measure theory. Since measures are
types of functionals, there is a place where Hahn-Banach comes into play with dealing with
measure. To define measure we firstly need to define what a σ − algebra is.

Definition 6.1. A σ − algebraΣ on X is a collection of subsets of X such that if U ∈ Σ
then U c ∈ Σ and such that Σ is closed under countable unions.

Definition 6.2. Let ΣX be a σ − algebraonasetX then we call µ : Σx → [0,+∞]

• (Non-negativity) µ(A) ≥ 0 for all sets A with µ() = 0.
• (Countable Additivity) For any countable collection of disjoint En ∈ ΣX

∞∑
k

µ(Ek) = µ(
∞⋃
k

Ek)

There is a certain type of σ − algebra that we will be interested in later. It is called the
Borel σ−algebra,denoted B(X) and it is a σ−algebra consisting of only/closed sets induced
by the topology on that set.
Hahn-Banach leads to two conclusions about the extension of Lebesgue measure.

Definition 6.3. The Lebesgue outer measure µ∗ of a set A in the sigma algebra is

inf(
∞∑
k=1

(vol(Ak)) : for all Ak such that
⋃
k

(Ak) ⊇ A

. The Lebesgue measure µ∗is then defined to be the same as the Lebesgue outer measure if

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

This is the typical measure that is used for subsets of Euclidean space. And it is used to
define things like Lebesgue integration and Lp spaces. So, the Hahn-Banach theorem can be
used to show extension of a finitely-additive, translation invariant Lebesgue measure up to
Rs and can be used to show the nonexistence of such a measure in Rp where p ≥ 3 [FW91].
This existence of a non-Lebesgue measurable set can be also used to imply the Banach-Tarski
theorem.

Theorem 6.4. (Banach-Tarski) Given a solid ball in three-dimensional space, there exists a
decomposition of the ball into a finite number of disjoint subsets, which can then be put back
together in a different way to yield two identical copies of the original ball.

The Banach-Tarski paradox is a statement that is equivalent to the Hahn-Banach theorem.
More details are here [Paw91]. The Hahn-Banach theorems role in this proof is to show that
we can define a measure which then leads to the proof of the theorem.
There is another type of measure that we will define in this section called Radon Measure.
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Definition 6.5. Radon measure µ is a measure on a Borel algebra induced by a Hausdorff
topology B(X) such that for a compact subset C ∈ B(X), µ(C) is finite, all sets in the Borel
algebra have an regular outer measure and all open sets have the regular inner measure.

As I mentioned earlier, we will not need to use radon Measure now but it will come up
later.

7. Locally convex Sets and Hausdorff spaces

Normally, when working with a topological space it is often the case that the space is a
Hausdorff space. A Hausdorff space is a topological space in which points are separated.

Definition 7.1. A space X endowed with a topology τ is Hausdorff if for any point x, x1 ∈ X,
there exists a neighborhood V around x and neighborhood U around x1 such that U ∩ V = ∅

These types of spaces also have a lot of properties which makes them nice to work with.
One of these properties is that limits of nets and filters are unique. Also, in Hausdorff spaces,
compactness of a subset implies that the set is closed.
These are just some of the properties that make Hausdorff spaces unique and nice to work
with. It is also the case that all sets can be extended to be a Hausdorff set. However, in cer-
tain topologies using Hahn-Banach we can impose Hausdorff separation onto the topological
vector space.
Locally convex spaces are spaces such that the neighborhood basis around the origin consists
of convex, balanced sets. Convex sets are sets such that any two points in the set can be
connected with a line segment that stays in the set, and balanced sets are sets such that any
line from a pint to the origin is entirely within the set. The formal definition is below.

Definition 7.2. We call V a locally convex set if the neighborhoods around the origin are
sets {Ca} such that

• (Convex) If x, x1 ∈ C then the line px+ (1− p)x ∈ C where 0 ≤ p ≤ 1
• (Balance) For any point x ∈ C and for any scalar c such that |c| ≤ 1, cx ∈ C

The reason that we only have to define this for the neighborhood around the origin is because
we can shift any of the sets by writing a neighbor hood of x as O(x) which is equivalent to
O(0) + x in a vector space.

8. Geometric Separation Hahn-Banach

The Hahn-Banach separation theorems are a set theorems which we can use to show and
build separating hyperplanes between convex sets in a vector space. For this theorem we
should define cones and hyperplanes are and what the closure of a set is.

Definition 8.1. The closure of a set X denoted by X̄ is
⋂

α Dαthe intersection of all closed
sets containing X.

Definition 8.2. A hyperplane H is a subset of a vector space V that is of one dimension
lower and is of the form

H = {x : f(x) = a} for some a ∈ R, f ∈ E∗

The closure is the smallest closed set that contains a set Y . And the hyperplane acts as
a sort of line that, in a sense, splits a space in half with one half being elements in a V
such that f(v) ≤ a and the other half beingf(v) ≥ a. The original Geometric Hahn-Banach



HAHN-BANACH THEOREMS 15

theorem, most often credited to Mazur deals with the existence of this hyperplane.
The Geometric Hahn-Banach Theorem

Theorem 8.3. Let X be a topological vector space over R, N a linear subspace of X, and
O a non-empty open convex subset of X such that N ∩ O = ∅. Then there exists a closed
hyperplane H of X such that

N ⊆ H and H ∩O = ∅

Proof. The proof for this will be done in 3 parts. Fist we will show that there indeed exists
a maximal linear subspace H ⊇ N disjoint from O. Then we show that H is closed in X with
respect to the topology induced by a seminorm(a norm without Positive definiteness). And
then we will finally show that H is indeed a hyperplane.

8.1. H Is a maximal extension of N. This proof is just an application of Zorn’s lemma.
First we consider the family of linear subspaces E of X such that

N ⊆ E and E ∩O = ∅

. And now, just with how we proved the maximal extension for the Hahn-Banach Extension
Theorem, we will choose a chain C in X under the ordering of ⊆ and then we take the
upperbound to be the union of all S ′s in the chain. And now, by Zorns we have a maximal
subspace H that contains N and who’s intersect with O is empty. This now gives us a
subspace over all of X satisfying our desired proprieties.

8.2. H is closed in X. Since H is disjoint from O, we know that H ⊆ OC which implies
that H̄ is also disjoint from O. And since O is open in X we get that

H̄ ⊆ X/O = X/O

And since H contains N and is disjoint from O, H is in the family of subspaces E. But,
since H is a maximal element that means that H coincides with H

8.3. H is a Hyperplane. To prove this we will show that dim(X/H) = 1, which will be
sufficient to show that H is a hyperplane.
Let ϕ : X → X/hH be the quotient mapping. Then, since ϕ is an open mapping(it takes
open sets in X to open sets in X/H), ϕ(O) is an open convex set which doesn’t contain the
origin ô of X/H.(If it did contain the origin that would mean that there is an x ∈ O such
that ϕ(x) = ô and since ϕ is a quotient mapping that means that x ∈ H which contradicts
the ”disjointness” of H and O. So now we set

C =
⋃
a>0

aϕ(O)

This makes C a convex cone without the origin point (̂o). We show that dim(X/H) ≥ 1.

Assume that dim(X/H) = 0 Then X/H = {(̂o)} and therefore H = X which implies that
O is empty which contradicts the definition of O. So we will now show that dim(X/H) ̸≥ 2.
Assume for the sake of contradiction that dim(X/H) ≥ 2 then we only need to show the
following two claims in order two get our conclusion.

• Claim 1 The boundary δA of A must contain at least one point x ̸= ô.
• Claim 2 The point −x cannot be in A
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With Claim 1 we can show that x ̸∈ A, since x ∈ δA and since A is open. With both this
fact and the second claim, we know that x an −x are both in the complement of A which is
in X/H. So we define L to be the line between x an −x Since A is a cone, we can see that
L ∩ A = ∅ Then:

• ϕ−1(L) is a linear subspace
• ϕ−1(L) ∩O = ∅ since ϕ−1(L) ∩ A = ∅ and A is a union of O
• ϕ−1 ⊃ H because ∩o = ϕ(H) ⊆ L but we can say that containment is strict since
x ̸= ô

However, this now means that H is contained in ϕ−1(L) and that ϕ−1(L) is one of the
subspaces S which contradicts the maximality of H. Now we just prove the claims and we
will have the finished proof of H being a hyperplane.

• Proof of claim 1 Lets assume that δA = {∩o}. Then that means that A has an empty
boundary with respect to X/H \ {ô} And since dim dim(X/H) ≥ 2 we can see that
X/H \ {ô} is path-connected and therefore connected. This would now imply that A
= X/H \ {ô}. This contradicts that A is convex since X/H \ {ô} isn’t convex (due
to the missing origin)

• Proof of claim 2 Assume there exists an −x ∈ A. Then we can find a neighborhood
U around −xwhich implies that there exists −U ∋ x. then we can choose elements
j ∈ U and −j ∈ −U and since A is convex that means that the line between the two
points is entirely in A which implies that ô is in A which contradicts the definition
of A.

□

This theorem implies the extension version of the Hahn-Banach theorem.
When the subsets have different additional properties, such as compactness,closeness, and
openness, there are stronger theorems that we can use in order to build separations.

Theorem 8.4. • If A is an open subset of X and B is a subset of X then there
exists and separating function L : X → K such that there exists an k such that
L(a) < k ≤ L(b) for all a ∈ A, b ∈ B. If B is also open then this could be strengthened
to p(a) < k < p(b)

• If we have a locally convex vector space X with an compact subset A and a closed
subset B then there exists a function s : X → K such that s strongly separates theses
sets (i.e there exist and v, w ∈ K such that sup f(a) < v < w < inf f(b)

We will only prove the first part. The second part follows from the first proof.

Proof. Take the set A − B := {a − b : a ∈ A, b ∈ B} One can check that this is an open,
convex set not containing the origin o. By applying the Hahn-Banach theorem to {o} we
get a closed Hyperplane containing {o} disjoint from A− B. Equivalently that means that
there exists a linear functional f ̸≡ 0 on X such that f(A−B) ̸= 0 Then there exists a linear
function of X such that

L(A−B) > 0 =⇒ L(A)− L(B) > 0 =⇒ L(A) > L(B)

And now that means that we can take an a such that L(A) ≥ a ≥ L(B). □

The Hahn-Banach separation theorems separate also give rise to the following theorem
regarding cones which is a stronger version of the aforementioned theorems since it allows
us to choose the hyperplane constant to be 0.
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Theorem 8.5. Let C ⊆ X be a convex cone in X and B ⊆ X an open subset of X. Then
there exists a linear functional f ̸≡ 0 f : X → R such that f(c) ≥ 0 for all c ∈ C and such
that f(a) ≤ 0 for all a ∈ B

Proof. The proof follows from the previous theorems. Since we have a hyperplane that
separates C and B that means that there exists an α such that f(c) ≥ α ≥ f(b) for all
c ∈ C, b ∈ B. Since C is closed under scalar multiplication we have that

f(λc) ≥ α for a λ ∈ R =⇒ λf(c) ≥ α =⇒ f(c) ≥ α

λ

and taking the minimum we get that

f(c) ≥ inf
λ>0

a

λ
= 0

□

When working with topological vector spaces there are some properties which make it nice
to work with these spaces. In most cases if we can fine a topological vector space that is
Hausdorff, it is nicer to work with than a lot of other spaces. Same goes for spaces that
are locally convex. The separation theorems allow us to have weaker initial requirements in
order to further assume that a space has both of these properties.

Proposition 8.6. Let V be a topological vector space then under the weak topology; V is
Hausdorff and furthermore, under the weak∗ topology V ∗ is also Hausdorff

Proof. One of the properties that a topological vector space has with respect to the weak
topology is that the space is locally convex.
Let v, w ∈ V with neighborhoods U,Z respectively. Then by The Hahn-Banach separation
theorem, we get that there exists a function L such that L(U) < k < L(Z). Which means
that the sets are separated by a hyperplane of the form x ∈ V : L(x) = k.
The proof for the dual space is similar but uses the weak∗ topology and an element from
V ∗∗. □

9. Unique extensions of functions

While in general it is possible a functional on a space, it is not always guaranteed that this
extension is unique. So, there could be many functionals that work to extend a functional
on a subspace. in this section we will discuss the times where the extension of functionals
is unique. (i.e there exists only one functional g which can extend f from a subset to the
whole space.
To set the stage for these functionals we will need to define a new type of norm called a
Gateux differentiable norm and we will need to restrict the type of spaces to spaces that are
uniformly convex.

Definition 9.1. We call a norm on a vector space V Gateux differentiable if for all x, y ∈ V

lim
t→0

∥x+ ty∥ − ∥x∥
∥t∥

exists.



18 NATHAN SHKOLNIK

Definition 9.2. A uniformly convex space is a normed vector space such that for every ε > 0
there exists an δ > 0 so that for all x, y where ∥x∥ = ∥y∥ = 1

∥x− y∥ ≥ ε =⇒ ∥x+ y

2
∥ ≤ 1− δ

This type of norm is a restriction that allows for us to make unique extensions. The
following theorem is another version of the Hahn-Banach theorem. It is a theorem credited
to Hajime Ishihara and it is based on a constructionist axiomatic framework that differs
from the ZFC framework. We will not discuss this further but more reading can be found
here [BB85].

Theorem 9.3. (Ishihara’s Hahn-Banach) Let U be a uniformly convex space with a Gateux
differentiable norm. Let V be a subspace of U and f : v → R a nonzero linear functional.
Then, there exists a unique extension F of f such that ∥F∥ = ∥F∥.

We will not prove this theorem here as it is based on a different axiomatic system that
would take to much time to properly introduce. This above theorem gives rise to the following
theorem.

Theorem 9.4. If the unit ball in X is weakly compact and if the norm in E is Gateaux
differentiable then every continuous linear functional on every vector subspace of E can be
uniquely extended to a continuous linear functional on E with the same norm.

And this, by James’ theorem, implies that

Proposition 9.5. If E is a reflexive Banach space and the norm on E is Gateaux differen-
tiable then Hahn–Banach extensions are unique.

We refer again to [BB85] for more detail. Another example for a search for uniqueness of
extensions is the following conjecture.

Proposition 9.6. Let B(ℓ2) be the Hilbert space of all continuous linear functions from
ℓ2 → ℓ2. It follows that ℓ∞ ⊂ B(ℓ2). We can extend the extreme points of the unit ball of
ℓ∞∗ to the extreme points of the unit ball around B(ℓ2).

We won’t discuss this proposition further due to lack of space but more reading can be
found here [BT91]

10. The moment problems

And now we’re back to the problem that started it all. Helly’s work which was used to
establish a basis for the Hahn-Banach theorem was based on trying to solve a certain type of
moment problem. Now we will use Hahn-Banach to make progress on the general moment
problem. We will discuss the general form for the moment problems. The moment problems
deal with the question of ”If a sequence of moments exist does a probability measure on a
function?”. So let’s define some of the terms.

Definition 10.1. The nth moment mn of a measure µ be a non-negative Borel measure
defined on R is defined by

mµ
n =

∫
R
xnµ(dx)
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If the measures of all these measures exists and is finite then (mµ
n)

∞
n=0 is called the sequence

of moments of µ. This means that given a certain measure we can create a sequence of
moments. The moment problems ask the question in reverse. We will introduce the question
in the univariate sense then extend it to a multivariate sense

Definition 10.2. (Univariate moment problem) Let C be a closed subset of R with m :=
(mµ

n)
∞
n=0. Does there exist a finite Radon measure µ such that the the supp(µ) ⊆ K and the

moment of the measure is m where a mn is defined as

mn =

∫
C

xnµ(dx) for all n ∈ N

If there is such a measure then we call that measure a C-representing measure and therefore
a solution to the C-moment problem for m.

To make an easier way to work with these problems, at least through the lens of functional
analysis, we will rephrase the moment problem in terms of a linear functional. So first we
define a linear functional Lm from R[x] the set off all polynomials with x to R. Then

p(x) :=
N∑

n=0

pnx
n and we define Lm(p) :=

N∑
n=0

pnmn

then let µ be a C representing measure for m and we get

Lm(p) =
N∑

n=0

pnmn =
N∑

n=0

pn

∫
C

xnµ(dx) =

∫
C

pxµ(dx)

This meas that there is a one to one relationship between the linear functional Lm : R[x] → R
and all sequences of real numbers.Now that we found that there is a relationship between
sequences of moments and functionals we will be able to rewrote the problem in terms of
linear functionals.

Definition 10.3. (Univariate Moment problem in Functional form)
Let C be a closed set of R an L : R[x] → R. Does there exist a nonnegative Radon measure
µ such that

L(p) =

∫
R
p(x)µ(dx) for all p ∈ R[x], suppµ ⊆ C

Now we can extend this problem to higher dimensions. First we replace R with Rd where
d ∈ N and instead of only having one x in the ring R[x] we define the collection of d variables
xD = (x1, x2 . . . , xd) and now we can pose the problem for higher dimensions.

Definition 10.4. Let C be a closed set of Rd an L : R[xD] → R. Does there exist a
nonnegative Borel measure µ such that

L(p) =

∫
Rd

p(x)µ(dx)for all p ∈ R[xD]

Now we say that if such a measure exists that it’s a C representing measure for L and
therefore a solution to the moment problem for L

The following theorem gives another approach to solve this problem. This theorem is due
to Reisz and Havilad an it replace the moment problem with another problem.
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Definition 10.5. (Reisz-Havilad theorem). Let K ⊆ Rd and a linear function L : R[xD] →
R. Then, L has a K representing measure if and only if L(Psd(K))≥ 0 where Psd(K) :=
{p ∈ R[xd] : p(x) ≥ 0 for all x ∈ K}

Using this we can find a solution to the moment problem. However, the one downside is
that this has just turned one hard problem into another hard problem.
To start to make progress on this problems we define the dual space of a cone as follows.

Definition 10.6. The first dual C∨ of a cone is given by

C∨ = {ℓ : X → R linear : ℓ(C)is continuous and ℓ(C) ≥ 0}

and we define the double dual as

C∨∨{x ∈ X : for all ℓ ∈ C∨ℓ(c) ≥ 0}

Now using the Hahn- Banach separation theorem to prove the following proposition.

Proposition 10.7. Let X be real vector space endowed with the finest locally convex topology
φ. If C is a nonempty convex cone in X, then C with respect to φ then Cφ = C∨∨

Proof. Firstly, we can see that Cφ ⊆ C∨∨. That is because if x ∈ cφ then for any ℓ ∈ cvee

ℓ(x) = 0 and therefore x ∈ C∨∨

On the other hand, suppose there exists x0 ∈ C∨∨ \ Cφ Then by the separation theorem

with cones, there exists a linear functional L : X → R L(C
ϕ
) ≥ 0andL(xo) < 0. Since

L(C) ≥ 0 and every linear functional is continuous, we have L ∈ C∨. This now means that
since L(xo) < 0 that xo ̸∈ C∨∨ which contradicts the definition of vo □

Now using this proposition we can create another new form of the measure problem that
goes as follows.

Proposition 10.8. Let S := {g1, ..., gs} be a finite subset of R[x] and L : R[x] → R linear.
Assume that MS is Archimedean. Then there exists a KS-representing measure µ for L if and
only if L(MS) ≥0, where KS := {xD ∈ R : gi(xD) ≥ 0 for all giin a finite set of polynomialsS
and where MS := {

∑
i = 0sσigi : σi ∈

∑
R[xd]

2, i = 1, 2, 3 . . . s}

Proof. One fact that we will keep in mind comes from Putinar Positivstellesatz (1993) and

it states that if MS is Archemdian(i.e there exists an N in N such that N −
∑d

i=1 x
2
i ∈ M )

Psd(KS) ⊆ MS
φ

. Now, lets suppose that L(MS) ≥ 0 and we have a topology φ on R[xD] Then L is continuous
and therefore an element of (Ms)

∨. And, since MS is Archemidian,

Psd(KS) ⊆ MSφ Which by the above proposition is equal to MS
∨∨

And this implies that any p ∈ Psd(Ks) is in {MS}∨∨. This means that for any ℓ ∈{MS}∨, ℓ(Psd(KS) ≥
0) which means that L(Psd(KS) ≥ 0). And by Reisz-Havilad theorem we get that we have
a KS representing measure for L.
Now we show the other way around. Assume that we have a KS representing measure µ for
L. Then that means that for all p ∈ MS we have that

L(p) =

∫
Rd

p(xd)µ(dxd)
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which is nonnegative since µ is a nonnegative measure and therefore we get that L(p) ≥ 0
for all p ∈ MS ⊆ Psd(KS) While this doesn’t give a solution to the moment problem it
simplifies the problem significantly and gives us another way to approach the problem. □

11. Bibliography

References

[BB85] Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of Grundlehren Math. Wiss.
Springer, Cham, 1985.

[BT91] J. Bourgain and L. Tzafriri. On a problem of Kadison and Singer. J. Reine Angew. Math., 420:1–43,
1991.

[FW91] Matthew Foreman and Friedrich Wehrung. The Hahn-Banach theorem implies the existence of a
non-Lebesgue measurable set. Fundam. Math., 138(1):13–19, 1991.

[Lux62] W. A. J. Luxemburg. Two applications of the method of construction by ultrapowers to analysis.
Bull. Am. Math. Soc., 68:416–419, 1962.

[Mel21] ”Richard Melrose”. ” introduction to functional analysis lecture notes, ”Spring” ”2021”.
[Paw91] Janusz Pawlikowski. The Hahn-Banach theorem implies the Banach-Tarski paradox. Fundam.

Math., 138(1):21–22, 1991.


	1. Introduction
	Prerequisite Knowledge
	2. Banach Spaces
	3. Axiom of Choice and its equivalents
	Topologies on The dual space
	4. Banach-Alaoglu
	5. Hahn-Banach extension theorems
	6. Measure and Banach
	7. Locally convex Sets and Hausdorff spaces
	8. Geometric Separation Hahn-Banach
	8.1. H Is a maximal extension of N
	8.2. H is closed in X
	8.3. H is a Hyperplane

	9. Unique extensions of functions
	10. The moment problems
	11. Bibliography
	References

