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Notations of Multi-Linear Algebra

Definition

Tensor products of a vector space V are multi-linear maps,
meaning that if we multiply any of the elements V1 ⊗ V2 ⊗ . . . ⊗
Vr → IR by a scalar, the result V∗

1 ⊗ V∗
2 ⊗ . . . ⊗ V∗

r (i.e the
tensor product) will also be multiplied by the same scalar.

Definition

A (r,s) tensor field in V is given by the set of elements of the
tensor products where Vr

s r times of V ⊗ . . . ⊗ V multiplied by s
times of V∗ ⊗ . . . ⊗ V∗.
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Riemannian Manifolds

A Riemannian manifold (M,g) is a form of smooth manifold which
admits a Riemannian metric.

Definition

A Riemannian metric is a (0,2) tensor field g∈ T2(M) such that for
all p∈ M, gp is a bilinear, symmetric and positive definite (gp(v, v)
> 0 for every v ̸= 0, v ∈ TpM) inner product on TpM.

Every smooth manifold admits at least one Riemannian metric.
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Levi Civita Connection

Definition

A connection is a map on the vector bundle π : E → M where

∇ : X× Γ(E ) → Γ(E )

. ∇vT is defined as the connection on M for all v ∈ X(M) and S,T
∈ Γ(E ). An affine connection is essentially a map between two
neighbouring points in a tangent space.

Definition

The Levi-Civita Connection is a unique, symmetric and torsion free
connection that can be induced on any manifold (M,g) which
satisfies the following conditions:

1 dg(X,Y) = g(DX, Y) + g(X, DY)

2 ∇XY −∇YX = [X,Y]
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Completeness

1 If and only if its metric space is complete (Hopf-Rinow)

2 Its exponential map expp can be defined on the entire TM for
all p ∈ M and therefore γ can be extended between (−∞,∞)

3 Any two points, say p, q, can be connected by a length
minimising geodesic whose distance d(p,q) is the minimum
length of all possible curves in the direction p to q.

4 All bounded closed subset in M are compact.
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Riemannian Distance

The Riemannian distance is the shortest length (also called a
geodesic) of a curve between two points on a Riemannian manifold.

Definition

We can define the Riemannian distance between two points p,q by
setting a piecewise smooth curve γ : [a, b] → M with the tangent
vector TγtM given by γ̇(t) = dγ d

dt for all t∈ [a, b]. The length of
the curve, L(γ), can be written as

L(γ) =

∫ b

a

√
< γ̇(t), γ̇(t) >γ(t) dt

. If L(γ) = d(p,q), we call the curve length minimising.
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Sectional Curvature

Definition

For a point p∈ M and a 2-dimensional subspace or plane
Π ⊂ TpM, we define the sectional curvature of Π at p as

K (Π) = K (x , y) (1)

: =
Rm(x , y , y , x)

g(x , x)g(y , y)− (g(x , y))2
(2)

where x,y are vectors ∈ Π which form the basis and Rm denotes
the Riemann curvature tensor.

Properties of the sectional curvature:

1 K(x,y) is independent of the choice of x, y ∈ Π

2 If the vector basis {x,y} is orthonormal, then
K (Π) = Rm(x , y , y , x)
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Ricci Curvature

Definition

The Ricci curvature tensor is defined by

Ric(X ,Y ) := tr(R(·,X )Y )

. tr denotes a trace, which is simply a contraction map.

Properties of the Ricci curvature:

1 In local coordinates, the Ricci curvature tensor can be written
as

Ric = Ricijdx
i ⊗ dx j

2 Since R is symmetrical (i.e Ric(X, Y ) = Ric(Y, X) for all X,Y
∈ X, tracing through any of the two arguments returns a
result of either Ric or 0.
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Bonnet Myers Theorem

Theorem

The Bonnet Myers theorem states that for any complete
Riemannian manifold (Mn,g) whose sectional curvature, sec(M)
> δ, where δ is a positive constant, its Ricci curvature, R, satisfies:

Ric(M) ≥ δ(n − 1)

. We can then estimate its diameter, diam(M), since it is always
bounded by

supp,q∈M dist(p, q) ≤
√
π

δ

. This is sufficient to show that M is compact.

-Cheng later proved in his rigidity theorem that all manifolds which
satisfy the Bonnet Myers theorem have a constant sectional
curvature k.
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Outline of the Proof

-Assume that there exists a R which satisfies dist(p,q) ≤
√
π
δ

-We also assume that there exists a geodesic γ between points p,q
that is defined on the interval [0,L]such that |γ′ | = 1 after
re-parametrisation.
-set a parallel unit vector field to γ (i.e < W , γ

′
>= 0) and V(t)=

sin(πtL )

-L
′
0 = 0 since γ is a geodesic

-Using the second variation of arc length equation

−
∫ L

0
< V

′′ − R(V , γ
′
)γ

′
,V > dt

We can prove that L(x(s, ·)) = Lx(s) ≤ Lx(0) = L(γ) if s is
infinitesimally small. Therefore, we can show that length of the
curve x(s,·) is actually shorter than γ between p,q ⇒ contradicting!


