Proving the Bonnet Myers Theorem

Natalie Yeung

July 2023

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Introduction

- **1** Notations of Multi-Linear Algebra
- 2 Riemannian Manifolds
- **3** Levi Civita Connection
- 4 Completness
- **5** Riemannian Distance
- 6 Sectional Curvature
- **7** Ricci Curvature
- 8 Bonnet Myers Theorem and its Proof

KORK EXTERNE PROVIDE

9 Extension on Heat Kernels

Notations of Multi-Linear Algebra

Definition

Tensor products of a vector space V are multi-linear maps, meaning that if we multiply any of the elements $V_1 \otimes V_2 \otimes \ldots \otimes$ $\mathsf{V}_r\to\mathbb{R}$ by a scalar, the result $\mathsf{V}_1^*\otimes\mathsf{V}_2^*\otimes\ldots\,\otimes\mathsf{V}_r^*$ (i.e the tensor product) will also be multiplied by the same scalar.

Definition

A (r,s) tensor field in V is given by the set of elements of the tensor products where V_S' r times of $\mathsf{V}\otimes\ldots\otimes\mathsf{V}$ multiplied by s times of $\mathsf{V}^* \otimes \ldots \otimes \mathsf{V}^*$.

KORKARYKERKER POLO

Riemannian Manifolds

A Riemannian manifold (M,g) is a form of smooth manifold which admits a Riemannian metric.

Definition

A Riemannian metric is a (0,2) tensor field $\mathsf{g}\mathsf{\in} \mathsf{T}^2(\mathsf{M})$ such that for all p∈ M, g_p is a bilinear, symmetric and positive definite $(g_p(v, v))$ > 0 for every $v \neq 0$, $v \in T_pM$) inner product on T_pM .

KORKARA KERKER SAGA

Every smooth manifold admits at least one Riemannian metric.

Levi Civita Connection

Definition

A connection is a map on the vector bundle $\pi: E \to M$ where

$$
\nabla\colon \mathfrak{X}\times \Gamma(E)\to \Gamma(E)
$$

. $\nabla_{\mathbf{v}}T$ is defined as the connection on M for all $\mathbf{v}\in \mathfrak{X}(\mathsf{M})$ and S,T \in Γ(E). An affine connection is essentially a map between two neighbouring points in a tangent space.

Definition

The Levi-Civita Connection is a unique, symmetric and torsion free connection that can be induced on any manifold (M,g) which satisfies the following conditions:

I
$$
dg(X,Y) = g(DX, Y) + g(X, DY)
$$

$$
2 \nabla_X Y - \nabla_Y X = [X,Y]
$$

Completeness

- **1** If and only if its metric space is complete (Hopf-Rinow)
- 2 Its exponential map \exp_{p} can be defined on the entire TM for all $p \in M$ and therefore γ can be extended between $(-\infty, \infty)$
- 3 Any two points, say p, q, can be connected by a length minimising geodesic whose distance $d(p,q)$ is the minimum length of all possible curves in the direction p to q.

KORKARYKERKER POLO

4 All bounded closed subset in M are compact.

Riemannian Distance

The Riemannian distance is the shortest length (also called a geodesic) of a curve between two points on a Riemannian manifold.

Definition

We can define the Riemannian distance between two points p,q by setting a piecewise smooth curve γ : [a, b] \rightarrow M with the tangent vector $\mathsf{T}_{\gamma t} \mathsf{M}$ given by $\dot{\gamma}(t) = d \gamma \frac{d}{dt}$ for all t \in [a, b]. The length of the curve, $L(\gamma)$, can be written as

$$
L(\gamma)=\int_a^b \sqrt{<\dot\gamma(t),\dot\gamma(t)>_{\gamma(t)} dt}
$$

KORKAR KERKER DRAM

. If $L(\gamma) = d(p,q)$, we call the curve length minimising.

Sectional Curvature

Definition

For a point $p \in M$ and a 2-dimensional subspace or plane $\Pi \subset T_pM$, we define the sectional curvature of Π at p as

$$
K(\Pi) = K(x, y) \tag{1}
$$

$$
= \frac{R_m(x, y, y, x)}{g(x, x)g(y, y) - (g(x, y))^2}
$$
(2)

where x,y are vectors $\in \Pi$ which form the basis and Rm denotes the Riemann curvature tensor.

Properties of the sectional curvature:

1 K(x,y) is independent of the choice of x, $y \in \Pi$

2 If the vector basis
$$
\{x,y\}
$$
 is orthonormal, then
\n
$$
K(\Pi) = R_m(x, y, y, x)
$$

Ricci Curvature

Definition

The Ricci curvature tensor is defined by

$$
Ric(X,Y):=tr(R(\cdot,X)Y)
$$

. tr denotes a trace, which is simply a contraction map.

Properties of the Ricci curvature:

1 In local coordinates, the Ricci curvature tensor can be written as

$$
Ric = Ric_{ij}dx^i \otimes dx^j
$$

2 Since R is symmetrical (i.e Ric(X, Y) = Ric(Y, X) for all X, Y $\epsilon \in \mathfrak{X}$, tracing through any of the two arguments returns a result of either Ric or 0.**KORKAR KERKER ORA**

Bonnet Myers Theorem

Theorem

The Bonnet Myers theorem states that for any complete Riemannian manifold (M^n, g) whose sectional curvature, sec (M) $> \delta$, where δ is a positive constant, its Ricci curvature, R, satisfies:

 $Ric(M) \geq \delta(n-1)$

. We can then estimate its diameter, diam(M), since it is always bounded by √

$$
sup_{p,q\in M} dist(p,q)\leq \frac{\sqrt{\pi}}{\delta}
$$

. This is sufficient to show that M is compact.

-Cheng later proved in his rigidity theorem that all manifolds which satisfy the Bonnet Myers theorem have a constant sectional **KOD CONTRACT A FINITE STAR** curvature k.

Outline of the Proof

-Assume that there exists a R which satisfies dist(p,q) \leq $\sqrt{\pi}$ δ -We also assume that there exists a geodesic γ between points p,q that is defined on the interval [0,L]such that $|\gamma^{'}|=1$ after re-parametrisation.

-set a parallel unit vector field to γ (i.e $<$ $W,\gamma^{'}>=0)$ and $\mathsf{V}(\mathsf{t})=$ $sin(\frac{\pi t}{l})$ $\frac{\pi t}{L}$

-L $_{0}^{^{\prime}}=0$ since γ is a geodesic

-Using the second variation of arc length equation

$$
-\int_0^L dt
$$

We can prove that $L(x(s, \cdot)) = L_x(s) \le L_x(0) = L(\gamma)$ if s is infinitesimally small. Therefore, we can show that length of the [c](#page-10-0)urve $x(s, \cdot)$ is actually shorter than γ between $p, q \Rightarrow$ c[on](#page-0-0)[tr](#page-10-0)[ad](#page-0-0)[ict](#page-10-0)[in](#page-0-0)[g!](#page-10-0) 299