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Abstract

The aim of this paper is to provide an introduction to the Bonnet-
Myers theorem, which relates the Ricci curvature to the topology of
a manifold. We begin by introducing the basic concepts of manifolds
and tangent spaces, and proceeds to define Riemannian manifolds and
their properties such as the Levi-Civita connection. Geodesics and the
curvature of a Riemannian manifold is also explored, focusing specifi-
cally on the sectional and Ricci curvatures. Finally, we present a proof
of the Bonnet-Myers theorem.

1 Introduction

One of the fundamental aspects of Riemannian geometry is the use of com-
parison theorems, which establish relationships between the geometry of a
given manifold and simpler reference spaces, such as spaces of constant cur-
vature. These theorems allow for comparisons of quantities such as lengths
of curves, volumes of regions, and sectional curvatures. By comparing the
geometry of a manifold to a reference space, comparison theorems provide
valuable insights into the intrinsic curvature and global properties of Rie-
mannian manifolds.

2 Preliminaries

2.1 Smooth Manifolds

A topological space M is called an n-dimensional manifold if M is

1. locally Euclidean at any point ((i.e every point in the topological space
has an open neighbourhood homeomorphic to an open subset of IRn)

2. Haussdorf
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3. second countable

We now explain the significance of each of the above criteria by providing
non-examples.

The Haussdorf property states that for any two points p,q ∈ M, there
exists a neighbourhood of p and q such that Up ∩ Uq ̸= ∅. The Hauss-
dorf condition ensures that the curve does not branch and that two distinct
points do not have a Euclidean distance of 0.

Case 1: a manifold is non-Haussdorf
Example: We first consider two real lines in standard topology X= (IR x
{0,1})/∼ where (x,0) ∼ (x,1) if x< 0.

IR x {1}

IR x {0}

[(0,1)]

[(0,0)]

open subset ≈ ℜ

open subset ≈ ℜ

By projecting the quotient map π: IR x {0,1} → X such that it assigns
every point in the space the corresponding equivalence class and assuming
that A⊂ X is open if and only if π−1(A) is open, we show that the two
origins are the first points which are not identified together. Hence, each
branch of the projection map denotes a open subset, making it impossible
to find separating neighbourhoods around these two origins.

Theorem 2.1. A non-Hausdorff manifold admits no partition of unity.

Proof. For a partition of unity to exist, we require a function to be 0 outside
of every open set of the manifold. From the above example, we have shown
that the two adjacent points [(0,0)] and [(0,1)] cannot belong to the same
coordinate chart. Therefore, there exists open sets containing one but not
the other.
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Definition 2.1. B ⊂ P(X) is called a basis for the topology on X if for
every A ⊂ X, A is open :

• ⇔ A is a union of elements in β

• ⇔ ∀ p ∈ A ∃ B ∈ β such that p ∈ B ⊂ A

We can now define the topological basis as B={B(x,r) ⊂ IR | x∈ Qn, r∈
Q, r>0}. If a countable basis exists for a manifold, we refer to the manifold
as second-countable.

Remark 2.2. second-countable ⇒ first-countable

Lemma 2.3. There exists an uncountable, well-ordered set S such that S
has a maximal element Ω ∈ S and that the set {x ∈ S | x ¡ α} is countable
for all α ̸= Ω

The second countable property ensures that a manifold can be embed-
ded within some finite dimensional Euclidean space, which we will later show
through Whitney’s Embedding Theorem.

Case 2: a manifold is non second-countable
We provide a non-example of the second-countable property using the set
X:= (-∞, 0) S x [0, 1). We assume that a manifold M is non second-
countable, i.e S is an uncountable subset with an infinite number of open
set (X:= S x IR)

...

maximal element

For a randomly chosen point in the set, there is only finitely many number
of intervals before it. This shows that while each individual subset is home-
omorphic, the whole set is not homeomorphic to IR. Therefore, the resulting
space is not second countable as we can easily find an uncountable disjoint
family of open sets in A.
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Theorem 2.4. Let (x, τ) be a second-countable space where A ⊆ X. Then,
there exists at least one accumulation point a ∈ A.

Proof. (by contradiction) We initially assume that an uncountable set A has
no accumulation points and therefore every point is isolated.
If this holds true, then there exists an open neighbourhood Ux of x for each
x ∈ A such that no points in A and x are different.

Ux ∩A = {x} (1)

Definition 2.2. A topological space X is defined as locally Euclidean at a
point p∈ X if there is an open neighbourhood p∈ U ⊂ X that is homeomor-
phic to both IR some open subset of IR.

Proposition 2.5. The locally Euclidean property holds iff a topological
space satisfies either of the following criteria :

• every point on the space has a neighbourhood homeomorphic to IRn

• the neighbourhood should also be homemorphic to an open ball of IRn

2.2 Charts and Atlases

Definition 2.3. A coordinate chart on M is a pair of (U, ϕ) where U ⊂ M
is an open subset and ϕ: U → = ϕ(U) ⊂ IR is homeomorphic to an open
subset.

ϕ(p) = (ϕ1(p), .....ϕn(p)) = (x1(p), .....xn(p))

where x denotes the component functions of ϕ

Definition 2.4. Two manifolds M and N are called diffeomorphic if there
exists a smooth bijective map M → N which has a smooth inverse ψ ◦ f ◦
ϕ−1.

Definition 2.5. As all smooth manifolds admits a C∞ differential structure,
we can define d = dim M is the dimension of the manifold M.

Definition 2.6. A C∞ differentiable structure on M is a collection of coor-
dinate charts ϕα : Uα → Vα ⊆ IRd such that

(i) M =
⋃

α∈A Uα
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(ii) for every α, β, the change of local coordinates is a smooth C∞ map
on its domain ϕα(Uα ∩ Uβ) ⊆ IRd. Any changes in local coordinates
therefore marks a diffeomorphism between the two open subsets ϕα(Uα

∩ Uβ) and ϕβ(Uα ∩ Uβ).

(iii) the collection of charts ϕα is maximal, meaning that ϕ is included in
the collection if a chart ϕ of M is compatible with all ϕα. This follows
from condition (ii).

Definition 2.7. An atlas is defined as a collection of charts in a manifold
M. A= ({Ua, ϕa} : a ∈ I) such that the union of these charts cover M.

Definition 2.8. A transition map compares two charts in an atlas, (Uα, ψα)
and (Uβ, ψβ) where Uα ∩ Uβ is non-empty set by comparing the composite
of one chart with the inverse of the other. The transition map from ψα) to
ψβ) is given by ψβ ◦ ψ−1

α : ψα (Uα ∩ Uβ) → ψβ(Uα ∩ Uβ).

Definition 2.9. For two connected smooth manifolds, M and M̃ , a map
π : M̃ →M is considered a smooth covering map if all the conditions below
hold true:

(i) the covering space, M̃ , is globally and locally path connected

(ii) π is continuous, surjective and every element of π−1(U) can be diffeo-
morphically mapped onto U by π where U is a neighbourhood around
a point p∈ M.

Definition 2.10. A universal covering space is defined as a map between a
path-connected and simply connected covering space.

3 Tangent Spaces

3.1 Tangent Spaces and the Differential of a Smooth Map

Let M ⊂ IRn be an embedded manifold and let there be a tangent space to
M at the point p∈ M. We can consider a tangent space as a set of directional
derivatives. Given a point p∈ M, the space C∞(p) is the set of functions f
defined on an open neighbourhood U of p such that f : U → IR is smooth
at P.

Definition 3.1. A tangent vector X at any point p∈ M is a linear functional
i.e a smooth map

X : C∞(M) → IR
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which satisfies Leibniz’ product rule

X(fg) = Xf · g(p) + f(p) ·Xg

A tangent vector must satisfy this rule since it forces the linear operator δ:f
7→ δ(f) ∈ IR such that f only depends on the first order of approximation of
p. The tangent space to M at p, TpM is the collection of all tangent vectors.

Proposition 3.1. TpM is a vector space with the same dimensionality n as
the manifold M.

Proof. From definition 3.1, we already know that the tangent space TpM is
the set of equivalence classes of smooth curves, [γ], where γ is defined on
some open interval containing 0 such that γ(0)=p.

Let (U,ϕ) be a chart at p ∈ M. We now consider a map that sends a
curve γ : (-ϵ, ϵ) → M through the point p where γ(0)=p to its correspond-
ing tangent vector (ϕ ◦ γ)′(0) ∈IR. This induces a new map ϕ̄ : TpM → IR.

Since ϕ̄ : TpM → IRn is clearly a bijection following the definition of an
equivalence class, we are now left to show that the tangent space is a vector
space by applying the addition and scalar multiplication operations, which
makes Fϕ,p linearly isomorphic to the two vector spaces.

1. addition: [γ1 + γ2]= F−1
ϕ,p (Fϕ,p[γ1] + Fϕ,p[γ2])

2. scalar multiplication: c[γ]=F−1
ϕ,p(c · Fϕ,p[γ]) where c is a constant

This completes the proof.

Definition 3.2. Since a chart (U,ϕ) defines a local coordinate system (x1 . . . xn)
of M, a set of coordinate vectors for a chart (U,ϕ, xi) at any point p∈ M is
given by

δ

δxi

∣∣∣
p
g =

ϕ−1 ◦ δg
δxi

∣∣∣
ϕ(p)

where g∈ C∞(p) and ∂
∂x1

∣∣∣
p
. . . ∂

∂xn

∣∣∣
p
forms the basis of TpM.

Definition 3.3. The tangent bundle of a manifold M, represented by TM,
is the set of disjoint union of all tangent spaces at each point in M.

TM :=
⋃
p∈M

TpM
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. A projection map,

π : TM →M,TpM ∃X → p

is surjective and is the inverse of the tangent space at point p (TpM x {p}
= π−1(p)). Since the tangent bundle is smooth, π is also smooth.

Proposition 3.2. If dim M= n, then dim TM = 2n.

Proof. Let {(Uα, ϕi)}i∈I be an atlas of M consisting of the compatible charts
(Ui, ψi) and (Uj , ψj) and let π denote the natural projection. Let Vi= π−1

be an open set and ψi : Vi → IRn x IRn = IR2n. We can re-write ψi (p,X)
as

ϕi(p,X) = ϕi(p), d(ψi)p(X))

, which is a continuous bijection onto the open set with a continuous inverse,
a property which also holds for ψi .

We then compare the two charts by the transition map ψj ◦ ψ−1
i : ψi(Ui

∩ Uj) x IRn → ϕj(Ui ∩ Uj) IR
n. This allows us to obtain

ψ ◦ ψ−1(q, u) = (ϕj ◦ ϕ−1(q), d(ϕj)ϕ−1(q) ◦ d(ϕi)−1
q (u))

= (ϕj ◦ ϕ−1(q), d(ϕj ◦ ϕ−1
i )q(u))

, which is clearly a diffeomorphism since it is a smooth bijection with a
smooth inverse. We have now shown that the tangent bundle satisfies all
the conditions of a 2n manifold.

Definition 3.4. A cotangent space at the point p ∈ M, T∗
pM , is isomorphic

to the dual of the tangent space TpM . We refer to the elements contained
in the cotangent space as the cotangent vectors.

Definition 3.5. The cotangent bundle, T∗M, is the disjoint union of all
cotangent spaces at all points of M.

T ∗M = {(p, ω)|p ∈M,ω ∈ T ∗
pM}

The natural projection is a map π : T∗M → such that π(p, ω). Since the
cotangent bundle is a smooth function, π is also smooth.

Lemma 3.3. A cotangent bundle is a vector bundle.
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3.2 Vector Fields

Definition 3.6. The identity map on M is a bijective map which satisfies
(IdM )∗p = IdTpM : TpM → TpM for all p ∈ M. This means that each point
is returned to the same point under parallel transport id : (M, g) →(M, g).

Definition 3.7. A vector field on M is a smooth, linear map over C∞ X :
M → TM such that the composite function πX is the identity map. The set
of all vector fields on M is given by X(M), where X(M) is a commutative
vector space. We can define the gradient of the vector field by (gradf(p),v)
= dfp(v) for all p ∈ M and v ∈ TpM.

Definition 3.8. A vector bundle with a rank l where l ≥ 0 is a triple (E,
M, π). A vector bundle is a total space E where E has dimensions n+l with
a base space of M and a smooth surjective map π : E → M . Any fibre
π−1(p) is isomorphic to V for all p ∈ M.

Remark 3.4. Properties of a Vector Bundle:

(i) A vector bundle has a locally trivial fibration

(ii) For any point p∈ M and α ∈ A,

ψα(π
−1(p)) = {p} × IRl

Subsequently,

ψα

∣∣∣
π−1(p)

: π−1(p) → IRl

shows a l-linear transformation and is therefore isomorophic on the
vector space.

3.3 Notations of Multi-Linear Algebra

Definition 3.9. Tensor products of a vector space V are multi-linear maps,
meaning that if we multiply any of the elements V1 ⊗ V2 ⊗ . . . ⊗ Vr →
IR by a scalar, the result V∗

1 ⊗ V∗
2 ⊗ . . . ⊗ V∗

r (i.e the tensor product) will
also be multiplied by the same scalar.

Remark 3.5. The tensor product operation is linear, non-commutative and
associative.

Definition 3.10. A (r,s) tensor field in V is given by the set of elements of
the tensor products where Vr

s := indicates r times of V ⊗ . . . ⊗ V multiplied
by s times of V∗ ⊗ . . . ⊗ V∗.
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Definition 3.11. For some v1, v2 . . . vk in V and W1, W2 . . . Ws ∈ V∗, a
reducible tensor T ∈ Vr

s is one that can be written in the form T= v1 ⊗ v2
⊗ . . . ⊗ vr ⊗ W1 ⊗ W2 ⊗ . . . ⊗ Ws.

4 Riemannian manifolds

We begin by defining an inner product on a vector space.

Definition 4.1. An inner product on a vector space V is a function <·,
·>: VxV → F which associates a pair of smooth contravariant vector fields
to a scalar vector field <X, Y>. An inner product satisfies the following
properties of symmetry, bilinearity and non-degeneracy:

Definition 4.2. A smooth manifold M with a smoothly varying inner-
product is called a Riemannian manifold. All Riemann manifolds are path-
connected, second countable and Haussdorf by definition.

Definition 4.3. A Riemannian metric is a (0,2) tensor field g∈ T2(M) such
that for all p∈ M, gp is a bilinear, symmetric and positive definite (gp(v, v)
> 0 for every v ̸= 0, v ∈ TpM) inner product on TpM.

We can define the Riemannian metric using local-coordinates. We first
consider the functions

gij : U → IRn

and

gij(p) := gp(
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p
)

given a Riemannian manifold (M,g) and a chart (U, ϕ, xi). The functions
gij are the components of g with respect to {xi} since for each p ∈ U,
(gij(p))

n
i,j=1 . We can then apply a local-coordinate frame {dxi} on the

cotangent bundle T*M, which gives us

g = gijdx
i ⊗ dxj

. However, as g and hence gij are symmetric, we can re-write the above
formula as

1

2
(gijdx

i ⊗ dxj + gjidx
i ⊗ dxj)

.
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Definition 4.4. (Parition of Unity) An open cover {Vα}α∈A is called locally
finite if, for every p∈ M, there exists a neighburhood U of p such that the
set

{α ∈ A|U ∩ Vα ̸= 0}

is finite.
The support of a function u: M → IR is defined to be

supp(u) = {p ∈M |u(p) ̸= 0}

Given a locally finite open cover of M, {Vα}α∈A, a partition of unity sub-
ordiante to {Vα}α∈A is a collection {uα}α∈A of smooth functions uα: Vα →
[0,1] such that ∑

α∈A
uα(p) = 1

.

Proposition 4.1. Every smooth manifold (M,g) admits at least one Rie-
mannian metric.

Proof. Let M be a differentiable manifold and let {(Uα, ϕα)}α∈I be a locally
finite atlas such that Uα ⊆ M is an open subset and ϕα : Uα → ϕα (Uα)
⊆ IR be diffeomorphisms. We then choose a Riemannian metric gα on each
Uα.

gα =
∑

dxia ⊗ dxia (2)

Let {Tα} be a partition of unity subordinate on the chosen covering {Uα}.
We define g as

g =
∑
α

ραgα (3)

This is a finite sum in the neighbourhood of each point. As it must be
a positive definite since for any ρ ∈ M, there always exist some α such that
ρα(p) ≥ 0. So it is a Riemannian metric on M.

Definition 4.5. Let f : M → N be a smooth map between two distinct
manifolds and let g be the Riemannian metric on N. The pullback metric,
(ϕ ∗ g) on N, can be defined as (ϕ ∗ g)p(u, v) = gϕ(p)(dϕp(u), dϕp(v) for all
p ∈ N and u,v ∈ Tp(N). The pullback metric only exists if ϕ is a local
diffeomorphism.
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5 The Levi-Civita Connection

We must first understand the idea of connections and affine connections
along vector bundles as well as the covariant derivative before proceeding to
define the Levi-Civita Connection.

Definition 5.1. A connection is a map on the vector bundle π : E → M
where

∇ : X× Γ(E) → Γ(E)

. ∇vT is defined as the connection on M for all v ∈ X(M) and S,T ∈ Γ(E)
if it satisfies the following conditions:

(i) The map v7→ ∇vT must be linear over C∞(M) for every T ∈ Γ(E)

∇f1v+f2wT = f1∇vX + f2∇wT

(ii) The map T7→ ∇vT must be linear over IR for every v ∈ X(M)

∇v(g1S + g2T ) = g1∇vS + g2∇vT

for any g1, g2 ∈ IR

(iii) It satisfies the product rule: ∇v(f1T ) = vf1 · T + f1∇f1T

Note that f1, f2 are simply scalar multiples in C∞(M).
More specifically, an affine connection is a connection on the tangent bundle
TM such that E(M) = X(M).

Definition 5.2. The covariant derivative enables us to differentiate tensor
fields along vector fields on curved manifolds as it is independent to the
local frame {ei} and satisfies conditions (ii) and (iii) from definition 5.1.
The covariant derivative is denoted by

Dt = X(γ) → X(γ)

and can also be written locally as

DtV
∣∣∣
t0
= V i(t0)∇γ̇(t0)ei

∣∣∣
γ(t0)

+ (V i)′(t0)ei

∣∣∣
γ(t0)

Hence, if V can be extended over M, we can write DtV(t) = ∇γ̇(t)V
′ where

V ∈ Γ(γ) for the extension V’.
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Definition 5.3. Let γ : (a, b) →M be a curve and X0 ∈ Tγ(t0)M . The map
Pγ
t0,t

→ Tγ(t)M where X0 = X(γ(0)) 7→ X(γ(t)) is defined as the parallel
transport along γ from γ(t0) to γ(t). The vector field V along the starting
point, Xγ(t0) is parallel to γ such that X0 = Xγ(t0).

Lemma 5.1. A parallel transport is always a linear isomorphism.

Definition 5.4. (Levi Civita Connection) The Levi-Civita Connection is a
unique, symmetric and torsion free connection that can be induced on any
manifold (M,g) which satisfies the following conditions:

(i) dg(X,Y) = g(DX, Y) + g(X, DY)

(ii) ∇XY −∇YX = [X,Y]

Proof. Here, we offer a very succint proof of the existence and uniqueness
of the Levi Civita connection and affine connections in general. Let X, Y, Z
be distinct fields that are defined by

(i) X< Y,Z >= < ∇XY,Z >, Z,∇XZ >

(ii) Y< X,Z >= < ∇Y Z,X >, Z,∇YX >

(iii) Z< X,Y >= < ∇ZX,Y >, Z,∇ZY >

By (i)+(ii)-(iii), we obtain the following equation:

X < Y,Z > +Y < X,Z > +Z < X, Y > = 2 < ∇YX,Z > + < [X,Y ], Z >

+ < [X,Z], Y > + < [Y,Z], X >

Definition 5.5. (Defining the Christoffel symbols) Let∇ be the Levi-Civita
connection on M, and let ϕ : U → V be a coordinate chart with the local
frame {xi} coordinates. We can define the Christoffel symbols with respect
to the coordinate frame { δ

δxi } where its covariant derivative = D{ δ
δxi }. Set-

ting X, Y, Z in the directions δ
δxi ,

δ
δxj and δ

δxk respectively, we can re-write
equation (7) as

2gklΓ
l
ij =

δgjk
δxi

+
δgik
δxj

− δgij
δxk

⇒ Γk
ij =

1

2
gkl(

δgjk
δxi

+
δgik
δxj

− δgij
δxk

)

. Γk
ij is defined as the Christoffel symbols for a connection on M.
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6 Geodesics

Definition 6.1. A geodesic is a curve γ : (a, b) →M whose covariant deriva-
tive Dtγ̇(t) =0 and has zero acceleration γ̈ ≡ 0. A geodesic is the shortest
arc between the two points a,b.

Theorem 6.1. For any p ∈ M and v ∈ TpM , there exists a a unique geodesic
γ : (T−, T+) → M where (T−, T+) is a maximal interval ⊆ IR such that
γ(0) = p and γ̇(0) = v.

Remark 6.2. γ̇ denotes the velocity of a curve.

Lemma 6.3. (Rescaling Lemma) Assume a geodesic c : [0, a] →M where k
> 0. A curve γ can be defined by γ : [0, ak ] and therefore γ(t) = c(kt).

Definition 6.2. The exponential map, expp, is a smooth map such that

(i) expp : ϵp →M where ϵ is an open subset of TpM

(ii) For a unique geodesic with starting point p and initial velocity v,
γv : [0, 1] → M such that γv(0)=p and γ

′
p(0), it can be defined as

expv = γv(1)

(iii) There exists at least one ϵ > 0 for every p∈M such that the exponential
map is a diffeomorphism onto itself

expp : {X ∈ TpM ||X| < ϵ}

Proof. We can prove condition (i) using the rescaling lemma. By setting
t=1, we obtain

exp(cX) = γcX(1) = γX(c)

. The proof of (ii) follows in the same way as (i) since γcX(t) = γX(ct).
Finally, to prove (iii), we aim to prove that the exponential map expp : U →
V is a diffeomorphism, where U and V are two open neighbourhoods such
that U ⊂ TpM and V⊂M for every p ∈M and p ∈ V .

We can now apply the Inverse Function Theorem and subsequently use
the fact that the differential of the exponential map at the origin (expp)∗0
cannot be inverted to show that this is equivalent to the identity map IdM.
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To apply the Bonnet Myers Theorem and other comparison theorems,
we must ensure that the connection on a finite dimensional Riemannian
manifld (M,g) is geodesically complete. We can determine whether (M,g) is
geodesically complete using the following criteria:

(i) If and only if its metric space is complete (Hopf-Rinow)

(ii) Its exponential map expp can be defined on the entire TM for all p ∈
M and therefore γ can be extended between (−∞,∞)

(iii) Any two points, say p, q, can be connected by a length minimising
geodesic whose distance d(p,q) is the minimum length of all possible
curves in the direction p to q.

(iv) All bounded closed subset in M are compact.

Proof. We now prove (i) by showing that a Cauchy sequence, (an)n∈N con-
tains a converging subsequence anj and is therefore self-converging.

(i): Let γX : j →M be a normal geodesic with a derivative γ̇(0) = X ∈ TpM .
We initially assume that sup j := t+ <∞, which we will later show to be a
contradiction. We then use the following re-parametrisation,

len γX | [si, sj ] = |si − sj |

and apply it on an, obtaining

d(γX(an), γX(am)) = len γX | [an, am] = |an − am|

where an- am. This shows that the Cauchy sequence((γX)an)n∈N is a Cauchy
sequence within (M, dist) whose limit limn→∞ γX(an) converges to a point
p∈ M. Similarly, for another sequence bn in j, γ(bn) also converges to p since

d(γX(an), γX(bn)) = len γX | [an, bn] = |an − bn|

. Hence the geodesic can be extended.
(ii): If E= TM, then (M,g) must be geodesically complete
(ii) ⇒ (iii): We omit the proof here since it is too complicated.
(iv) ⇒ (i): This is straightforward to prove as it is simply a standard as-
sumption in topology.
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6.1 Riemannian Distance and the Length Minimising Prop-
erty

We are more concerned about piecewise smooth curves than simply smooth
parametric curves when dealing with the Riemannian distance.

Definition 6.3. We begin defining the Riemannian distance between two
points p,q by setting a piecewise smooth curve γ : [a, b] → M . The tangent
vector TγtM is given by γ̇(t) = dγ d

dt for all t∈ [a, b]. The length of the
curve, L(γ), can be written as

L(γ) =

∫ b

a

√
< γ̇(t), γ̇(t) >γ(t) dt

. If L(γ) = d(p,q), we call the curve length minimising.

Proposition 6.4. L(γ) is invariant when transformed by any other parametriza-
tions, i.e the arc length of γ

lim
m(K)→0

l(k) =

∫ b

a
||γ̇(t)||

(which we refer to as the limit here) remains the same after re-parametrization.

Proof. (Proof 1) For every ϵ > 0 there exists a δ > 0 such that the equation

||γ(t′)− γ(t)|| − |t′ − t| · ||γ(t))|| < ϵ|t′ − t|

holds true for all ti−1, t ∈ [a,b] where |ti−1 − ti| < δ. If we make the
assumption that this also holds true for every element in the sub-interval
[ti−1, ti] for i=1, . . . N. This yields

|l(k)− ΣN
i=1||γ̇(ti−1)|| · |ti − t(i− 1)| = |ΣN

i=1||γ(ti)− γ(ti−1)|| − ||γ̇(ti)|| · (ti − t(i− 1))|
(4)

< ΣN
i=1ϵ(ti − t(i− 1)) (5)

We can now see that as m(K)→0, equation (10) approaches
∫ b
a ||γ̇(t)||.

If we apply the chain rule, the limit now tends to∫ b

a
||γ̇(h(t))|| · dh

dt
(t)|dt =

∫ b

a
||γ̇′

(h(t))|| · dh
dt
dt (6)

=

∫ b

a
||γ̇′

(t′)||dt′ (7)

= L(γ
′
) (8)
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We have shown that the arc length bounded between the closed interval
[a,b] ⊆ IR is always equal to ϵ(b-a). The length of the curve is therefore
insensitive to any forms of re-parametrizations.

Proposition 6.5. All geodesics are length minimising. However, this prop-
erty is only unique up until re-parametrisation.

7 Curvature

7.1 Riemannian Curvature Tensor

From this section onwards, we assume that all manifolds are Riemannian
manifolds.

Definition 7.1. Since the Riemannian Curvature Tensor is C∞(M) linear
in X,Y,Z ∈ X for any point p∈M, it can be defined by a collection of trilinear
maps Rp : TpM

3 → TpM . The Riemannian Curvature Tensor is given by

R(X,Y )Z = ∇Y (∇XZ)−∇Y (∇Y Z)−∇[Y,X]Z

Definition 7.2. Properties of the Riemannian Curvature Tensor:

(i) The covariant derivatives do not commute

R(X,Y )Z = ∇2Z(Y,X)−∇2Z(X,Y )

(ii) Only the Levi-Civita connection is required to define the curvature of

a manifold R(X,Y )Z
∣∣∣
p
only depends on X

∣∣∣
p
, Y

∣∣∣
p
and Z

∣∣∣
p
.

Proposition 7.1. The Riemannian Curvature Tensor is a (1,3) tensor field.

7.1.1 Defining the Bianchi Identities

Proposition 7.2. The Bianchi Identities are extremely important when
exploring the geometrical properties of a Riemannian manifold and the be-
havior of the Riemann curvature tensor under coordinate transformations.

The First Binachi Identity states that the cyclic sum of the derivatives
of the Christoffel symbols and that of the products of Christoffel symbols
with themselves are equal to zero. This implies that the Riemann curvature
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tensor is antisymmetric in the last three indices. By the definition of the
Riemann curvature tensor,

R l
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γm

jkΓ
l
im − Γm

ikΓ
l
jm

, we can introduce the cyclic permuatation of the indices i,j, k in each term

Rijkl +Riklj +Riljk = 0

We can re-write this using local coordinates

∂iΓjkl−∂jΓikl+ΓjmnΓimk−ΓimnΓjkl+∂kΓijl−∂iΓkjl+ΓkmnΓijn−ΓikmΓjln

+ ∂jΓikl − ∂kΓijl + ΓjmnΓikn − ΓijnΓkmn = 0

⇒ ∂IΓjkl + ∂jΓkIl + ∂kΓIjl + ΓjmnΓImk + ΓkmnΓIjn + ΓIknΓjmn = 0

The Second Bianchi Identity shows that the sum of some second-order
derivatives of the Christoffel symbols and some covariant derivatives of the
Christoffel symbols are equal to zero.It demonstrates the cyclic symmetry of
the Riemann curvature tensor under permutation of the last three indices.
Using the covariant derivative from the First Bianchi Identity,

∇i(∂jΓkil + ∂kΓijl + ΓjmnΓimk + ΓkmnΓijn + ΓiknΓjmn) = 0

, we can apply the Leibniz rule which allows us to obtain

∂i∂jΓkil +∇i∂jΓkil + ∂i∂kΓijl +∇i∂kΓijl + ∂iΓjmnΓimk +∇i(ΓjmnΓimk)+

∂iΓkmnΓijn +∇i(ΓkmnΓijn) + ∂iΓiknΓjmn +∇i(ΓiknΓjmn) = 0.

Since Christoffel symbols are symmetric as shown in lemma , we can re-write
the above as

∂i∂jΓkil + ∂j∂iΓkil + ∂i∂kΓijl + ∂k∂iΓijl + ∂iΓjmnΓimk + Γjmn∂iΓimk+

∂iΓkmnΓijn + Γkmn∂iΓijn + ∂iΓiknΓjmn + Γikn∂iΓjmn = 0

⇒ ∂i∂jΓkil+∂i∂kΓijl+∂iΓjmnΓimk+Γjmn∂iΓimk+∂iΓkmnΓijn+Γkmn∂iΓijn

+ ∂iΓiknΓjmn + Γikn∂iΓjmn = −(∂j∂iΓkil + ∂k∂iΓijl + ∂iΓiknΓjmn

+ Γikn∂iΓjmn + ∂iimk + Γjmn∂iΓimk + ∂iΓkmnΓijn + Γkmn∂iΓijn)

Definition 7.3. (Number of individual components in the Riemannian ten-
sor)We understand that the following symmetry conditions for Rijklfrom the
Bianchi identities.
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(i) Since Rijkl is anti-symmetric within each of the two groups ij and kl,
the number of independent conditions is given by N=

(
n
2

)
(ii) Subsequently, Rijkl is symmetric when swapping ij with kl

Rklij = Rijkl = −Rjikl = −Rijlk

. We can therefore refine the number of independent conditions to
N(N+1)

2 or simply (
(
n
2

)
+ 1)

(iii) If all the indices are different for a manifold with diemension n≥ 4,
there are a total of 4Cn possibilities since Rijkl+Riklj+Riljk = 0 from
proposition 7.2.

As a result, the total number of individual components is given by

1

2

(
n

2

)
(

(
n

2

)
+ 1)−

(
n

4

)
=
n2(n2 − 1)

12

7.2 Sectional Curvature

Definition 7.4. For a point p∈ M and a 2-dimensional subspace or plane
Π ⊂ TpM , we define the sectional curvature of Π at p as a real number
where

Kp(Π) = Kp(x, y)

: =
Rmp(x, y, y, x)

gp(x, x)gp(y, y)− (gp(x, y))2

where x,y are vectors ∈ Π which form the basis and Rm denotes the Riemann
curvature tensor.

Definition 7.5. We define the span of manifold, span(M), as the maximum
number of linearly independent vector fields X(M) that it can admit.

Remark 7.3. Properties of the sectional curvature:

(i) K(x,y) is independent of the choice of x, y ∈ Π

(ii) If the vector basis {x,y} is orthonormal, then K(Π) = Rm(x, y, y, x)

(iii) If two vectors u,v ∈ TpM are linearly independent, then this equation
holds

K(u, v) : = K(span{u, v})
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Proof. We prove (i) by setting (x̃, ỹ) as a set of vectors which form a new
basis of Π. We can relate the 2 basis by the equations

x̃ = ax+ by
ỹ = cx+ dy

where ad-bc ̸= 0.

< x̃, x̃ >< ỹ, ỹ > − < x̃, ỹ >2 = (ad− bc)2 < x, x >>< y, y >

− < x, y >

Using (ii) from Remark 7.3, we can write Rm(x̃, x̃, ỹ, x2) by factoring twice
repeatedly as

Rm(ax+ by, cx+ dy, cx+ dy, ax+ by)

= adRm(x̃, ỹ, cx̃+ dỹ, ax̃+ by2)

+ bcRm(ỹ, x̃, cx̃+ dỹ, ax̃+ bỹ)

= ad(adRm(x̃, ỹ, ỹ, x̃) + bcRm(x̃, ỹ, x̃, ỹ))

+ bc(adRm(ỹ, x̃, ỹ, x̃) + bcRm(ỹ, x̃, x̃, ỹ))

= (ad− bc)2Rm(x, y, y, x)

which corresponds to equation (21). This therefore shows that K(x,y) is
independent to the choice of basis.

Subsequently, we can prove (iii) by

Proposition 7.4. The Riemannian curvature tensor is determined by the
sectional curvature.

Proof.

Corollary 7.5. Let i,j,k,l be variables in {1,. . . n} and let {ek} be an or-
thonormal basis of TpM. Rijkl can be written as

Rijkl : =< R(ei, ej)ek, el >

. If Rijkl = K0(δikδjl− δjkδil) where δ denotes the Kronecker delta, then the
sectional curvature is constant and K0 = 1.

Lemma 7.6. For a Riemannian manifld (M,g) and a positive constant λ
where g̃ = λg, we can define K as the sectional curvature of K and similarly
K̃ for g̃. Hence, the sectional curvature of K and K̃ are related by

K̃ =
1

λ
K

.
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Proof. Let ϕ be a locally defined map (x1 . . . xn) around a point p∈ M
between the two metrics. By the definition of the Christoffel symbols in Def

5.5, since Γk
ij = Γ̃k

ij , the coefficients of the tensor field for both metrics g

and g̃ are equivalent Rijkl = ˜Rijkl (hence the tensors). Additionally, for two
linearly independent vectors, u,v ∈ TpM ,

Kp(x̃, ỹ) : =
Rmp(x, y, y, x)

g̃p(x, x)g̃p(y, y)− (g̃p(x, y))2

=
λgp(R(x, y)x, y)

λgp(x, x)λgp(y, y)− λ2gp(x, y)2

=
λgp(R(x, y)x, y)

λ2(gp(x, x)g(y, y)− gp(x, y)2)

7.3 Ricci Curvature

Definition 7.6. The Ricci curvature tensor is a (0,2) tensor field and is a
contraction of the Riemannian curvature tensor.

Definition 7.7. Setting x=zn as a unit vector and hence {zi}n−1
1 as the

orthonormal basis to the hyperplane of TpM which is orthogonal to the
span of x, the Ricci curvature is defined by

Ricp(x) =
1

n− 1

n−1∑
i=1

< R(x, zi)x, zi >

The Ricci scalar (scalar curvature),the simplest invariant of the curvature
of a Riemannian manifold, is given by

S(p) =
1

n

n−1∑
j=1

Ricpzj

=
1

n(n− 1)

n−1∑
i,j=0

< R(zi, zj)zi, zj >

Remark 7.7. Properties of the Ricci curvature:

(i) The Ricci curvature can be expressed locally as

Ric = gklRkijldx
i ⊗ dxj

where g denotes the metric of the manifold.
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(ii) When tracing over any two arguments, the result is either K0 iff Rijij=
-Rijji or 0 in all other cases

(iii) The Ricci curvature tensor is also symmetric by the Bianchi identities

(iv) If {ej} is an orthonormal basis, then

Ric(x, y) =

n∑
i=1

Rm(ej , x, y, ej)

Proposition 7.8. The Ricci curvature is independent to the choice of or-
thonormal basis.

Proof. For x,y ∈ TpM , we define a trace of the Ricci curvatre Q(x,y) as
a bilinear map of the function z 7→ R(x,z)y. As Q corresponds to a self-
adjoining map K, Q(x,y) can be expressed as < K(x), y >. By setting an
orthonormal basis x={zi}n−1

1 ,

tr(K) =
n−1∑
j=1

< K(zj), zj >

=

n−1∑
j=1

Q < zj , zj >

By Definition 7.7, the trace can be written as

(n− 1)

n−1∑
j=1

Ricp(zj)

= Kp[n(n− 1)]

, which shows that the Ricci curvature of a manifold is scalar invariant.

8 Bonnet Myers Theorem

Proposition 8.1. (Second Variation of Arc Length) Every vector field V
along a smooth curve α splits into 2 components, one being parallel to α

′

and the other being orthogonal to α
′
. We shall focus on the orthogonal

component, nor V, where nor V is defined by

norV = V − a
′
< V, a

′
>
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. For a geodesic γ : [0, a] → M , we define L
′′
x(0) as the second variation of

arc length

L
′′
x(0) =

1

c

∫ a

0
< nor V

′
, nor V

′
> − < R(V, γ

′
), V, γ

′
> dt

where c is a positive constant and x is the variation of γ along V.

Theorem 8.2. (Bonnet Myers Theorem) The Bonnet Myers theorem states
that for any complete Riemannian manifold (Mn,g) whose sectional curva-
ture, K ≥ δ, where δ is a positive constant, its Ricci curvature, R, satisfies:

Ric(M) ≥ δ(n− 1)

. We can then estimate its diameter, diam(M), since it is always bounded
by

supp,q∈M dist(p, q) ≤
√
π

δ
.

Proof. We begin by assuming a contradiction that d(p,q) >
√
π
δ . The Hopf-

Rinow theorem states that there exists a unique minimising geodesic γ be-
tween two points p,q that is defined between [0,L] since the metric S is
complete. We can vary γ by a unit vector of w0 where w0 · γ

′
0 = 0. Hence,

for a parallel transport w(s) of w0, ws · γ
′
s = 0.

We now establish a vector field V(s) and consider its first and second
derivatives

V (s) = w(s)sin(
πt

L
)

V
′
(s) = w(s)

π

L
cos(

πs

L
)

V
′′
(s) = −w(s)(π

L
)2sin(

πs

L
)

By the second variation of arc length,

L
′′
x(0) = −

∫ L

0
< V ′′ −Rγ

′
(V, γ

′
), V >

= −
∫ L

0
< −w(π

L
)2sin(

πs

L
)−R(sin

πs

L
)(w, γ

′
)γ

′
, w(sin

πs

L
) >

=

∫ L

0
(sin2

πs

L
)((

π

L
)2− < w,w > − < R(w, γ

′
)W,γ

′
>)

=

∫ L

0
(sin2

πs

L
)((

π

L
)2 −K(w, γ

′
))dt
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Since δ = K(w, γ
′
), the above expression must be ≤

∫ L
0 (sin2 πsL )(( πL)

2 −
δ)dt.

We have now shown that if the value of s is infinitesimally small, then
Lx(s)Lx(0) = Lγ . As the curve Lx(s) has a shorter length than γ(p, q),
it is therefore a contradiction. Thus, since the Bonnet Myers theorems
shows that (Mn,g) is closed and bounded by a subset of M, (Mn,g) must be
compact.

Corollary 8.3. The covering space argument states that all compact man-
ifolds with Ric(M) > 0 have a finite fundamental group π1(M).

Proof. Let M̃ → M be a universal cover of M and that we can apply a
pullback metric from M to M̃ . Then the sectional curvature K̃(p) also

satisfies K̃ ≥ δ and is also compact. From Definition 2.10, there exists a
bijection between the fibre π−1(p) and every element of the fundamental
group π1(M). As π−1(p) is discrete, it is finite and therefore π1(M) is
finite.

Acknowledgements

I would like to thank my TA Leonardo Bonanno for guiding me along the
process and especially Dr Simon Rubinstein-Salzedo for proposing this topic
and for his lectures.

References

[Cheeger et al., 1975] Cheeger, J., Ebin, D. G., and Ebin, D. G. (1975).
Comparison theorems in Riemannian geometry, volume 9. North-Holland
publishing company Amsterdam.

[Do Carmo and Flaherty Francis, 1992] Do Carmo, M. P. and Fla-
herty Francis, J. (1992). Riemannian geometry, volume 6. Springer.

https://www.ma.imperial.ac.uk/ mtaylor5/rgnotes.pdf
https://www.cis.upenn.edu/ cis6100/cis61008Riem-conn.pdf

23


