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Abstract

In this paper we review topics in stochastic calculus and complex analysis to provide a

basis for the Loewner equation. We present properties of H-hulls and their capacities and

demonstrate their importance to the Loewner equation. We characterize Brownian motion

as a driving term for the Loewner equation, and show that Schramm-Loewner evolutions

are the random curves that satisfy the Loewner equation. Finally, we discuss properties of

Schramm-Loewner evolutions and connect these random curves to stochastic processes,

such as the percolation model, in physics and show their importance as scaling limits.

1. Introduction

Schramm-Loewner evolutions became a tool for modeling stochastic systems recently. Over

the last century, stochastic processes were an emerging topic that helped describe many

processes in the real world such as viruses, stock markets, particle physics, percolation, and

so on. The challenge and also convenience of these systems was that they are driven by a

random motion; however, the almost universal constant was that the process was almost

always Brownian motion. Studies in complex analysis and hydronamic relations by Charles

Loewner led him to establish the Loewner Differential Equation

∂tg(t, z) =
2

g(t, z)− λ(t)
.

Oded Schramm discovered that with λ(t) being a Brownian motion, the set of solutions

to the differential equation were a random collection of conformal maps. These random

curves were also the only curves that satisfied conformal invariance and the domain Markov

property. These curves, Schramm-Loewner evolutions, began to appear in many models in

physics and other random processes. The results were that the scaling limit of a percolation

model converged (in distribution) to SLE(6), and that certain loop-erased random walks

in distribution were equal to radial SLE(2). In recent years, Schramm-Loewner evolutions

began appearing in random processes and even helped to show that the fractal dimension of

standard Brownian motion is 4
3
. The interesting part of Schramm-Loewner evolutions was

that seperate physical models and stochastic processes could be related with SLEs which

have us only deal with Brownian motion.
1
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2. Stochastic Processes and Equations

In this chapter, we focus on stochastic calculus and Brownian Motion.

2.1. Brownian Motion.

Traditionally, probability was typically considered through a combinatorial lens. However,

people began to consider it analytically. Modern day probability theory is credit to Andrew

Nikolaevich Kolmogorov when he combined sample spaces, and measure theory to create

an axiom system for probability theory in 1933. Random walks started to gain interest in

the early 20th century due to real world applications, primarily biology. Alongside, many

processes were created - Markov process, Wiener Process, poisson process, etc. We will

be using (Ω,F ,P) as our probability space, where Ω is the measurable space, F is a σ-

algebra, and P is the probability measure on F . Note that a σ-algebra on a set S is

a non-empty collection of subsets of S closed under complements, countable unions, and

countable intersections.

Definition 2.1. A stochastic process is a collection of random variables Xt indexed by time

which belongs to an ordered set I. We denote (Xt)t∈I as a stochastic process.

Remark. Typically, I = R≥0, or I = Z≥0, and we call these cases continuous ’time stochastic

process’ and ’discrete time stochastic process’, respectively.

We call the mapping t 7→ Xt(ω) the path of (Xt)t∈I . One of the most famous and crucial

processes with a continuous path is Brownian motion.

Definition 2.2. A stochastic process (Bt)t≥0 is called a (1D) Brownian motion if

(1) B0 = 0.

(2) Bt1 − Bs1 , Bt2 − Bs2 , . . . , Btn − Bsn are independent for any n ∈ N and for any

0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn.

(3) For any s, t ≥ 0, Bs+t −Bs is normally distributed with mean 0 and variance t.

(4) With probability one, t→ Bt is continuous.

Remark. We will present a stronger definition later in the chapter.

Remark. Note that X is normally distributed with mean µ and variance σ2 when P[X ∈
A] =

∫
A

1√
2πσ2

exp (− (x−µ)2
2σ2 )dx For any Borel subset A ∈ R.

The original theory of Brownian motion came from physical experiments on particle motion

in alcohol. Robert Brown is credit with the discovery of Brownian motion in 1827 for his

work in botany, yet other scientists have observed this irregularity earlier. The interest in

Brownian motion has increased over time due its consistent appearance in mathematics, both

pure and applied, economics, and statistical physics. We often come across random walks,
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and what is interesting is that Brownian motion is the scaling limit of simple random walks.

Another point of interest of Brownian motion is its fractal behavior. Though in statistics,

Brownian motion, on a macro scale, may resemble a ’nice’ function, it is a fractal in all

small neighborhoods. Further note, Brownian motion is described by the Wiener process, a

continuous-time stochastic process.

Figure 1. Random walk and Brownian motion. On the left, we have a ran-
dom walk defined on Z and changes at discrete times T. On the right we have
a standard Brownian motion, starting at 0 and takes values in Rt≥0.[CT20]

Lemma 2.1. dBt ∼
√
dt

Proof. dBt := Bt+dt −Bt ∼ N (0, dt) =
√
dt □

Definition 2.3. A filtration on (Ω,F ) is a sequence of σ-algebras, (Ft)t≥0 ⊂ F such that

for any 0 ≤ t1 ≤ t2,Ft1 ⊂ Ft2

A stochastic process Xt on (Ω,F ) is adapted to the filtration Ft if for each t ≥ 0, Xt is

Ft-measurable This allows to create a stronger definition of Brownian motion.

Definition 2.4. A process (Bt)t≥0 is called a (standard one-dimensional) Brownian motion

with respect to the filtration (Ft)t≥0 if B0 = 0 and

(1) Bt −Bs are independent from Fs for any 0 ≤ s < t.

(2) Bt −Bs is normally distributed with mean 0 and variance t− s.

(3) With probability one, t 7→ Bt is continuous.

Remark. We can consider statement (1) as the present and future is independent of the past.

Define the quadratic variation of a process (Xt)t≥0 as

V 2
X(t) = lim

maxk(tk+1−tk)

p∑
k=0

|Xtk+1
−Xtk |2 (2.1)
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Figure 2. Sample path of Brownian motion with drift. [Kas11]

And in general, the kth variation as

V k
X(t) = lim

maxk(tk+1−tk)

p∑
k=0

|Xtk+1
−Xtk |k (2.2)

where 0 = t0 < t1 < . . . < tp = t.

2.2. Stochastic Integration.

Stochastic calculus, also called Itô Calculus, is important for study of Brownian motion. We

can define the stochastic process Yt as an integral.

Yt(ω) =

∫ t

0

f(t, ω)dBt(ω) (2.3)

As a note to the reader, stochastic integration does not behave as a Reimann integral because

the total variation of Brownian motion is infinite. We will present an example later in the

chapter. For stochastic integration, we need to consider the correct set of f . For now, they

will be measurable, adapted, and square-integrable processes. Let us call the subset of L2,

L 2, that for T > 0 is the set of measurable processes f that satisfy

E[
∫ T

0

f(t, ω)2dt] <∞ (2.4)
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If f can be expressed as

f(t, ω) =
n−1∑
k=0

Xk(ω)1[tk,tk+1)(t) (2.5)

where 0 ≤ t0 < t2 < . . . < tn ≤ T . Then we call that f ∈ L 2 simple.

Let us also define the mapping f 7→ I[f ] such that I[1[s,t)] = Bt −Bs. Therefore

I[f ] =
n−1∑
k=0

Xk(Btk+1
−Btk) (2.6)

Lemma 2.2. For any bounded, simple f ∈ L 2

E[I[f ]2] = E[
∫ T

0

f(t, ω)2dt] (2.7)

Proof. On the right hand side,

E[
∫ T

0

f(t, ω)2dt] =
n−1∑
k=0

E[X2
k(tk+1 − tk)] (2.8)

On the left hand side,

E[If ]2] =
∑
k

E[X2
k(Btk+1

−Btk)
2] + 2

∑
k<l

E[XkXl(Btk+1
−Btk)(Btl+1 −Btl)] (2.9)

Now if we compare

E[X2
k(Btk+1

−Btk)
2] = E[X2

k ]E[(Btk+1
−Btk)

2] = E[X2
k ](tk+1 − tk). (2.10)

E[XkXl(Btk+1
−Btk)(Bt1+1 −Bt1)] = E[XkXl(Btk+1

−Btk)E[Btl+1 −Btl ] = 0. (2.11)

□

Definition 2.5. For any f ∈ L 2 the stochastic integral (Often called the Itô integral) is

defined as ∫ T

0

fdBt(ω) := I[f ](ω). (2.12)

Lemma 2.3. For any f ∈ L 2,E[(
∫ T
0
fdBt)

2] = E[
∫ T
0
f 2dt]

Proof. E[(
∫ T
0
f 2(dBt)

2] = E[(
∫ T
0
f 2(

√
dt)2] = E[

∫ T
0
f 2dt] □

An example of stochastic integration, consider the following integral;∫ t

0

BsdBs =
B2
t

2
− t

2
(2.13)

Proof. At first we might expect the integral to be B2
t /2, however

E[
∫ t

0

(Bs − fn(s, ω))
2ds] = E[

∑
j

∫ tj+1

tj

(Bs −Btj)
2ds] =

1

2

∑
j

(tj+1 − tj)
2 → 0. (2.14)
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j

Bj(Btj+1
−Btj =

B2
t

2
− 1

2

∑
j

(Btj+1
−Btj)

2. (2.15)

The latter sum converges in L2 to t. □

Another useful tool in stochastic calculus is Itô’s formula. Using itô’s formula, functions

of Brownian motion can be expressed as a sum of a stochastic integral and an integral with

respect to dt.

Theorem 2.4. (Itô’s formula) Let F : R+ × R 7→ R be a continuous function such that

Ḟ , F ′, F ′′ exist and are continuous, where

Ḟ (t, x) =
∂F

∂t
(t, x), F ′(t, x) =

∂F

∂x
(t, x), andF ′′ =

∂2F

∂x2
(t, x). (2.16)

Then almost surely,

F (t, Bt) = F (0, B0) +

∫ t

0

Ḟ (s, Bs)ds+

∫ t

0

F ′(s, Bs)dBs +
1

2

∫ t

0

F ′′(s, Bs)dBs (2.17)

for any t ∈ R+.

Remark. The proof of this is based on the Taylor expansion of F (t, x).

The second order terms help explain the result in the example above.

2.3. Stochastic Differential Equations.

If (Xt)t∈[0,T ] be a continuous stochastic process and let (Bt)t∈R≥0
. Then we say Xt satisfies

the stochastic differential equation

dXt = α(t,Xt)dt+ β(t,Xt)dBt (2.18)

where X0 = A if for each t ∈ [0, T ]

Xt = A+

∫ t

0

α(s,Xs)ds+

∫ t

0

β(s,Xs)dBs (2.19)

For more material on Probability Theory the reader can use Durret’s book on probability

theory.

3. Loewner Equation

In this chapter we will cover topics in Complex Analysis and the Loewner Differential

Equation.

3.1. Conformal Maps.

Let D represent the unit disc i.e D = {z ∈ C||z| < 1}.
Let H be the upper half of the complex plane i.e H = {z ∈ C|Im(z) > 0}. We denote ∂S as

the boundary of S.
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Definition 3.1. If f is a differentiable function and U ⊂ C, we call a map f : U 7→ C
conformal if it preserves angles for all points in U .

Remark. It is easier to think of this as the angle between the tangents is preserved, and to

prove this we simply consider the scalar product.

This is equivalent to saying that the function is analytic and one-to-one. We are interested

in conformal maps because they involve analytic functions. The intersection between calculus

and conformal maps motivates our usage of them. The divergence, or net flux, are similar

to harmonic functions. Calculating the divergence over a body with internal boundaries is

often simplified by considering a conformal map to H. This is also the motivation for many

hydro-based definitions.

Figure 3. Conformal maps from H onto the complements of line-segments.[Kem17]

Theorem 3.1. (Reimann mapping theorem) Let V ⊂ C be a simply connected domain with

v ∈ V . Then there exists a unique conformal map f that maps V onto D such that f(v) = 0

and f ′(v) > 0

Proof. We can assume f ′(z0) is positive and real. Our goal is to show that f is surjective.

So let’s assume that there exists a ν ∈ D such taht f(z) = ν has no solution in V . Then

consider a g ∈ fn with |g′(z0)| > |f ′(z0), which would lead to a contradiction for our choice

of f . So now consider ψν : D 7→ D where

ψν(z) =
ν − z

1− νz
(3.1)

and let

G(z) =
√
ψν ◦ f(z). (3.2)

Note that G(z) is zero free, since ψν(z) = 0 if and only if z = ν. Thus we can define a

holomorphic branch of logψν ◦ f(z), and we can choose a holomorphic branch for G(z) with

G(z) = e
1
2
logψν◦f(z). (3.3)

Thus we can g(z) as

g(z) = ψG(z0) ◦G(z). (3.4)
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Note that g is injective. Now our goal is to show |g′(z0)| > |f ′(z0)|. So note that

f(z) = ψ−1
ν ◦ s ◦ ψ−1

G(z0)
◦ g(z) = ϕ ◦ g(z), (3.5)

where s(x) = x2. Now if we compute ϕ(0), we get that ϕ(0) = f(0) = 0. Now note that if

f : D 7→ D is a holomorphic map where f(0) = 0, then

|f(z)| < |z|, ∀z ∈ D. (3.6)

So by 3.6 |ϕ(z)| < |z|, thus |ϕ′(0)| ≤ 1. Since ϕ is injective, then |ϕ′(0)| < 1. Then

f ′(z0) = ϕ′(g(z0)) · g′(z0) = ϕ′(0) · g′(z0). (3.7)

Hence |f ′(z0)| < |g′(z0)|. □

Theorem 3.2. Let U ∈ C be a bounded domain. A conformal map f : D 7→ U extends

continuously to D ∪ ∂D if and only if ∂U is locally connected.

We will now present an important definition that we will use throughout the chapter.

Definition 3.2. A set K ∈ H̄ is called a hull if K is compact and H\K is simply connected.

From this we arrive at this interesting theorem.

Theorem 3.3. For any hull K, there exists a unique conformal map fK : H\K 7→ H such

that

lim
z→∞

(fK(z)− z) = 0 (3.8)

Such fK is said to have hydrodynamic normalization. Near ∞, fK has the expansion

fK(z) = z +
∑
n≥1

anz
−n | an ∈ R. (3.9)

Proof. Let Γ : H\K 7→ D be a conformal map, then by the holomorphic extension of z 7→
Γ(−1/z) to a neighborhood of 0, then Γ(∞) ∈ ∂D is well-defined using the Schwarz reflection

principle. Using 3.1 there are conformal maps from H\K onto H which map ∞ to ∞. Call

one of these maps ϕ. Denote Φ as

Φ(z) =
−1

ϕ(−1/z)
. (3.10)

By the Schwarz reflection principle, f extends holomorphically to a neighborhood of 0. Now

consider ε > 0 where B(0, ε) ∩H ⊂ {−1/z | }, then f maps B(0, ε) ∩H into H. Thus

Φ(z) = b1z + b2z
2 + · · · (3.11)

near 0 where b1 > 0, bi ∈ R. Then for large |z|

ϕ(z) = c1z + c2 + c3z
−1 + c4z

−2 + · · · (3.12)
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where, similarly, c1 > 0, ci ∈ R. So if c1 = 1 and c0 = 0 we are done. Now note that if

f : H\K 7→ H is a conformal onto map taking ∞ to ∞, then all other maps can be expressed

as a composition of a Mobius self-map of H fixing ∞ and f . So there is a unique choice of

a Mobius self-map such that fK has the expansion

fK(z) = z + a1z
−1 + a2z

−2 + · · · (3.13)

for z ∈ H\B(0, R). □

Figure 4. Composition of hydro-dynamical maps.[Kem17]

3.2. Loewner Equation for Simple Curves.

Definition 3.3. For a hull K and fK that satisfies the hydrodynamic normalization, then

the coefficient a1, call a1(K), in the expansion of fk is called the half-plane capacity of K.

Note that the half-plane capacity satisfies:

a1(cK) = c2a1(K) (3.14)

a1(K ∪ L) = a1(K) + a1(fK(L)) (3.15)

a1(K + x) = a1(K) (3.16)

Let γ : [0,∞) 7→ H̄ be a simple curve and γ(0) = 0 be a simple curve where γ(0,∞) ⊂ H,

then the family of hulls Kt = γ[0, t].

Definition 3.4. A family of hulls Kt is said to be parameterized with half-plane capacity if

a1(Kt) = 2t.

Now consider Kt = γ[0, t] with Ht = H\Kt and let gt : Ht 7→ H be the corresponding

maps. Let W (t) = gt(γ(t)). Then gt satisfies the Loewner differential equation in the upper
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half-plane.

∂tgt(z) =
2

gt(z)−W (t)
, g0z = z. (3.17)

In 1923, Charles Loewner was studying cofmral maps from the unit-disc, and introduced the

Loewner equation in D where

∂tft(z) = f ′
t(z)z

z + eiUt

z − eiUt
. (3.18)

Figure 5. A map f from D into D can be studied by the Loewner equation
in D by defining a curve that first goes from ∂D to ∂f(D).[Kem17]

Theorem 3.4. Let T > 0 and let γ : [0, T ] 7→ C be a simple curve such that γ(0) = 0 and

γ(0, T ) ⊂ H. If γ is parameterized by the capacity, then

W (t) = lim
z→γ(t)

gt(z) (3.19)

exists for any t ∈ [0, T ] and t 7→ W (t) is continuous. Furthermore the hydro-dynamically

normalized conformal maps gt related to γ satisfy the Loewner differential equation

∂tgt(z) =
2

gt(z)−W (t)
(3.20)

with initial value g0(z) = z.

Proof. First we will show that there exists a constant C such that if K ⊂ B(x0, r) ∩H and

|z| > Cr then

|gk(z)− z − a1(K)

z
| ≤ Cra1(K)

|z|2
. (3.21)

Let fK = g−1
K , then near ∞

fK = z − a1z
−1 + · · · (3.22)

Let h(z) = ℑ(fK(z) − z). Note that h is harmonic in H. So we can rewrite h using the

Poisson kernel as

h(z) = ℑ 1

π

∫ ∞

−∞

1

ζ − z
h(ζ)dζ. (3.23)
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Since h = ℑ(fK) on R, so we can express fK(z) as

fK(z) = z +
1

π

∫ ∞

−∞

1

ζ − z
ℑ(fK(ζ))dζ. (3.24)

Let I be the smallest interval containing ζ ∈ R|fK(ζ) ∈ H ∪K. Then fK(ζ) = 0 outside of

I. Therefore, for large enough z,

fK(ζ) = z +
1

π

∫ ∞

−∞

1

ζ − z
ℑ(fK(ζ))dζ = z −

∑
n≥1

(

∫
I

ζn−1ℑ(fK(ζ))dζ)z−n. (3.25)

Thus,

|gK(z)− z − a1(K)

z
| = | 1

π

∫
I

(
1

ζ − z
+

1

z
)ℑ(fK(ζ))dζ| ≤ a1(K) sup(| 1

x− z
+

1

z
| | x ∈ I).

(3.26)

Since I ⊂ (−3r, 3r), then

| x

(x− z)z
| ≤ 6r|z|2 (3.27)

for any |z| ≥ 6r, x ∈ I. Q.E.D

We also need to show that if Φ : [0,∞) 7→ Rn is a function whose right derivative exists

for all t and the map t 7→ Φ′
+(t) is continuous, then Φ is continuously differentiable and

Φ′(t) = Φ′
+(t).

We can assume that Φ(0) = 0 and Φ′
+(t) = 0.Then let w = ∞(t | |Φ(t)| > ϵt) where ϵ > 0.

We will now go for a contradiction. So assume that p < ∞. Since Φ(w) ∈ C1 then Φ is

constant. Also, since Φ′
+(t) = 0, there exists a δ > 0 such that f(w + x) < ϵw + ϵx =

ϵ(w + x),∀ 0 < x < δ. Contradiction, since w is the infimum. Therefore, w = ∞ and Φ is

differentiable. Q.E.D

For a given t > 0 consider γ(t, t + ε) and the image S under gt. The curve starts at W (t).

Then by (2.8) gt+ε = gS ◦ gt. If we apply (2.14) to gS and let gt(z) = v:

|gS(v)− v − a1(S)

v −W (t)
| ≤ Cra1(S)

|z −W (t)|2
. (3.28)

Therefore,

|gt+ε(z)− gt(z)−
a1(S)

gt(z)−W (t)
| ≤ Cra1(S)

|gt(z)−W (t)|2
. (3.29)

Now if we divide by ε and take the limit ε→ 0 we get:

lim
ε→0

gt+ε(z)− gt(z)

ε
= lim

ε→0

a1(S)/ε

gt(z)−W (t)
+ lim

ε→0
C

ra1(S)/ε

|gt −W (t)|2
. (3.30)

Since we have a1(γ((0, t])) = 2t, then limε→0
a1(S)
ε

= 2. Thus,

∂tgt(z) =
2

gt(z)−W (t)
, 0 ≤ t < Tz. (3.31)

□
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4. Schramm-Loewner Evolution

4.1. Schramm-Loewner Evolution.

Schramm-Loewner evoltuions were discovered by Oded Schramm in 1999. Originally, they

were called stochastic Loewner evolutions. His paper revealed that random curves can be

described using the Loewner equation with a random driving term. These evolutions were

motivated by theoretical physics, especially the Ising model.

Definition 4.1. A Loewner chain is the solution gt of the Loewner differential equation with

a continuous driving term.

Definition 4.2. Let κ ≥ 0. A chordal Schramm-Loewner evolution SLE(κ) is a stochastic

Loewner chain with a driving processWt equal to a Brownian motion with variance parameter

κ. That is, SLE(κ) is the random collection of conformal maps gt that come from solving

the Loewner Ordinary-Differential Equation

ġt =
2

gt(z)−
√
κBt

, g0 = 0, z ∈ H. (4.1)

Schramm’s Principle: Schramm-Loewner evolutions are the only random curves satis-

fying conformal invariance and the domain Markov property.

Let’s say we have a collection of probability measures π(U,a,b) denoted by all triples (U, a, b)

such that U is a simply connected domain and a, b are two boundary points of U . Say that

π(U,a,b) is the law of a random curve γ : [0,∞) such that γ([0,∞)) ⊂ U and γ(0) = a, γ(∞) =

b. Then we say the family π(U,a,b) satisfies the domain Markov property if for all (U, a, b) and

for every t ∈ R≥0 and for any measurable set B in the space of curves

π(U,a,b)(γ|[t,∞) ∈ B|Ft) = π(U\γ([0,t]),γ(t),b)(γ ∈ B) (4.2)

where Ft is the filtration generated by γ(t).

Theorem 4.1. Let Kt be SLE(κ) and let W (t) be the corresponding Brownian motion with

respect to a filtration Ft. Then SLE(κ) satisfies

(1) Scaling: For any c > 0, cKt/c2
D
= Kt.

(2) Conformal Markov Property: For any s ∈ R≥0 the family of hulls

K̂t,s = gs(Ks+t\Ks)−Ws (4.3)

is independent of Fs and K̂s,t
D
= Kt.

Proof. The hulls and the conrresponding conformal maps are

Scale invariance: cKt/c2 , cgt/c2(z/c)

Conformal invariance: gs(Ks+t\Ks)−W − s, ĝs,t(z).
(4.4)
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of scale invariance and the conformal Markov property respectively, where ĝs,t(z) = gs+t ◦
g−1
s (z +Ws) −Ws. If we differentuate wuth respect to t, then we notice that these chains

satisfy the Loewner equation with driving processes cWt/c2 and Ws+t −Ws respectively. □

Definition 4.3. Let Kt be a SLE(κ) and let D be a simply connected domain with a and

b, a ̸= b being two boundary points of D. We define SLE(κ) in domain D going from a to b

to be the image of Kt under any conformal map ϕ : H 7→ D such that ϕ(0) = a, ϕ(∞) = b.

Definition 4.4. For any Loewner chain gt, we define the generating curve γ as

γ(t) = lim
ε↓0

g−1
t (W (t) + iε). (4.5)

The function γ is called the trace of the Loewner chain.

Theorem 4.2. For each κ, the trace γ exists and is a random curve such that the hulls Kt

of SLE(κ) are generated by γ.

Proof. First we claim that if t 7→ Ft(y) converges to some γ uniformly on compact subsets of

[0, T ) as y > 0 tends to 0, then γ is a continuous curve and Kt is generated by γ. Moreover,

for each T ∈ [0, t) the map z 7→ ft(z) extends continuously to H. The proof of this statement

can be found in [source]. Thus it is enough for us to show that the functions t 7→ ft(Wt+ iy)

converges uniformly as y → 0.

So for each κ ̸= 8, ∃ a constant τ > 0, and a random variable X which is finite with

probability 1 such that

|f ′
t(i2

−n)| ≤ X2n(1−τ) (4.6)

for all t ∈ D2n, n ∈ N. Note that Wt is a Brownian motion, then there exists a finite, with

probability 1, random variable χ such that

|Wt+s −Wt| ≤ χ
√
s log (1/s) (4.7)

. for any t, s ∈ [0, 1].

Let t ∈ [0, 1], y ∈ (0, 1). Take n ∈ N and t0 ∈ D2n such that

2−n ≤ y < 2−n+1, t0 ≤ t < t0 + 2−2n. (4.8)

Now we claim also that there exists a constant A such that for any solution ft of the Loewner

equation for the inverse Loewner map and for any x+ yi ∈ H, t ∈ R≥0 and s ∈ [0, y2]

A−1|f ′
t(x+ iy)| ≤ |f ′

t+s(x+ iy)| ≤ A|f ′
t(x+ iy)|

|ft+s(x+ iy)− ft(x+ iy)| ≤ Ay|f ′
t(x+ iy)|. (4.9)
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We show this by differentiating the Loewner equation. Using the fact that |x+iy−Wt| ≥ y

and the triangle inequality we get that

|∂tf ′
t(x+ iy)| ≤ 2|f ′′

t (x+ iy)|
y

+
2|f ′

t(x+ iy)|
y2

. (4.10)

To approximate |f ′′
t (z)| for a fixed z, consider ψ(ζ) = x + iy 1−ζ

1+ζ
. Therefore, ψ is a Mobius

map from D onto H and it has the expansion

ψ(ζ) = x+ iy(1 + 2
∑
n≥1

(−1)nζn). (4.11)

It follows that the function (ft ◦ ψ(ζ)− ft(z))/(f
′
t(z)ψ

′(0)) has the expansion

ζ +
f ′′
t (z)(ψ

′(0))2 + f ′
t(z)ψ

′′(0)

2f ′
t(z)ψ

′(0)
ζ2 + · · · (4.12)

around ζ = 0. It follows that |f ′′
t (z)||ϕ′(0)|2 ≤ |f ′

t(z)|(|ψ′′(0)| + 4|ψ′(0)|) and so |f ′′
t (z)| ≤

6|f ′
t9z)|y−1. So if we combine the previous estimates we arrive at

−14

y2
≤ ∂t log |f ′

t(x+ it)| ≤ 14

y2
(4.13)

where −|z| ≤ ℜ(z) ≤ |z|.The proof is finished by integrating the inequality with respect to

t, and the latter claim comes from substituting the former into the Loewner equation, and

then integrated with respect to t. Q.E.D. From all above it follows that

|f ′
t(Wt + iy)| ≤ λ|f ′

t0
(Wt + iy)| ≤ λ|f ′

t0
(Wt + iy0)| ≤ λ(1 +

|Wt −Wt0|2

y20
)3|f ′

t0
(Wt0 + iy)|

≤ λnr2n(1−τ) ≤ yτ−1ρ(1/y) (4.14)

for some subpower function ρ. Note that λ is a generic constant. So now let’s integrate

our current bound. Then for any 0 < y1 < y2 ≤ y < 1, by the triangle inequality we get

|ft(Wt + iy2)− ft(Wt + iy1)| ≤
∫ y2

y1

|f ′
t(Wt + iu)|du

≤
∫ y

0

uτ−1ρ(1/u)du = ytauρ(1/y)

(4.15)

where ρ(x) =
∫ 1

0
uτ−1ρ(x/u)du. Thus γ(t) = limy→0 ft((Wt + iy) exists and satisfies

|γ(t)− ft(Wt + iy)| ≤ yτρ(1/y). (4.16)

Therefore γ is continuous and generate Kt. □

Theorem 4.3. Let the random curve γ : [0,∞) 7→ H be SLE(κ). Then

(1) For all 0 < κ ≤ 4, γ is simple.
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Figure 6. SLE(κ) for κ = 1
2
, 1, 2, 4 i.e the standard Brownian motion multi-

plied by a
√
κ.[Kem17]

(2) For all 4 < κ < 8, γ is not simple on any interval.

(3) For all κ ≥ 8, γ is not simple and is space filling.

Proof. For the proof please see [RS04] □
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4.2. Calculations.

As mentioned earlier, Schramm-Loewner evolutions were motivated by their use in physics.

The random curves appear in specific models were there are barriers that separate near-

quantum level properties. A famous lattice model in statistical physics is the Ising model.

Each vertex v is occupied by an elementary magnet, spin, which takes values σv ∈ {±1}.
The model is defined

H(σ) = −Σσvσw (4.17)

where σ = (σv)v∈V is the spin configuration of the system and V is a finite subset of the the

square lattice Z2. What makes Schramm-Loewner evolutions relevant is that they are the

Figure 7. Ising model simulations of a dynamic system at critical and non-
critical temperatures.[KSCB09]

universal scaling-limit of many models in physics.

First we will be considering the site percolation model. Consider a coffee filter, with some

areas being closed and others being open. When coffee drips and meets an area that is closed,

it will move left or right (randomly) to the next ’hole’. If that ’hole’ is again closed, it will

again move, and so on until there is an open hole and coffee drips through. Now consider

G = (V,E) be a finite or infinite graph. We will consider G as a lattice or a sub-graph of a

lattice. Let p ∈ [0, 1] be a parameter and consider a family of random variables and assign

one to each vertex of G taking values in open, closed. We say that a vertex v ∈ V is open

or closed depending on the value of the random variable. We assume that

P[v = open] = p, P[v = closed] = 1− p (4.18)

for each v ∈ V .

Now consider a rhombus, or in general k-length rhombi Rk = {x+y exp iπ/3 | x, y ∈ [1, k]}.
Let f(p, k) denote the probability of a left to right crossing in Rk. It is important to notice

that f is monotone. Furthermore limk→∞ f(p, k) = {0, 1
2
, 1} when p < 1

2
, p = 1

2
, p > 1

2
,
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respectively. It is also important to note that if we chose a different aspect ratio for p = 1
2

the limit of the crossing probability is not necessarily 1
2
.

Figure 8. Crossing probabilities of a left to right crossing in a rhombus of
side length k. The graph is a function of p for different values of k (k = 1 blue,
k = 4 orange, k = 16 yellow,k = 64 purple). Sample size is 200 for each
k.[Kem17]

Let’s consider a hexagonal lattice in the upper half-plane. Now consider this model, and

at each step choose randomly, e.g flipping a coin, decide to choose turning right or turning

left, e.g heads means go right and tails means go left. Or another way of thinking about

this is at each step color the square green or red. Let’s say this lattice has meshδ and let

δ → 0. Then the interface between the green and red squares converges, in distribution,

to SLE6 - this was proved by Stanislav Smirnov. Here are some interesting theorems on

crossing probabilities for different shapes.

Theorem 4.4. (FKG inequality) For increasing non-negative random variables X, Y in a

percolation model, it holds that E[XY ] ≥ E[X]E[Y ]

Corollary 3.5. (Crossing probability for long rhombi or rectangles) For any ρ ≥ 1 there

exists ε ∈ (0, 1) such that for every n ∈ Z≥0

ε ≤ Ppc [SL−R(R(v, ⌈ρn⌉, n))] ≤ 1− ε. (4.19)

Where SL−R is the event of a left-right crossing of a rhombus R.

Corollary 3.6. (Crossing of an annuli) There exists a constant c1 and ∆1 > 0 such that for

any z0 ∈ C and 1 < r < R

Ppc [S (A(z0, r, R))] ≤ c1(r/R)
∆1 (4.20)
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Figure 9. Percolation on two different shapes.[Kem17]

Some theoretical uses of the Schramm-Loewnwer evolutions is the explanation of dark matter

halos and the evolution of the universe through the dark matter lens i.e evolution of dark

matter halos. The motivation behind this comes from the Ising model which evolves in

a very similar manner. Direct correlation between SLEs and dark matter halos would be

crucial to answering questions in cosmology and about universe. However, there currently are

applications to Quantum Field Theory and two-dimensional, incompressible Navier-Stokes.
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