Longest Increasing [Subsequences](#page-14-0) Manya Gupta

Longest Increasing Subsequences

Manya Gupta <manyagupta05@gmail.com>

Euler Circle

July 16, 2023

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

What We will be covering Today

Longest Increasing **[Subsequences](#page-0-0)**

Manya Gupta

Here is a flow of what we will be covering today:

- What longest increasing subsequences are?
- Using Robinson-Schensted Algorithm to reach the limit shape
- **Example 1** Limit shapes and Plancherel random partitions
- The Limit Shape Theorem and Related theorems
- Final Result: Vershik, Kerov, Logan, and Shepp Limit $\mathcal{L}_{\mathcal{A}}$ Shape

KORK ERKER ADAM ADA

■ Additional Application of Limit Shape Theorem

What Are Longest Increasing Subsequences

Longest Increasing [Subsequences](#page-0-0) Manya Gupta

Let us take S_n to denote a group of permutations of the order n. If $\sigma \in S_n$ is said to be a permutation then we can represent sub-sequence of σ is a sequence $(\sigma(i_1), \sigma(i_2), ..., \sigma(i_k))$ where $1 \leq i_1 < i_2 < ... < i_k \leq n$. This sub-sequence could be either increasing, decreasing or monotone. $L(\sigma)$ can be defined as the maximum length of the increasing sub-sequence of σ

KORKARYKERKER POLO

What Are Longest Increasing Subsequences

Longest Increasing [Subsequences](#page-0-0)

Manya Gupta

Let us take S_n to denote a group of permutations of the order n. If $\sigma \in S_n$ is said to be a permutation then we can represent sub-sequence of σ is a sequence $(\sigma(i_1), \sigma(i_2), ..., \sigma(i_k))$ where $1 \leq i_1 < i_2 < ... < i_k \leq n$. This sub-sequence could be either increasing, decreasing or monotone. $L(\sigma)$ can be defined as the maximum length of the increasing sub-sequence of σ

Example 1

 $\sigma = (1, 4, 5, 7, 9, 0, 8)$. For this example we can say that $L(\sigma) = 5$ since the longest increasing sub-sequence is of length 5. These longest increasing sub-sequences in relation to the example could be (1,4,5,7,9) and (1,4,5,7,8) both of which are increasing sub-sequences of length 5.

KORKARYKERKER POLO

The Robinson-Schensted Algorithm

Longest Increasing **[Subsequences](#page-0-0)**

Manya Gupta

It is a recursive application of the patience sorting algorithm. If we consider an example for patience sorting, say a permutation $(4,1,2,7,6,5,8,9,3)$. When we run the patience sorting algorithm on this example we obtain the following figure.

> $4 \rightarrow 1 \rightarrow 1$ $2 \rightarrow 1$ 2 $7 \rightarrow 1$ 2 6 \rightarrow 1 2 5 \rightarrow 1 2 5 8
4 6 4 6 $\begin{array}{ccccccc} \rightarrow & & 1 & 2 & 5 & 8 & 9 & & \rightarrow & & 1 & 2 & 3 & 8 & 9 \\ & & 4 & & 6 & & & & 4 & & 5 & & \\ & & & 7 & & & & & 6 & & & \\ \end{array}$

> > **KORK ERKER ADAM ADA**

The Robinson-Schensted Algorithm

Longest Increasing **[Subsequences](#page-0-0)** Manya Gupta

For this algorithm, instead of pushing the numbers down every time we want to add a new number, we bump them and re-apply patience sorting for that bumped number and so on. (Example from before) permutation (4,1,2,7,6,5,8,9,3). Here is a young diagram for the previous example but put through the algorithm:

KORKAR KERKER SAGA

Limit Shape of Plancherel-Random Partitions

Longest Increasing **[Subsequences](#page-0-0)** Manya Gupta

Plancherel Measure of Order is the probability measure on the set of integer partitions of n that assigns measure $d_{\lambda}^2/n!$ to any partition λ . When we apply it for $n \longrightarrow \infty$. We can generate a Plancherel-random partition $\lambda^{(n)}$ of size *n*. The Robinson–Schensted algorithm implies that $L(\sigma_n)$ is equal

in distribution to the length λ_n of the first row of a Plancherelrandom partition λ_n of order *n*.

Here the measures of order are: (a) $n = 100$ and (b) $n = 1000$ As can be observed, larger the value of n gets, we obtain a smoother more continuous curve shap[e.](#page-5-0)

The Limit Shape Theorem

Longest Increasing [Subsequences](#page-0-0)

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all $\epsilon \geq 0$ we have:

$$
\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)|>\in)\xrightarrow{n\longrightarrow\infty}0
$$

KORK ERKER ADA ADA KORA

The Limit Shape Theorem

Longest Increasing **[Subsequences](#page-0-0)**

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all ϵ > 0 we have:

$$
\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)|>\in)\xrightarrow{n\longrightarrow\infty}0
$$

Where Theorem 1.1 is: As $n \rightarrow \infty$, the random function ψ_n converges in the metric d_{Ω} to the limiting shape in a particular probability which is given by:

$$
\Omega(u) = \begin{cases} \frac{2}{\pi} (u \sin^{-1}(\frac{u}{2^{1/2}}) + \sqrt{2 - u^2}) & \text{if} \quad |u| \le \sqrt{2} \\ |u| & \text{if} \quad |u| > \sqrt{2} \end{cases}
$$

That is, for all $\epsilon > 0$ we can state that:

$$
\mathbb{P}(||\psi_n-\Omega||_Q>\in)\xrightarrow[n\to\infty]{n\to\infty}0_{n\text{ times}}\quad\text{for all }n\geq 0.
$$

The Limit Shape Theorem

Longest Increasing **[Subsequences](#page-0-0)**

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all ϵ > 0 we have:

$$
\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)|>\in)\xrightarrow{n\longrightarrow\infty}0
$$

Where Theorem 1.1 is: As $n \rightarrow \infty$, the random function ψ_n converges in the metric d_{Ω} to the limiting shape in a particular probability which is given by:

$$
\Omega(u) = \begin{cases} \frac{2}{\pi} (u \sin^{-1}(\frac{u}{2^{1/2}}) + \sqrt{2 - u^2}) & \text{if} \quad |u| \le \sqrt{2} \\ |u| & \text{if} \quad |u| > \sqrt{2} \end{cases}
$$

That is, for all $\epsilon > 0$ we can state that:

$$
\mathbb{P}(||\psi_n-\Omega||_Q>\in)\xrightarrow[n\to\infty]{n\to\infty}0_{n\text{ times}}\quad\text{for all }n\geq 0.
$$

Additional lemma

Longest Increasing [Subsequences](#page-0-0)

Manya Gupta

Let A, $L > 0$, and let $Lip(L, A)$ denote the space of all functions $f: R \longrightarrow R$ which are Lipschitz with constant L and are supported on the interval [A, A]. For any $f \in Lip(L, A)$ we have

 $||f||_{\infty} \leq CQ(f)^{1/4}$

where $C > 0$ is some constant that depends on A and L. This lemma is based on fractional calculus

As a consequence, we can prove the celebrated 1977 theorem of Vershik, Kerov, Logan, and Shepp. Which leads to the Limit Shape Theorem.

KORKAR KERKER SAGA

Vershik, Kerov, Logan, and Shepp Limit Shape

Left: The Logan–Shepp–Vershik–Kerov limit shape Ω Right: The limit shape superposed for comparison (after correct scaling) on a simulated Plancherel-random Young diagram of order $n = 1000$.

This is a remarkable feat of the Limit Shape Theorem.

Applications

Longest Increasing **[Subsequences](#page-0-0)**

Manya Gupta

Ulam-Hammersley problem

Let $S_{k:n}$ be a k-multiset permutation of size *n* taken uniformly among the $\begin{pmatrix} Kn \ h \end{pmatrix}$ kkkk...k) possibilities. In the case $k = 1$ the word $S_{1:n}$ is just a uniform permutation and estimating $L < (S_{1:n})$ is known as the Hammersley or Ulam-Hammersley problem.

Idea of studying the statistical distribution of the maximal monotone subsequence length in a random permutation

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Conclusion

Longest Increasing [Subsequences](#page-0-0)

Manya Gupta

Here's what we discussed:

- **Longest Increasing Subsequences**
- **Patience Sorting**
- The Robinson-Schensted Algorithm
- Limit Shape and Plancherel Measure of Order
- The Limit Shape Theorem
- Related Theorems
- **Now Vershik, Kerov, Logan, and Shepp Limit Shape**

KORK ERKER ADAM ADA

Application: Ulam-Hammersley problem

Read More

Longest Increasing [Subsequences](#page-0-0)

Manya Gupta

"Mathematics is a journey not a destination"

- The Surprising Mathematics of Longest Increasing Subsequences by Dan Romik [\[Rom15\]](#page-14-1)
- **E** Limit shapes, real and imaginary by Andrei Okounkov [\[Oko\]](#page-14-2)
-

Andrei Okounkov.

Limit shapes, real and imaginary.

Dan Romik.

The Surprising Mathematics of Longest Increasing Subsequences.

KORK ERKER ADAM ADA

Cambridge University Press, 2015.