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What We will be covering Today

Here is a flow of what we will be covering today:

What longest increasing subsequences are?

Using Robinson-Schensted Algorithm to reach the limit
shape

Limit shapes and Plancherel random partitions

The Limit Shape Theorem and Related theorems

Final Result: Vershik, Kerov, Logan, and Shepp Limit
Shape

Additional Application of Limit Shape Theorem
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What Are Longest Increasing Subsequences

Let us take Sn to denote a group of permutations of the order
n. If σ ∈ Sn is said to be a permutation then we can represent
sub-sequence of σ is a sequence (σ(i1), σ(i2), ..., σ(ik) where
1 ≤ i1 < i2 < ... < ik ≤ n. This sub-sequence could be either
increasing, decreasing or monotone. L(σ) can be defined as the
maximum length of the increasing sub-sequence of σ

Example 1

σ = (1,4,5,7,9,0,8). For this example we can say that L(σ) = 5
since the longest increasing sub-sequence is of length 5. These
longest increasing sub-sequences in relation to the example
could be (1,4,5,7,9) and (1,4,5,7,8) both of which are
increasing sub-sequences of length 5.
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The Robinson-Schensted Algorithm

It is a recursive application of the patience sorting algorithm. If
we consider an example for patience sorting, say a permutation
(4,1,2,7,6,5,8,9,3). When we run the patience sorting algorithm
on this example we obtain the following figure.
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The Robinson-Schensted Algorithm

For this algorithm, instead of pushing the numbers down every
time we want to add a new number, we bump them and
re-apply patience sorting for that bumped number and so on.
(Example from before) permutation (4,1,2,7,6,5,8,9,3). Here is
a young diagram for the previous example but put through the
algorithm:
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Limit Shape of Plancherel-Random Partitions

Plancherel Measure of Order is the probability measure on the
set of integer partitions of n that assigns measure d2

λ/n! to any
partition λ. When we apply it for n −→ ∞ . We can generate
a Plancherel-random partition λ(n) of size n.
The Robinson–Schensted algorithm implies that L(σn) is equal
in distribution to the length λn of the first row of a Plancherel-
random partition λn of order n.

Here the measures of order are: (a) n = 100 and (b) n = 1000
As can be observed, larger the value of n gets, we obtain a
smoother more continuous curve shape.
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The Limit Shape Theorem

The Limit Shape Theorem

As n −→ ∞, the random function ψn converges in probability
in the norm || · ||∞ to the limiting shape Ω defined in (Theorem
1.1). That is, for all ∈≥ 0 we have:

P(supu∈R|ψn(u)− Ω(u)| >∈) n−→∞−−−−→ 0

Where Theorem 1.1 is: As n −→ ∞, the random function ψn

converges in the metric dQ to the limiting shape in a particular
probability which is given by:

Ω(u) =

{ 2
π (u sin

−1( u
21/2

) +
√
2− u2) if |u| ≤

√
2

|u| if |u| >
√
2

That is, for all ∈> 0 we can state that:

P(||ψn − Ω||Q >∈) n−→∞−−−−→ 0
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Additional lemma

Let A, L > 0, and let Lip(L,A) denote the space of all functions
f : R −→ R which are Lipschitz with constant L and are
supported on the interval [A,A]. For any f ∈ Lip(L,A) we have

||f ||∞ ≤ CQ(f )1/4

where C > 0 is some constant that depends on A and L. This
lemma is based on fractional calculus
As a consequence, we can prove the celebrated 1977 theorem
of Vershik, Kerov, Logan, and Shepp. Which leads to the Limit
Shape Theorem.
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Vershik, Kerov, Logan, and Shepp Limit Shape

Left: The Logan–Shepp–Vershik–Kerov limit shape Ω
Right: The limit shape superposed for comparison (after
correct scaling) on a simulated Plancherel-random Young
diagram of order n = 1000.
This is a remarkable feat of the Limit Shape Theorem.
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Applications

Ulam-Hammersley problem

Let Sk;n be a k-multiset permutation of size n taken uniformly

among the

(
Kn

kkkk...k

)
possibilities. In the case k = 1 the

word S1;n is just a uniform permutation and estimating
L < (S1;n) is known as the Hammersley or Ulam-Hammersley
problem.

Idea of studying the statistical distribution of the maximal
monotone subsequence length in a random permutation
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Conclusion

Here’s what we discussed:

Longest Increasing Subsequences

Patience Sorting

The Robinson-Schensted Algorithm

Limit Shape and Plancherel Measure of Order

The Limit Shape Theorem

Related Theorems

Vershik, Kerov, Logan, and Shepp Limit Shape

Application: Ulam-Hammersley problem
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Read More

”Mathematics is a journey not a destination”

The Surprising Mathematics of Longest Increasing
Subsequences by Dan Romik [Rom15]

Limit shapes, real and imaginary by Andrei Okounkov
[Oko]

Andrei Okounkov.
Limit shapes, real and imaginary.

Dan Romik.
The Surprising Mathematics of Longest Increasing
Subsequences.
Cambridge University Press, 2015.


