Longest Increasing Subsequences

Manya Gupta

Longest Increasing Subsequences

Manya Gupta manyagupta050gmail.com

Euler Circle

July 16, 2023

What We will be covering Today

Longest Increasing Subsequences

Manya Gupta

Here is a flow of what we will be covering today:

- What longest increasing subsequences are?
- Using Robinson-Schensted Algorithm to reach the limit shape
- Limit shapes and Plancherel random partitions
- The Limit Shape Theorem and Related theorems
- Final Result: Vershik, Kerov, Logan, and Shepp Limit Shape

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Additional Application of Limit Shape Theorem

What Are Longest Increasing Subsequences

Longest Increasing Subsequences

Manya Gupta

Let us take S_n to denote a group of permutations of the order n. If $\sigma \in S_n$ is said to be a permutation then we can represent **sub-sequence** of σ is a sequence $(\sigma(i_1), \sigma(i_2), ..., \sigma(i_k))$ where $1 \leq i_1 < i_2 < ... < i_k \leq n$. This sub-sequence could be either increasing, decreasing or monotone. $L(\sigma)$ can be defined as the maximum length of the increasing sub-sequence of σ

What Are Longest Increasing Subsequences

Longest Increasing Subsequences

Manya Gupta

Let us take S_n to denote a group of permutations of the order n. If $\sigma \in S_n$ is said to be a permutation then we can represent **sub-sequence** of σ is a sequence $(\sigma(i_1), \sigma(i_2), ..., \sigma(i_k))$ where $1 \leq i_1 < i_2 < ... < i_k \leq n$. This sub-sequence could be either increasing, decreasing or monotone. $L(\sigma)$ can be defined as the maximum length of the increasing sub-sequence of σ

Example 1

 $\sigma = (1,4,5,7,9,0,8)$. For this example we can say that $L(\sigma) = 5$ since the longest increasing sub-sequence is of length 5. These longest increasing sub-sequences in relation to the example could be (1,4,5,7,9) and (1,4,5,7,8) both of which are increasing sub-sequences of length 5.

The Robinson-Schensted Algorithm

Longest Increasing Subsequences

Manya Gupta

It is a recursive application of the patience sorting algorithm. If we consider an example for patience sorting, say a permutation (4,1,2,7,6,5,8,9,3). When we run the patience sorting algorithm on this example we obtain the following figure.

The Robinson-Schensted Algorithm

Longest Increasing Subsequences

Manya Gupta

For this algorithm, instead of pushing the numbers down every time we want to add a new number, we bump them and re-apply patience sorting for that bumped number and so on. (Example from before) permutation (4,1,2,7,6,5,8,9,3). Here is a young diagram for the previous example but put through the algorithm:

Limit Shape of Plancherel-Random Partitions

Longest Increasing Subsequences

Manya Gupta

Plancherel Measure of Order is the probability measure on the set of integer partitions of *n* that assigns measure $d_{\lambda}^2/n!$ to any partition λ . When we apply it for $n \longrightarrow \infty$. We can generate a Plancherel-random partition $\lambda^{(n)}$ of size *n*.

The Robinson–Schensted algorithm implies that $L(\sigma_n)$ is equal in distribution to the length λ_n of the first row of a Plancherelrandom partition λ_n of order n.

Here the measures of order are: (a) n = 100 and (b) n = 1000As can be observed, larger the value of n gets, we obtain a smoother more continuous curve shape.

The Limit Shape Theorem

Longest Increasing Subsequences

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all $\in \geq 0$ we have:

$$\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)| \geq \in) \xrightarrow{n \to \infty} 0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Limit Shape Theorem

Longest Increasing Subsequences

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all $\in \geq 0$ we have:

$$\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)| \geq \in) \xrightarrow{n \longrightarrow \infty} 0$$

Where Theorem 1.1 is: As $n \rightarrow \infty$, the random function ψ_n converges in the metric d_Q to the limiting shape in a particular probability which is given by:

$$\Omega(u) = \begin{cases} \frac{2}{\pi} (u \sin^{-1}(\frac{u}{2^{1/2}}) + \sqrt{2 - u^2}) & \text{if } |u| \le \sqrt{2} \\ |u| & \text{if } |u| > \sqrt{2} \end{cases}$$

That is, for all $\in > 0$ we can state that:

$$\mathbb{P}(||\psi_n - \Omega||_Q > \in) \xrightarrow[]{n \to \infty} 0$$

The Limit Shape Theorem

Longest Increasing Subsequences

Manya Gupta

The Limit Shape Theorem

As $n \longrightarrow \infty$, the random function ψ_n converges in probability in the norm $|| \cdot ||_{\infty}$ to the limiting shape Ω defined in (Theorem 1.1). That is, for all $\in \geq 0$ we have:

$$\mathbb{P}(sup_{u\in\mathcal{R}}|\psi_n(u)-\Omega(u)| \geq \in) \xrightarrow{n \longrightarrow \infty} 0$$

Where Theorem 1.1 is: As $n \rightarrow \infty$, the random function ψ_n converges in the metric d_Q to the limiting shape in a particular probability which is given by:

$$\Omega(u) = \begin{cases} \frac{2}{\pi} (u \sin^{-1}(\frac{u}{2^{1/2}}) + \sqrt{2 - u^2}) & \text{if } |u| \le \sqrt{2} \\ |u| & \text{if } |u| > \sqrt{2} \end{cases}$$

That is, for all $\in > 0$ we can state that:

$$\mathbb{P}(||\psi_n - \Omega||_Q > \in) \xrightarrow[]{n \to \infty} 0$$

Additional lemma

Longest Increasing Subsequences

Manya Gupta

Let A, L > 0, and let Lip(L, A) denote the space of all functions $f : R \longrightarrow R$ which are Lipschitz with constant L and are supported on the interval [A, A]. For any $f \in Lip(L, A)$ we have

 $||f||_{\infty} \leq CQ(f)^{1/4}$

where C > 0 is some constant that depends on A and L. This lemma is based on **fractional calculus**

As a consequence, we can prove the celebrated 1977 theorem of Vershik, Kerov, Logan, and Shepp. Which leads to the Limit Shape Theorem.

Vershik, Kerov, Logan, and Shepp Limit Shape

Left: The Logan–Shepp–Vershik–Kerov limit shape Ω Right: The limit shape superposed for comparison (after correct scaling) on a simulated Plancherel-random Young diagram of order n = 1000.

This is a remarkable feat of the Limit Shape Theorem.

Applications

Longest Increasing Subsequences

Manya Gupta

Ulam-Hammersley problem

Let $S_{k;n}$ be a k-multiset permutation of size n taken uniformly among the $\binom{Kn}{kkkk...k}$ possibilities. In the case k = 1 the word $S_{1;n}$ is just a uniform permutation and estimating $L < (S_{1;n})$ is known as the Hammersley or Ulam-Hammersley problem.

Idea of studying the statistical distribution of the maximal monotone subsequence length in a random permutation

Conclusion

Longest Increasing Subsequences

Here's what we discussed:

- Longest Increasing Subsequences
- Patience Sorting
- The Robinson-Schensted Algorithm
- Limit Shape and Plancherel Measure of Order
- The Limit Shape Theorem
- Related Theorems
- Vershik, Kerov, Logan, and Shepp Limit Shape

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Application: Ulam-Hammersley problem

Read More

Longest Increasing Subsequences

Manya Gupta

"Mathematics is a journey not a destination"

- The Surprising Mathematics of Longest Increasing Subsequences by Dan Romik [Rom15]
- Limit shapes, real and imaginary by Andrei Okounkov [Oko]
- Andrei Okounkov.

Limit shapes, real and imaginary.

Dan Romik.

The Surprising Mathematics of Longest Increasing Subsequences.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cambridge University Press, 2015.