
SHOR’S ALGORITHM

MANU ISAACS

1. Abstract

In this paper, we discuss Shor’s algorithm, one of the most important algorithms in quan-
tum computing. Shor’s algorithm can factor the M in polynomial time (in logM). Even
the best classical factoring algorithms run in superpolynomial time. Because many crypto-
graphic algorithms rely on the difficulty of factoring, Shor’s algorithm provides the means
for quantum computers to undermine the security of the internet. Shor’s algorithm begins
by turning the problem of factoring into a problem of finding the period of a function. Then,
using quantum parallelism on a superposition of inputs, the function is computed over many
values at once. Then, to find the period of this function, we take the quantum Fourier trans-
form of the resulting quantum state. Finally, we measure the system, obtaining a number
which, with a high probability, is a nontrivial factor of M .

2. Introduction

Shor’s algorithm was discovered in 1994 by mathematician Peter Shor. The algorithm
showed the promise of quantum computers to undermine the security of much of cryptog-
raphy. However, actual quantum computers of the required size have yet to be built - the
largest number factored on a quantum computer using Shor’s algorithm is only 21.

This paper starts by introducing the basics of quantum computation, assuming no back-
ground. We begin by defining a single qubit and single qubit measurement. Then, we
progress to multi-qubit systems and multi-qubit measurement. Then, we discuss quantum
state transformations, and name some of the commonly used quantum gates (or transfor-
mations). Then, we look at how we can use these gates to build up the quantum analog of
classical computers.

Then, we move on to the quantum Fourier transform, which is essential to Shor’s algorithm.
It is very similar to the discrete Fourier transform. Finally we move on to Shor’s algorithm
itself. We describe how finding a factor of M can be reduced to finding the period of the
function f(k) ≡ ak (mod M) using elementary number theory. Then, we describe how
to perform the quantum part of the algorithm, which involves applying f and a quantum
Fourier transform to a quantum superposition. We show that after measurement, we will
get a nontrivial factor of M with high probability. We end by looking at generalizations of
Shor’s algorithm and some of the open problems in quantum computation. as well as the
cryptographic implications of Shor’s Algorithm.

3. Acknowledgements

The author would like to thank the Euler Circle, Sawyer Dobson, and Simon Rubenstein-
Salzedo for making this paper possible.

Date: July 17, 2023.
1

2 MANU ISAACS

4. What is a qubit?

4.1. Linear Algebra Review. At the beginning of some sections, a review of the necessary
linear algebra is given, assuming the reader has no prior experience with linear algebra. Feel
free to skip these sections if you don’t think you need them. However, in this section,
Dirac’s braket notation, which is used in quantum computing and throughout this paper is
introduced, so unless you are familiar with it, it is recommended that you at least skim this
section.

Definition 4.1. A vector space V is a set of vectors which can by multiplied by scalars in
a field F and added to one another. Throughout this paper, we will be working in complex
vector spaces, that is to say the F = C, and we will denote vectors using Dirac’s braket
notation |v⟩. |v⟩ is called a ket. Vector spaces satisfy the following axioms for 1, a, b ∈ F
and |v⟩ , |u⟩ , |w⟩ ∈ V :

• (|v⟩+ |u⟩) + |w⟩ = |v⟩+ (|u⟩+ |w⟩) (Associativity of vectors)

• |v⟩+ |w⟩ = |w⟩+ |v⟩ (Commutativity of vectors)

• ∃ |0⟩ ∈ V : |0⟩+ |v⟩ = |v⟩ ∀v ∈ V (Existence of zero vector)

• ∀ |v⟩ ∈ V, ∃ |−v⟩ ∈ V : |v⟩+ |−v⟩ = |0⟩ (Existence of the additive inverse)

• a(b |v⟩) = (ab) |v⟩ (Associativity of scalar multiplication)

• 1 |v⟩ = |v⟩ (Existence of scalar multiplicative identity)

• a(|v⟩+ |u⟩) = a |v⟩+ a |u⟩ (Vector distributive property of scalar multiplication)

• (a+ b) |v⟩ = a |v⟩+ b |v⟩ (Scalar distributive property of scalar multiplication)

Definition 4.2. Given a set B = {|β1⟩ , |β2⟩ , . . . |βn⟩} of vectors in V , we say that a vector
|w⟩ is a linear combination of B if

B =
n∑

i=1

ai |βi⟩

for some scalar ai.

Definition 4.3. Given a set S of vectors in V , the span of S, denoted span(S), is the set of
vectors in V which are linear combinations of S. Conversely, span(S) is said to be generated
by S.

Definition 4.4. Given |v⟩ , |w⟩ ∈ V , let the inner product of |v⟩ and |w⟩, denoted by ⟨v|w⟩,
satisfy

⟨v|v⟩ ∈ R+

⟨v|w⟩ = ⟨w|v⟩
⟨v|a |w⟩+ b |u⟩⟩ = a ⟨v|w⟩+ b ⟨v|u⟩

SHOR’S ALGORITHM 3

Definition 4.5. A set of vectors |v1⟩ , |v2⟩ , . . . , |vn⟩ in a vector space V is said to be or-
thogonal if every pair of distinct vectors in the set is orthogonal, i.e., ⟨vi|vj⟩ = 0 for all
i ̸= j.

Definition 4.6. The norm of a vector |v⟩ in a vector space V , denoted by | |v⟩ |, represents
the length or magnitude of the vector. It is defined by

√
⟨v|v⟩.

Definition 4.7. A set of vectors |v1⟩ , |v2⟩ , . . . , |vn⟩ in a vector space V is said to be or-
thonormal if it is orthogonal and every vector in the set has unit norm, i.e., ⟨vi|vj⟩ = δij,
where δij is the Kronecker delta symbol, defined as

δij =

{
1 if i = j

0 if i ̸= j

Definition 4.8. A basis for a vector space V is a set of linearly independent vectors that
span the entire space. In other words, a basis is a set of vectors B = |β1⟩ , |β2⟩ , . . . , |βn⟩
such that any vector |v⟩ in V can be expressed as a unique linear combination of the basis
vectors:

|v⟩ =
n∑

i=0

ci |βi⟩

where ci are scalars. Note that span(B) = V .

Definition 4.9. An orthonormal basis is a basis for a vector space V that is also an or-
thonormal set. In this paper, any basis is assumed to be an orthonormal basis.

Definition 4.10. For a given basis B = {|β1⟩ , |β2⟩ , . . . , |βn⟩} of vector space V , if some
|v⟩ ∈ V can be written as

|v⟩ =
n∑

i=0

ai |βi⟩

then in vector notation, we can write |v⟩ =

a1
a2
...
an

.

Definition 4.11. For two vectors |v⟩ =

a1
a2
...
an

 and |w⟩ =

b1
b2
...
bn

, define the dot product of

|v⟩ and |w⟩ as

|v⟩ · |w⟩ =
n∑

i=0

aibi.

Definition 4.12. Matrix multiplication is an operation defined for two matrices A and B
such that the number of columns in A is equal to the number of rows in B. The product of
matrices A and B, denoted as AB, is a matrix whose elements are computed as follows:

4 MANU ISAACS

If A is an m×n matrix and B is an n×p matrix, then the product AB is an m×p matrix
defined by:

(AB)ij =
n∑

k=1

aikbkj

where aik denotes the element in the i-th row and k-th column of A, and bkj denotes the
element in the k-th row and j-th column of B. We can also think of (AB)ij as the dot
product of the i-th row of A and the j-th column of B.

Example. For example, consider the following matrix multiplication. Let

A =

(
2 3
−1 4

)
and B =

(
5 1
2 −3

)
To compute the product AB, we will calculate each element of the resulting matrix:

AB =

(
(AB)11 (AB)12
(AB)21 (AB)22

)
Let’s perform the calculations:

(AB)11 = (2 · 5) + (3 · 2) = 10 + 6 = 16

(AB)12 = (2 · 1) + (3 · −3) = 2− 9 = −7

(AB)21 = (−1 · 5) + (4 · 2) = −5 + 8 = 3

(AB)22 = (−1 · 1) + (4 · −3) = −1− 12 = −13

Therefore, the matrix product AB is:

AB =

(
16 −7
3 −13

)
So, the resulting matrix AB is a 2× 2 matrix with the entries shown above.

Definition 4.13. Given a matrix A with entries aij, we define the transpose conjugate of
A, denoted B = A† as the matrix with entries bij = aji

Example. If

A =

(
1 2
3i 4i

)
then

A† =

(
1 − 3i
2 − 4i

)
.

Definition 4.14. Given a ket |v⟩, we define its corresponding bra as ⟨v| = |v⟩†. So if

|v⟩ =

a1
a2
...
an

 ,

SHOR’S ALGORITHM 5

then

⟨v| = |v⟩† =
(
a1 a2 . . . an

)

Definition 4.15. We define the standard inner product of |v⟩ =

a1
a2
...
an

 and |w⟩ =

b1
b2
...
bn

 ,

to be

⟨v|w⟩ = ⟨v| |w⟩ =

a1
a2
...
an

(
b1 b2 . . . bn

)
=

n∑
i=0

aibi

Note that this satisfies all the criteria of 4.4. From here onwards, when we refer to the inner
product, we mean the standard inner product.

Example. Consider the vectors |v⟩ =
(
2
1

)
and |w⟩ =

(
1
−2

)
which are perpendicular in the

plane. We have

⟨v|w⟩ = ⟨v| |w⟩ =
(
2 1

)(1
−2

)
= (2)(1) + (1)(−2) = 0,

so the vectors are orthogonal, as expected.

4.2. Definition of a Qubit.

Definition 4.16. A qubit, short for quantum bit, is the smallest unit of quantum informa-
tion. For the purposes of this paper, a qubit can be thought of as a two-element vector, where
each element is a complex (or real) number and the sum of the squares of the magnitudes
of the elements of the vector is 1.

4.3. Braket Notation For Qubits. We define |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
. Notice that |0⟩

is not the zero vector. The basis {|0⟩ , |1⟩} generates the vector space of a single qubit and
is called the standard basis. Unless otherwise specified, this is the basis that we are working
in. Then, we can write any qubit |ψ⟩ as

|ψ⟩ =
(
a
b

)
= a |0⟩+ b |1⟩ ,

where a, b ∈ C and |a|2 + |b|2 = 1. The notation |ψ⟩ is called a ket and represents the state
of one or multiple qubits.

4.4. Relative and global phases. There is some redundancy to the above definition when
considering the physical representation of a qubit.

Definition 4.17. If, for qubits |v⟩ and |w⟩, we can write |v⟩ = c |w⟩ for some c ∈ C, we say
that |v⟩ and |w⟩ differ by a global phase shift of c. Furthermore, |v⟩ and |w⟩ have the same
physical representation.

6 MANU ISAACS

Definition 4.18. We define the relative phase of a qubit |ϕ⟩ = a |0⟩+b |1⟩ to be the complex
number c such that

a

b
= c

|a|
|b|
.

Notice that if two qubits have different relative phases then they have different physical
representations, and if two qubits have the same relative phase, then they have the same
physical representation.

4.5. Commonly used qubits. The following qubits are use commonly enough to have
their own notation:

|+⟩ = 1√
2
(|0⟩+ |1⟩),

|−⟩ = 1√
2
(|0⟩ − |1⟩),

|i⟩ = 1√
2
(|0⟩+ i |1⟩),

|−i⟩ = 1√
2
(|0⟩ − i |1⟩).

Notice that because all of these qubits have different relative phases, they all have different
physical representations. The basis {|+⟩ , |−|⟩} is called the Hadamard basis.

Example. Simplify 1√
2
(|+⟩+ |−⟩).

We have

1√
2
(|+⟩+ |−⟩) = 1√

2

(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩)

)
=

1

2
(|0⟩+ |1⟩+ |0⟩ − |1⟩)

= |0⟩ .

5. Measurement of a single qubit

The first operation on a qubit that we will look at is measurement. This is the only way in
which we can physically observe quantum states. Interestingly, in observing a quantum state,
we also change it to the state that we measured. In the following sections, we generalize this
idea to multiple qubit systems.

Definition 5.1. By measuring the qubit |ϕ⟩ = a |β1⟩+b |β2⟩ in the basis {β1, β2}, we observe
the state as the following:

• |β1⟩with probability |a|2
• |β2⟩with probability |b|2

Furthermore, when we measure a qubit, the state of the qubit also changes to the state that
it is measured as.

Note that performing the same measurement twice has the exact same effect as performing
that measurement once. The order in which measurements are performed does matter,
and performing measurement A followed by measurement B is not the same as performing
measurement B.

SHOR’S ALGORITHM 7

Example. What happens when we measure the qubit |0⟩ first in the Hadamard basis {|+⟩ , |−⟩}
and then in the standard basis? To compute the probabilities for measurement in the stan-
dard basis, we have to write |0⟩ in the Hadamard basis: |0⟩ = 1√

2
(|+⟩ + |−⟩). In this case,

we see that |a|2 = |b|2 = 1
2
, so after measuring in the Hadamard basis, the qubit becomes

either |+⟩ or |−⟩ each with equal probability. Then, recalling the definitions of |+⟩ and |−⟩,
we see that measurement of either of them in the standard basis results in |0⟩ or |1⟩ again
with equal chance.

Definition 5.2. We say that |ϕ⟩ = a |β1⟩ + b |β2⟩ is a superposition of the basis {β1, β2} if
a and b are both nonzero. If no basis is given, it is assumed that we are talking about the
standard basis.

Remark 5.3. After measuring some qubit in the basis B, that qubit will not be in a super-
position of the basis B.

Remark 5.4. Note that if two qubits |v⟩ and |w⟩ differ by a global phase, that is, they have
the same representation, then the result of measuring |v⟩ and |w⟩ is the same no matter which
basis we measure in. This is why we say |v⟩ and |w⟩ have the same physical representation.

6. Multiple qubit systems

6.1. Linear Algebra Review.

Definition 6.1. The direct sum U = V ⊕W of vector spaces V with basis A and W with
basis B where A and B are distinct is the vector space with basis A ∪B.

Remark 6.2. For all |u⟩ ∈ U there exists unique |v⟩ ∈ V and |w⟩ ∈ W such that |u⟩ =
|v⟩+ |w⟩. This can be verified easily by looking at the representation of |u⟩ , |v⟩ , |w⟩ in their
respective bases.

Remark 6.3. The dimension of a vector space V , denoted by dim(V), is the cardinality or
size of its basis B, |B|. Notice that dim(V ⊕W) = dim(V) + dim(W). In this sense, the
dimension of vector spaces grows linearly with the direct sum.

Example. Suppose V1 = R2 describes the state of a particle in a plane. An element v1 ∈ V1

could be written as

(
x1
y1

)
= x1 |01⟩+ y1 |11⟩, where the basis of V1 is {|01⟩ , |11⟩}. Let V2 be

defined similarly. Then, V1 ⊕ V2 describes all possible states of both particles in the plane.
An element of V1 ⊕ V2 could be written as

x1
y1
x2
y2

 = x1 |01⟩+ y1 |11⟩+ x1 |02⟩+ y1 |12⟩ .

Definition 6.4. The tensor product U = V ⊗ W of vector spaces V with basis A =
{|α1⟩ , |α2⟩ , . . . |αn⟩} and W with basis B = {|β1⟩ , |β2⟩ , . . . |βn⟩} is the vector space with
basis consisting of the nm elements of the form |αi⟩ ⊗ |βj⟩. The tensor product on vectors
satisfies the following properties:

(1) (|v1⟩+ |v2⟩)⊗ |w⟩ = |v1⟩ ⊗ |w⟩+ |v2⟩ ⊗ |w⟩ (Left distributive property)

8 MANU ISAACS

(2) |w⟩ ⊗ (|v1⟩+ |v2⟩) = |w⟩ ⊗ |v1⟩+ |w⟩ ⊗ |v2⟩ (Right distributive property)

(3) (a |v⟩)⊗ |w⟩ = a(|v⟩ ⊗ |w⟩) = |v⟩ ⊗ (a |w⟩) (Linearity)

Remark 6.5. Note that dim(V ⊗W) = dim(V)dim(W).

Remark 6.6. For the rest of this paper, we will refer to the tensor product of vectors not as
|v⟩ ⊗ |w⟩ but simply as |v⟩ |w⟩.

Example. Let V have basis {|0v⟩ , |1v⟩} and W have basis {|0w⟩ , |1w⟩}. Then, if |v⟩ =
1√
2
(|0v⟩+ |1v⟩) and |w⟩ = 1√

13
(2 |0w⟩+ 3 |1w⟩), we have

|v⟩ |w⟩ = 1√
2
(|0v⟩+ |1v⟩)

1√
13

(2 |0w⟩+ 3 |1w⟩)

=
1√
26

(2 |0v⟩ |0w⟩+ 3 |0v⟩ |1w⟩+ 2 |1v⟩ |0w⟩+ 3 |1v⟩ |1w⟩)

by the properties of the tensor product of vectors in 6.4.

6.2. The Vector Space of a Multi-Qubit System.

Definition 6.7. Consider now a system of n qubits, labeled 0 to n− 1. Qubit i is in vector
space Vi which has basis {|0i⟩ , |1i⟩}. Then, the vector space of the entire n-qubit system is
V = V0 ⊗ V1 ⊗ · · · ⊗ Vn.

Notice that by 6.5, the dimension of V is N = 2n. This exponential increase in dimension
indicates the power of quantum computer. We can write the basis of V as

{|0⟩n−1 ⊗ |0⟩n−2 ⊗ · · · ⊗ |0⟩1 ⊗ |0⟩0 ,
|0⟩n−1 ⊗ |0⟩n−2 ⊗ · · · ⊗ |0⟩1 ⊗ |1⟩0 ,
|0⟩n−1 ⊗ |0⟩n−2 ⊗ · · · ⊗ |1⟩1 ⊗ |0⟩0 ,

...

|1⟩n−1 ⊗ |1⟩n−2 ⊗ · · · ⊗ |1⟩1 ⊗ |1⟩0}
but this is extremely clunky. Let’s remove the tensor products and subscripts, and combine
the kets together:

{|00 . . . 00⟩ , |00 . . . 01⟩ , |00 . . . 10⟩ . . . |11 . . . 11⟩}
That’s much better. A lot of time, we will use this notation to describe the basis of an
n-qubit system. However, a further simplification is possible by writing every number in
decimal as opposed to binary:

{|0⟩ , |1⟩ , |2⟩ . . . |2n − 1⟩}.
We can also write the basis in vector notation, where each basis vector has N elements:

1
0
...
0

 ,

0
1
...
0

 , . . .

0
0
...
1

 .

Then, the standard basis for a two qubit system can be written as

{|00⟩ , |01⟩ , |10⟩ , |11⟩}

SHOR’S ALGORITHM 9

or

{|0⟩ , |1⟩ , |2⟩ , |3⟩}.

or

1
0
0
0

 ,

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

 .

Example. Expand |+⟩ |+⟩.
We have

|+⟩ |+⟩ = 1

2
((|0⟩+ |1⟩)(|0⟩+ |1⟩),

=
1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩),

=
1

2
(|0⟩+ |1⟩+ |2⟩+ |3⟩).

We see a pattern here which generalizes to the following lemma, which turns out to be of
paramount importance in Shor’s Algorithm:

Lemma 6.8. We claim that for positive integers n and N = 2n,

|+⟩ |+⟩ . . . |+⟩︸ ︷︷ ︸
n times

=
1√
N
(|0⟩+ |1⟩+ . . . |N − 1⟩).

Proof. We can rewrite the left hand side as 1√
N
(|0⟩+ |1⟩)(|0⟩+ |1⟩) . . . (|0⟩+ |1⟩)︸ ︷︷ ︸

n times

. For each

term in the binomial expansion of this expression, we get a distinct number whose binary
representation ranges from |0⟩ to |N − 1⟩, but this is the right hand side, so we are done. ■

6.3. Entangled and Unentangled States.

Definition 6.9. An n-qubit system is in an entangled state if it cannot be written as the
tensor product of single qubits, A state that is not entangled is unentangled.

Remark 6.10. The state |ϕ⟩ = 1
2
(|00⟩ − |01⟩ − |10⟩ + |11⟩) is not entangled, but the state

|psi⟩ = 1
2
(|00⟩+ |01⟩+ |10⟩ − |11⟩) is.

Proof. Notice that |ϕ⟩ = |−⟩ |−⟩ so |ϕ⟩ is unentangled. Now, assume contrary, that |ψ⟩ is
unentangled. Then, we can write

1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩) = (a |0⟩+ b |1⟩)(c |0⟩+ d |1⟩),

so ac = ad = bc = −bd = 1
4
. But then we have (ac)(bd) = abcd = −1

16
while (ad)(bc) =

abcd = 1
16
, contradiction. ■

10 MANU ISAACS

7. Measurement of multiple qubits

7.1. Definition of Multi-Qubit Measurement. Any measuring device which measures
an n-qubit state with vector space V is characterized by a set of vector spaces {Si} satisfying

V = S1 ⊕ S2 ⊕ · · · ⊕ Sk,

where k ≤ N , where N = 2n is the dimension of V . What happens when we measure |v⟩?
We know that |v⟩ can be written uniquely as

|v⟩ =
k∑

i=1

ci |si⟩

for unit vectors |si⟩ ∈ Si. Then, when |v⟩ is measured, we get the state |si⟩ with probability
|ci|2, and as before, the state itself changes to what we measure it as

8. Transformations

8.1. Linear Review.

Definition 8.1. We say a matrix U is unitary if U †U = I.

Theorem 8.2. A matrix U is unitary if and only if it maps unit vectors to unit vectors.

Proof. First, we show that if U is unitary, then it maps unit vectors to unit vectors. Let |v⟩
be a unit vector (i.e., ∥ |v⟩ ∥ = 1) and let U be unitary. We want to show that U |v⟩ is also
a unit vector. Let’s calculate the norm of U |v⟩:

|U |v⟩ |2 = ⟨v|U †U |v⟩ ⟨v|I|v⟩ = ⟨v|v⟩ = ∥ |v⟩ ∥2 = 1.

This proves that U maps unit vectors to unit vectors when U is unitary. Now, we show
that if U maps unit vectors to unit vectors, then it is unitary. Assume that U is a square
matrix that maps unit vectors to unit vectors. We want to prove that U is unitary, i.e.,
UU † = I. Take an arbitrary unit vector |x⟩. Since U maps unit vectors to unit vectors, we
can say:

1 = |U |x⟩ | = ⟨x|U †U |x⟩ .
Let {x1, x2, . . . xn} be an orthonormal basis. Then, notice that ⟨xi|UU † |xj⟩ = (UU †)ij = δij
which means that UU † = I and U is unitary, as desired. ■

Corollary 8.3. Unitary matrices map quantum states to quantum states.

Theorem 8.4. We claim that if U is unitary, then so is U−1.

Proof. Using the fact that U−1 = U †, we have

(U−1)†U−1 = (U †)†U−1

= UU−1,

= I.

so U−1 is unitary. ■

8.2. Unitary Transformations. The other type of operation that we can perform on qubits
are transformations. Transformations can be thought of as 2n by 2n unitary matrices which
act on an n-qubit system. Notice that by 8.3 Transformations are also called gates.

SHOR’S ALGORITHM 11

8.3. Basic Single-Qubit Gates. For example, we have the following single-qubit transfor-
mations:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 1
−1 0

)
Z =

(
1 0

0 − 1

)
H =

1√
2

(
1 1

1 − 1

)
The first four gates are the Pauli Transformations, and the last one is the Hadamard Trans-
formation. Notice that the not gate sends |0⟩ to |1⟩ and vice versa:

X |0⟩ =
(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩ ,

X |1⟩ =
(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0⟩ .

Notice also that the Hadamard gate sends |0⟩ to |+⟩ and |1⟩ to |−⟩:

H |0⟩ = 1√
2

(
1 1

1 − 1

)(
1
0

)
=

1√
2

(
1
1

)
= |+⟩ ,

H |1⟩ = 1√
2

(
1 1

1 − 1

)(
0
1

)
=

1√
2

(
1
−1

)
= |−⟩ .

8.4. Basic Multi-Qubit Gates.

8.4.1. Controlled NOT (CNOT) Gate. The Controlled NOT or CNOT gate is a two-qubit
gate that applies the X gate to the target qubit if the control qubit is |1⟩, and does nothing
if the control qubit is |0⟩. It leaves the control qubit unchanged. In the case where the target
qubit is in a superposition, the result can be calculated using linearity or by using the below
matrix. The matrix representation of the CNOT gate is:

CNOT =
∧

1X =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

8.4.2. Controlled Gates. In addition to the CNOT gate, there are controlled versions of other
single-qubit gates. These gates apply the single-qubit gate to the target qubit only when
the control qubit is |1⟩. For instance, the controlled-U gate (where U represents any single-
qubit gate) applies the gate U to the target qubit when the control qubit is |1⟩. The matrix
representation of a controlled gate is similar to the CNOT gate, with the gate U appearing
in the appropriate locations:

12 MANU ISAACS

∧
1

U =

1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11

8.4.3. Toffoli Gate. The Toffoli gate, also known as the Controlled-Controlled-NOT (CC-
NOT) gate, is a three-qubit gate that applies the Pauli-X gate to the target qubit if both
control qubits are |1⟩. If either of the control qubits is |0⟩, it leaves the target qubit un-
changed. The matrix representation of the Toffoli gate is:

Toffoli =
∧
2

X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

8.5. A universally approximating set of gates. The Solovey-Kiteav theorem says that
there exists a finite gate set such that it is possible to construct any gate to accuracy 2−d

in P (d) gates, where P is a polynomial [RP14]. One example of such a gate set is the set
{X,T}. This result is not central to Shor’s algorithm, but it is still important. We do not
prove it in this paper, but you can read the proof in [DN05].

8.6. The No-Cloning Principle.

Theorem 8.5. Given some state |a⟩ |0⟩, it is impossible to ”clone” the |a⟩ state, that is, it
is impossible to have a transform

U : |a⟩ |0⟩ → |a⟩ |a⟩
for all |a⟩.

Proof. For some qubits |a⟩ and |b⟩, let |c⟩ = 1√
2
(|a⟩+ |b⟩). By the linearity of U , we have

U(|c⟩ |0⟩) = U(
1√
2
(|a⟩+ |b⟩) |0⟩)

=
1√
2
(U(|a⟩ |0⟩) + U(|b⟩ |0⟩))

=
1√
2
(|a⟩ |a⟩+ |b⟩ |b⟩)

but we also have

U(|c⟩ |0⟩) = |c⟩ |c⟩

=
1√
2
(|a⟩+ |b⟩) 1√

2
(|a⟩+ |b⟩)

=
1

2
(|a⟩ |a⟩+ |a⟩ |b⟩+ |b⟩ |a⟩+ |b⟩ |b⟩)

SHOR’S ALGORITHM 13

but
1

2
(|a⟩ |a⟩+ |a⟩ |b⟩+ |b⟩ |a⟩+ |b⟩ |b⟩) ̸= 1√

2
(|a⟩ |a⟩+ |b⟩ |b⟩),

so it is impossible to ”clone” a qubit |a⟩. ■

9. Quantum Analog of Classical Gates

9.1. Reversibility. All quantum state transformations are reversible - if U is unitary then
so is U−1 by 8.4. However, the same is not true of classical gates. For example, the binary
AND gate, which returns 1 only if both inputs are 1 and zero otherwise is not a reversible
gate. In order to construct the quantum analog of classical gates, we aim to make reversible
classical gates.

9.2. A Naive Approach. In this section we describe a correct but naive approach to cre-
ating quantum gates to perform any classical computation, albeit not efficiently. It is well
known that the set {AND,NOT} of Boolean gates is functionally complete, meaning that
any Boolean computation can be done using just these two gates.

Let ¬x denote the classical not function. Notice that this function is already reversible,
and in fact we have already described its quantum parallel, the Pauli Transformation X.

Let x ∧ y denote the Boolean AND operator. Consider what happens when we plug in
the qubits |x⟩, |y⟩ , |0⟩ into the (reversible) Toffoli gate. We have

T |x, y, 0⟩ = |x, y, x ∧ y⟩

In this way, by simply ignoring the first two kets of the result and only using the third, along
with the X gate, we can compute anything a classical computer can.

9.3. A Summary of a More Efficient Approach. The major problem with the above
naive approach is that it uses far too much space - every time something we perform the
AND operation, we waste two qubits. The key is that we can undo operations after they
have served their purpose, and then use them again. If we do this in the right way, then it
possible to construct quantum circuit with similar efficiency as their classical counterpart.

Theorem 9.1. Specifically, if any classical circuit uses t gates and s bits, it has a quantum
(reversible) counterpart using only O(t1+ϵ) gates and O(s log t) qubits. We do not prove this
result here, but a proof is given in [RP14].

10. The Fourier Transform in Quantum Computation

10.1. Discrete Fourier Transform.

Definition 10.1. The Discrete Fourier Transform (DFT), maps a(x) to A(x), where a :
[0, 1, . . . N − 1] → C and A : [0, 1, . . . N − 1] → C are discrete, complex valued functions. It
is given by

A(x) =
1√
N

N−1∑
k=0

a(k) exp

(
2πi

kx

N

)

14 MANU ISAACS

Consider the Discrete Fourier Transform of a which has a frequency dividing N . Say

(10.1) a(x) = exp
(
−2πi

ux

N

)
,

where 0 ≤ u < N . Then, we have

A(x) =
1√
N

N−1∑
k=0

a(k) exp

(
2πi

kx

N

)

=
1√
N

N−1∑
k=0

exp

(
−2πi

uk

N

)
exp

(
2πi

kx

N

)

=
1√
N

N−1∑
k=0

exp

(
2πi

k(u− x)

N

)

We can see that

1√
N

N−1∑
k=0

exp
(
2πik

r

N

)
= 0

if r ̸≡ 0 (mod N) by the roots of unity. However, it is clear that if r ≡ 0 (mod N), we have
that each term in the sum is simply 1 and we get

1√
N

N−1∑
k=0

exp
(
2πik

r

N

)
=

1√
N
N =

√
N

So, for 0 ≤ x < N , the only x such that A(x) ̸= 0 is x = u. That is,

A(x) =

{
0 if x ̸= u√
N if x = u.

Any complex-valued function with period r and frequency N/r can be approximated using
its Fourier series as the sum of exponential functions whose frequencies are multiples of u.
By the linearity of the DFT, we can think of the computation a linear combination of Fourier
transforms of functions of the form of 10.1. If N divides r then as we saw, the only nonzero
A(x) will be multiples of u = N/r. According to [Sho97], if N does not divide r, we get
only an approximation of this behavior - the highest values of A(x) are when x is close to a
multiple of u = N/r. The proof of this is somewhat involved, so we do not prove it here.

10.2. The Quantum Fourier Transform. The quantum Fourier transform (QFT) is very
similar to the DFT. It is defined as

Uf :
∑
x

a(x) |x⟩ →
∑
x

A(x) |x⟩ ,

where A(x) is defined from the DFT.

Lemma 10.2. We claim that the matrix Uf defined above is unitary.

10.3. The Quantum Fast Fourier Transform. It is possible to construct Uf in only
O(n2) gates. We don’t go into the details here, see [RP14].

SHOR’S ALGORITHM 15

11. Shor’s Algorithm

Shor’s algorithm is a quantum algorithm which factors numbers very efficiently. To be
precise, Shor’s algorithm runs in O(n2 log n log log n) time, where n is the number of bits
of the number that we want to factor. All current classical factoring algorithms are super-
polynomial in n. This fact is the basis for most cryptographic algorithms today - this is
discussed further in the conclusion. This section of the paper assumes a basic understanding
of number theory.

11.1. From Factoring to Period-Finding. Consider the function f(k) ≡ ak (mod M).
M is the number we want to factor. Let the period of f be r. Then, f(r) = f(0), or ar ≡ 1
(mod M). If r is even, we can write

(ar/2 − 1)(ar/2 + 1) ≡ 0 (mod M).

Then, notice that if ar/2+1 ̸≡ 0 (mod M), computing gcd(ar/2+1,M) will give a nontrivial
factor ofM . Thus, we have converted the problem of factoringM into the problem of finding
the period of f . And, we already have a tool which can help us find the period of a function
- the Quantum Fourier Transform. The general outline of the algorithm so far looks like
this:

(1) Randomly choose a and determine the period of f(k) = ak (mod M).
(2) if r is even, use Euclid’s GCD algorithm to efficiently find gcd(ar/2 + 1,M).
(3) Repeat if nontrivial factor not found.

11.2. The Quantum Part of the Algorithm. The only part of the problem where we
really need quantum computing is the first step. Consider the qubit |00 . . . 0⟩ |00 . . . 0⟩, where
each ket represents a state of n qubits. Then, apply the function H ⊗H ⊗ · · · ⊗H (with n
H’s) to each of the kets. Recalling that H |0⟩ = |+⟩ and the expansion of |+⟩ |+⟩ . . . |+⟩, we
see that this state can also be written as

1√
N

N−1∑
x=0

|x⟩ .

Then we can add another n qubits each in the |0⟩ state:

1√
N

N−1∑
x=0

|x⟩ |0⟩ .

where N = 2n. Now we can apply F : |x⟩ |0⟩ → |x⟩ |f(x)⟩ to the second ket, so now we have

1√
N

N−1∑
x=0

|x⟩ |f(x)⟩

Now, one way to continue is to measure the second qubit. We will get some random value u
for f(x). Then, the state becomes

C
N−1∑
x=0

g(x) |x⟩ |u⟩

16 MANU ISAACS

where C is the appropriate scale factor and

g(x) =

{
1 if f(x) = u

0 otherwise.

Notice that the period of g is the same as the period of f . From here on out we can ignore the
second ket |u⟩ because it is no longer entangled with the first one. If we could just measure
g twice and get consecutive values of x so that g(x) = 1. But, by the no-cloning theorem
(8.5), we can’t measure g twice. This is where we apply the quantum Fourier transform:

UF (C
N−1∑
x=0

g(x) |x⟩) = C ′
N−1∑
c=0

G(c) |c⟩ ,

where G(c) =
∑

x g(x) exp(
2πicx
N

). Recall that when the period r if g is a power of 2, then
G(c) ̸= 0 only when c is a multiple of N/r. Thus, when we measure, we will obtain the state
|v⟩ corresponding to a value v which is close to a multiple of N/r.

11.3. Finding the factor of M. Let’s begin this section with a simple but useful lemma:

Lemma 11.1. The absolute difference between two distinct fractions with denominators less
than n is greater than 1

n2 .

Proof. Let the fractions be a
b
and c

d
. Then we have∣∣∣a

b
− c

d

∣∣∣ = ∣∣∣∣ad− bc

bd

∣∣∣∣ ≥ ∣∣∣∣ 1bd
∣∣∣∣ > 1

n2

where the last inequality is strict because clearly the lemma holds if b = d. ■

Now we can obtain r with high probability using v. [Sho97] shows that with high proba-
bility ∣∣∣∣v − j

N

r

∣∣∣∣ < 1

2
.

Recalling that M2 ≤ N , we have ∣∣∣∣ vN − j

r

∣∣∣∣ < 1

2N
≤ 1

2M2
.

Then, we can evaluate v
N
and use the continued fractions algorithm to find the best fractional

approximation b
c
for v

N
with b, c < N . By 11.1, any two fractions of the form b

c
form differ

by more than 1
N2 >

1
2M2 , so the value of b/c that we find must be equal to j/r. Thus, have

found r - it is just c.
Now that we have r, as described earlier, we can factor M by computing gcd(ar/2 +1,M)

and checking if this number is a nontrivial divisor of M .

11.4. Complexity of Shor’s Algorithm. The complexity one iteration of Shor’s Algo-
rithm is O(n2 log n log log n). No classical factoring algorithm even comes close to this - the
current best classical factoring algorithm, the general number field sieve, runs in

O
(
exp

(
((64/9)

1
3 + o(1))(lnn)

1
3 (ln lnn)

2
3

))
,

which is superpolynomial. You might be wondering what exactly we mean when we say
”with high probability”. Shor showed that if we run Shor’s algorithm only log log r times,
which in practice is a very small number, we are expected to get a factor of M .

SHOR’S ALGORITHM 17

12. Conclusion

12.1. A Related Problem: The Discrete Logarithm Problem. The discrete logarithm
problem (DLP) is the problem of finding x given

ax ≡ b (mod m).

This problem, similarly to factoring, is also computationally difficult on a classical computer.
There are modifications to Shor’s algorithm which can solve the DLP much faster than any
classical algorithm.

12.2. A Generalization of Shor’s Algorithm. The following problem is a generalization
of the problem of factoring, period finding, and the discrete logarithm:

Definition 12.1. Finite Abelian Hidden Subgroup Problem: Let G be a finite Abelian group
with cyclic decomposition G = Zn0 × · · · × ZnL

. Suppose G contains a subgroup H that is
implicitly defined by a function f on G which is constant and distinct on every coset of H.
Find a set of generators for H

Example. Let’s see how we can think of the problem of period-finding as a hidden subgroup
problem. Let f be a function on ZN with period r. The subgroup H ∈ ZN generated by r is
the hidden subgroup. Then, once a generator for H is given, r can be found by computing
gcd(r,N).

In addition to period finding, the discrete logarithm problem can also be viewed as a
finite Abelian subgroup problem. The problem which Simon’s algorithm (another quantum
algorithm) solves can also be thought of as a finite Abelian subgroup problem. As you might
have guessed, we have solved this problem on a quantum computer.

However, no one knows how to solve the corresponding problem for non-abelian groups,
although some progress has been made.

12.3. Cryptographic implications of Shor’s Algorithm. There are many cryptographic
algorithms which rely on the difficulty of factoring or of the similar Discrete Logarithm
Problem. A few of them are

(1) RSA
(2) Diffie-Hellman Key Exchange
(3) Digital Signature Algorithm

Quantum computers right now aren’t extremely powerful - the largest number they can factor
using Shor’s Algorithm is only 21. However, quantum computers are improving rapidly,
and even now, people are recording encrypted data with the goal of decrpyting them later
using a quantum computer. For those reasons, there is an emerging field of post-quantum
cryptography, which is the field of creating cryptographic algorithms which are resistant
to quantum computers. If you’d like to learn more about Shor’s algorithm or quantum
computing in general, feel free to check out some of the resources in the bibliography.

References

[DN05] Christopher M. Dawson and Michael A. Nielsen. The solovay-kitaev algorithm, 2005.
[RP14] Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A gentle introduction. The MIT Press,

2014.
[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM Journal on Computing, 26(5):1484–1509, oct 1997.

18 MANU ISAACS

Email address: manu.isaacs@gmail.com

	1. Abstract
	2. Introduction
	3. Acknowledgements
	4. What is a qubit?
	4.1. Linear Algebra Review
	4.2. Definition of a Qubit
	4.3. Braket Notation For Qubits
	4.4. Relative and global phases
	4.5. Commonly used qubits

	5. Measurement of a single qubit
	6. Multiple qubit systems
	6.1. Linear Algebra Review
	6.2. The Vector Space of a Multi-Qubit System
	6.3. Entangled and Unentangled States

	7. Measurement of multiple qubits
	7.1. Definition of Multi-Qubit Measurement

	8. Transformations
	8.1. Linear Review
	8.2. Unitary Transformations
	8.3. Basic Single-Qubit Gates
	8.4. Basic Multi-Qubit Gates
	8.5. A universally approximating set of gates
	8.6. The No-Cloning Principle

	9. Quantum Analog of Classical Gates
	9.1. Reversibility
	9.2. A Naive Approach
	9.3. A Summary of a More Efficient Approach

	10. The Fourier Transform in Quantum Computation
	10.1. Discrete Fourier Transform
	10.2. The Quantum Fourier Transform
	10.3. The Quantum Fast Fourier Transform

	11. Shor's Algorithm
	11.1. From Factoring to Period-Finding
	11.2. The Quantum Part of the Algorithm
	11.3. Finding the factor of M
	11.4. Complexity of Shor's Algorithm

	12. Conclusion
	12.1. A Related Problem: The Discrete Logarithm Problem
	12.2. A Generalization of Shor's Algorithm
	12.3. Cryptographic implications of Shor's Algorithm

	References

