On Polygons Inscribed within Jordan Curves

K. H. Roh

Euler Circle IRPW, July 2023

Roh, Kun-Hyung Inscribed Polygons July 2023



Figure: What is Jordan Curve?

Definition of a Jordan Curve in R²

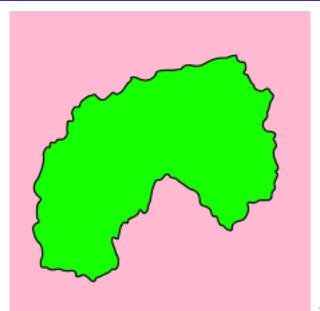
Simple closed curve in a plane. When J is parameterized,

$$\phi(t)$$

takes the form where $\phi:[0,1]$ in R^2 such that $\phi[0]=\phi[1]$ and ϕ is injective on [0,1).

3/8

Roh, Kun-Hyung Inscribed Polygons July 2023



Remark

Not surprisingly, a Jordan curve (J) divides a planar surface into two parts: the interior and the exterior.

The Jordan Curve Theorem

The whole set J and R^2 consist of two components: the bounded and unbounded.

5/8

Inscribing Rectangles in J

We will prove the following theorem:

Theorem (Vaughan 1977)

For some Jordan curve γ , \exists some set of 4 points as vertices of a rectangle.

using a Lemma derived from topological arguments that the surface S defined as space of pair of points on $J \times J$ is homeomorphic to Mobius strip. This equivalence can be done by affine transformations.

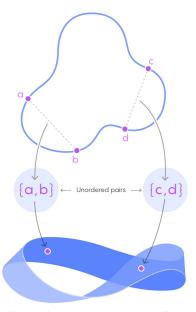
Why this homeomorphism?

Remark

To satisfy a rectangle, two distinct pair of points on J must be:

- pairwise equidistant
- share the same midpoint

Making a Möbius Strip



When plotted onto 2D space, these pairs form a Möbius strip.

Inscribing Rectangles in J

Proof. Define a new function $f: S \to R^3$ containing the image of all points above midpoint of the pairs with the z-coordinate being the distance between.

Under the assumption that f is an injection, f(S) would be a Mobius strip in $x \ge 0$.

Cutting through... After gluing, $f(S) \cup In(J)$. Compactness of P^2 and Hausdorffness of R^3 allow γ to be topological projection P^2 embedded in R^3 . But this is **contradiction** to a theorem of algebraic topology that **no** real projective plane can be embedded into R^3 .

Roh, Kun-Hyung Inscribed Polygons July 2023 7/8

Inscribing Rectangles in J

What just happened?

- A \simeq B means A and B are homeomorphic. If A \simeq B and B \subset C, A **embeds** into C.
- Def. Hausdorff topol. space: every two distinct points can be separated by disjoint open sets.
- Def. Hausdorff space is compact if every open cover contains finite subcover.

8/8