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Abstract

The question of inscribed polygons in Jordan curves has been historically

attempted and certain cases were rigorously proven. I prove main theorems per-

taining Jordan Curves with fundamentals of topology. Then, I discuss proofs

of inscribed polygons, such as triangles, rectangles, and squares, with further

generalized theorems describing thereof.

1 Introduction

1.1 History

Curves were extensively researched within the field of mathematics for centuries. During

the 1870s, due to vast developments in mathematics, new definitions and revisions made

to Euclidean geometry, in which the definitions of curves emerged. While initially

mathematicians have attempted to define curves as algebraic solutions, this heavily

restricted the types of curves that could be explored. Thus, mathematician Jordan

provided a new definition of ”free curves”:

1.2 Definitions and Preliminaries

Definition 1.1 (Jordan curve). A Jordan curve, also denoted as J, is a simple closed

curve in the plane. (In a more intuitive explanation, we can say that it is any open
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Figure 1: Explanation of Jordan curve Theorem

curve drawn such that its starting point and endpoint meet and the line never intersect

itself.)

Definition 1.2 (Parameterized Jordan curve in R2). When J is parameterized,

φ(t) takes the form where φ : [0, 1] in R2 such that φ[0] = φ[1] and φ is injective on [0,

1). This is due to homeomorphism between J and S1.

[0, 1]

< γ > [0, 1]∼ S1

αγ

' '

Theorem 1.1 (Jordan Curve Theorem). The set of Jordan curve J - R2 con-

sists of two distinct parts of interior region and exterior region.

This in fact allows to consider special examples of Jordan curves, such as closed fractal

geometric objects or closed forms of the Weirstrauss function, in which the curve is

everywhere continuous but nowhere differentiable.
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Definition 1.3. A polygon is said to inscribe J if and only if all of its vertices are on

J .

2 Inscribed Triangles

2.1 Arbitrary triangles in R2 (Meyerson)

Theorem 2.1 (Meyerson’s Theorem). For arbitrary triangle ∆ABC, vertices of

similar triangles to ∆ABC lie on arbitrary J . [1]

Proof. Let ∆XY Z with X on J be similar to ∆ABC. Let P and Q be maximally

distant points on J . We restrict ∆ABC where ∠C is the maximal angle. WLOG, we

may assume that XY is the longest side.

Then, dilate ∆XY Z such that either Y or Z first meets J . In case of Fig 2., move

Z such that Z = Q. And during the process of moving X to satisfy X = P , because

PQ is maximal distance within J and XY is the longest side, we see that Y must be on

or outside of J . In the case where Y is outside of J , by IVT if interpreted analytically,

Y is guaranteed to cross J at least once during the process of moving X towards P .

Thus Theorem 2.1 follows.
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Figure 2: Explanation of Theorem 2.1

2.2 Triangles in Rn (A. Gupta and Simon Rubinstein-Salzedo)

I here summarize the results by Gupta and Rubinstein-Salzedo [2], 2021, on inscribed

triangles for Jordan curves in higher dimensions of Rn. I will use the shortened version

of the proof provided by Apro [3], assuming smoothness of J .

Theorem 2.2. Let J be some Jordan curve defined in Rn. Then there exists all

vertices of a triangle ∼ ∆ABC on J .

Proof. Define γ : [0, 1] → Rn be parameterized Jordan curve J . Define functions

F x
δ (y, z) : (x, x+δ)× (x, x+δ) and Gx

δ (y, z) : (x−δ, x)× (x, x+δ) to be angles between

γ(x)γ(y) and γ(y)γ(z), respectively. ∆ABC ∼ ∆XY Z, where X, Y, Z are arbitrary,

and shared angle measures of θ1, θ2, θ3 in increasing order.

Theorem 2.3. lim sup
δ→0+

F x
δ < θi < lim inf

δ→0+
Gx
δ (i = 1, 2, 3 and 0 < x < 1), then δ(x)

is the point where lies the vertex of some triangle ∆XY Z with angle θi at that point.

Lemma 2.1. Assuming that there is a point γ(s) for which no such t exists, then for

any t1, t2 ∈ [0, 1]− s ∃ It1 (γ) ' It2 (γ) in Rn − S.
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This is due to the homotopic property of Ht1,t2(·, T ) = I(1−T )t2+(T )t1(γ).

Assume that some s ∈ [0, 1) satisfies Lemma 5.4. If we choose t1 such that

‖γ(t1) - γ(s)‖ is maximal, It2(γ) is homotopic to path at γ(s) by straight line homotopy.

For some δ > 0 such that |Rn−1 ∩ Is+δ(γ)| ≥ 2, Is+δ 6' It1(γ).

This contradicts Lemma 2.1 and completes the proof.

3 Inscribed Quadrilaterals

3.1 Rectangles (Vaughan 1977)

Theorem 3.1 (Vaughan’s Theorem). For some Jordan curve γ, ∃ some set of 4

points as vertices of a rectangle.

To prove this theorem, we use the following fact on the existence of rectangles. To

satisfy a rectangle, two distinct pair of points on J must be:

• pairwise equidistant

• share the same midpoint

I omit the topological arguments that lead to the following crucial lemma:

Lemma 3.2. The surface S defined as space of pair of points on J×J is homeomorphic

to Mobius strip. This equivalence can be done by affine transformations.

Proof. Define a new function f : S → R3 containing the image of all points above

midpoint of the pairs with the z-coordinate being the distance between. Under the

assumption that f is an injection, f(S) would be a Mobius strip in x ≥ 0. After gluing,

f(S) ∪ In(J). Compactness of P2 and Hausdorffness of R3 allow γ to be topological

projection P 2 embedded in R3. But this is contradiction to a theorem of algebraic

topology that no real projective plane can be embedded into R3. Thus there

exists two distinct pair of points mapping to the same point on J .
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Vaughan’s original argument. Vaughan relies on the fact that there is no continuous

embedding of the Klein bottle into R3.

Theorem 3.2. There is no continuous embedding of the Klein bottle into R3.

Proof. The brief sketch of the proof is as follows. If there exists such an embedding,

there also exists an embedding into the 3-Sphere, or S3. (K ⊂ S3)

However, Alexander duality states that

Z/2 ' H2(K) ' H̃0(S
3 −K) ' Zr

for some r, which leads to a contradiction.

Considering the images made by the map of ordered pairs to encoded midpoint of the

segment and lengths, Vaughan concluded that the union consists of two Mobius bands

and thus a Klein bottle. And because the Klein bottle K is embedded, it contradicts

the nonexistence of an embedded Klein bottle.

3.2 Rhombi (M. J. Nielsen)

Nielsen [4] uses a powerful theorem known as the mountain climbing problem proven

by Homma.

For proving the case of rhombi, let us consider piecewise linear version of the problem.

Theorem 3.3 (Polygonal mountain climbing problem). Let f, g : [0, 1] → [0, 1]

be piecewise linear continuous functions with f(0) = g(0) = 0 and f(1) = g(1) = 1.

Then there exist piecewise linear continuous functions r, s : [0, 1] → [0, 1] with r(0) =

s(0) = 0 and r(1) = s(1) = 1 such that f ◦ r = g ◦ s.

Theorem 3.4 For polygonal jordan curve J and any line l in the plane, J inscribes

a rhombus with two sides parallel to l.
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Proof. Assume, WLOG, that the line segment l is parallel to the x-axis, and let zmin

and zmax be two points on J with y-coordinates 0 and 1, respectively. These points

divide J into two arcs, denoted as A1 and A2.

The theorem can be restated as follows: There exist piecewise-linear continuous

functions x1, x2, and y : [0, 1] → R such that:

(xi(0), y(0)) = zmin, (xi(1), y(1)) = zmax, and (xi(t), y(t)) ∈ A1 for all t ∈ [1, 2] and

i ∈ 1, 2.

Let γi(t) = (ui(t), vi(t)) be parametrizations of arcs Ai from zmin to zmax for i =

1, 2. Since v1 and v2 are piecewise linear and continuous, by theorem 6.4, there exist

piecewise-linear continuous functions r and s: [0, 1] → R with r(0) = s(0) = 0 and r(1)

= s(1) = 1, such that v1 ◦ r = v2 ◦ s. Thus, we can define the following functions:

x1(t) = u1(r(t)), x2(t) = u2(s(t)), y(t) = v1(r(t)).

These functions satisfy the conditions of the theorem.

3.3 Square (open problem)

The yet unsolved square inscribing problem was first conjectured by Toeplitz [5]:

Conjecture 3.1. All planar J contains vertices of a square.

While the variations of this conjecture has been proven for special cases, the general-

ization is unsolved. I aim to compile the progress and results of the field.

Theorem 3.5. (The case of smooth curves, Schnirelmann). When J is a

C2-continuous closed curve, J contains the vertices of a square.

Theorem 3.6. (Strenghtened theorem, W. Stromquist). Let J be a Jordan

curve on which every point p has a neighborhood Ap and a direction dp such that no

chord of J is contained in Ap and parallel to dp. Then J contains the vertices of a square.

Stromquist’s theorem can cover C1 curves, convex curves, and polygons, which sat-
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isfy the conditions.

Theorem 3.7. (The case of convex curves, A. Emch). Let J be a convex

Jordan curve in the plane. Then J contains the vertices of a square.

4 Applications

While topology itself already has great amount of real-world applications, Jordan curves

were specifically used to analyze robotic tragectories [5], digital image processing [6],

and GPS Navigation systems.
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