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1. Abstract

This paper is an exploration of hyperbolic space, specifically the model of hyperbolic space
known as the Upper Half Plane, it’s associated group of isometries known as the Möbius
group, and finally the Gauss-Bonnet theorem, which relates the area and internal angles of
triangles in hyperbolic space.

2. Introduction

For several Millennia, Euclid’s postulates, outlined in the book Euclid’s elements was
considered to be the foundation of geometry. These axioms are, in order

(1) Between any two points, a line can be drawn
(2) Any finite line can be extended into an infinite one
(3) For any point and distance, a circle can be constructed with that point as it’s center

and radius equal to the distance
(4) All right angles are congruent
(5) Given two lines a and b in the plane and a third line l which intersects both lines, if

the two interior angles on one side of l sum to less than two right angles, then if a
and b are extended indefinitely, they will meet on the side where the sum of angles
is less than two right angles.

One of these 5 postulates is not like the other. While the first 4 postulates can all be
stated simply, the 5th postulate is more complex. Many mathematicians have tried, and
failed to derive the 5th postulate from the other 4. As it turns out, this is because it is not
possible. However, these efforts eventually led to the development of hyperbolic geometry, a
type of geometry which obeys the first four postulates, but not the 5th.

The study of hyperbolic geometry was first pioneered by János Bolyai , Carl Friedrich
Gauss, and Nikolai Lobachevsky. Although at first many suspected that hyperbolic geom-
etry was impossible and inconsistent, it was eventually proven that any inconsistency in
hyperbolic geometry would lead to an inconsistency in euclidean geometry. Thus, as most
people believe euclidean geometry to be self-consistent, it follows that hyperbolic geometry
is as well.

The main purpose of this paper will be to build up to the Gauss-Bonnet theorem. This
theorem states that for any triangle in hyperbolic space, it’s area is equal to π minus the
sum of the triangle’s internal angles. This is in stark contrast to euclidean geometry, where
the sum of the interior angles of a triangle is always /pi.

To build up to this theorem, we will start by defining the model of hyperbolic space known
as the Upper Half Plane, as well as defining the metric on this space. In the next section,
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we will explore Möbius Transforms due to their role as the isometry group of the Upper Half
Plane, and outline some useful properties which these transformations have. After that, we
will describe the geodesics of the Upper Half Plane, as well as angle and area in hyperbolic
space, which will be necessary to even state the Gauss-Bonnet theorem. Finally, in the last
section, we will prove the Gauss-Bonnet theorem.
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4. Body

5. Distance in Hyperbolic Space

The model of hyperbolic space which will be used in this paper is the Upper Half Plane
model.

Definition 1. The Upper Half Plane is the set H := {z ∈ C|ℑ(z) > 0}, where ℑ(z) is the
imaginary component of z.

What distinguishes the Upper Half Plane model from regular Euclidean space is a different
notion of distance.

Definition 2. A path in the Upper Half Plane is the image of a continuous function σ : [0, 1] →
H. Such a path is said to be piece-wise continuously differentiable if all but finitely many
t ∈ [0, 1], σ(t) is differentiable the function σ′(t) is continuous.

Definition 3. The length of such a piece-wise continuously differentiable path in the Upper
Half Plane σ(t) is defined as follows: If σ(t) is differentiable at all points except tm ∈ [0, 1]
for 1 ≤ m ≤ n for some n ∈ N, then, the length of said path is

LengthH(σ(t)) :=
n∑

i=0

∫ ti+1

ti

1

ℑ(σ(t))
|σ′(t)|dt.

Intuitively, the length of a path in H is the computed by integrating 1
ℑ(σt)

|σ′(t)| over each
stretch of the path where the path is differentiable.

This is in contrast to Euclidean space, where the length of a path is computed by inte-
grating |σ′(t)| over the path

From the definition of path length, we can define a metric on H. A metric is just a notion
of distance, which is required to satisfy certain properties.

Definition 4. A metric on a set X is a function d : X×X → R such that for any x, y, z ∈ X:

• d(x, y) > 0 when x ̸= y and d(x, x) = 0
• d(x, y) = d(y, x)
• d(x, y) ≤ d(x, z) + d(y, z)

A set together with a metric is called a metric space. For example, one can verify that R
together with the function d(x, y) = |x− y| together form a metric space.
We can define metric on H via the notion of path length.
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Definition 5. For all x, y ∈ H
dH(x, y) := inf{LengthH(σ)|σis a piece wise continuously differentiable path from x to y}.

The infimum of a set A, denote inf(A), is the largest real number r ∈ R such that for all
a ∈ A, r ≤ a. In plain language, it is the largest number which is still smaller than or equal
to all numbers in the set.

One can verify that this satisfies all 3 axioms, and is thus a metric. The explicit form of
the metric is

dH(z, w) = cosh−1(1 +
|z − w|2

2ℑ(z)ℑ(w)
).

This will not be proved now, as it requires first proving some additional properties of H
Regarding metric spaces, there are 2 other terms which we must define

Definition 6. A isometry of a metric space X is a bijection f : X → X such that for all
x, y ∈ X, d(x, y) = d(f(x), f(y))

In other words, an isometry of a metric space is just a transformation which preserves
distances between points in a metric space. For example, a translation is an isometry of the
metric space R equipped with the metric d(x, y) = |x− y| because it preserves the distance
between points.

Definition 7. A geodesic between two points x, y in a metric space X is a piecewise differ-
entiable path γ from x to y such that for any other path σ between x and y, Length(γ) ≤
Length(σ)

Note that in general, between two points in a metric space, there may exist no geodesics
or many geodesics. However, in H, we will prove that between any two points, there exists
exactly one geodesic.

6. Möbius Transforms and Isometries of H

Definition 8. A Möbius transform is a function

f : C ∪ {∞} → C ∪ {∞}
z → az+b

cz+d

,

where a, b, c, d ∈ R and ad− bc > 0. The set of all Möbius transforms is denoted Möb(H).

Some examples of Möbius transforms include f(z) = z, f(z) = −1
z
and f(z) = z + 1

The set C ∪ {∞} is the complex plane equipped with a point at infinity in order to make
the Möbius transform a function. We say that for some Möbius transform γ(z) = az+b

cz+d
,

γ(∞) =
a+ b

∞
c+ d

∞
=

a+ 0

c+ 0
=

a

c
,

and also that

γ(−d

c
) =

−ad
c
+ b

c−d
c
+ d

=
b− ad

c

0
= ∞.

Depending on the specific situation we shall either consider the effect of Möbius transforms
on C ∪ {∞} or on H.
Note that it is very natural to drop the restriction that a, b, c, d are real and allow a, b, c, d

to be any complex number, as well as loosen the restriction that ad− bc > 0 to ad− bc ̸= 0.



4 JUNLIN JULIAN JIANG

However, when imposing the above restrictions, this ensures that Möbius transforms are
bijections from the Upper Half Plane to itself, which is a fact we shall soon prove.

Möbius transforms have certain useful properties which make them nice. For example, all
Möbius transforms have inverses which are also Möbius transforms.

Theorem 6.1. All Möbius transforms have inverses which are also Möbius transforms.

Proof. Let γ ∈ Möb(H). Then, γ(z) = az+b
cz+d

where ad − bc > 0 and a, b, c, d ∈ R. Let

ϕ(z) = dz−b
−cz+a

. Firstly, ϕ ∈ Möb(H) because da− (−b)(−c) = ad− bc > 0. Next,

ϕ(γ(z)) =
daz+b
cz+d

− b

−caz+b
cz+d

+ a
=

daz + bd− bcz − bd

−caz − bc+ acz + da
=

adz − bcz

ad− bc
= z.

Finally,

γ(ϕ(z)) =
a dz−b
−cz+a

+ b

c dz−b
−cz+a

+ d
=

adz − ab− bcz + ab

cdz − bc− cdz + ad
=

adz − bcz

ad− bc
= z.

Because γ(ϕ(z)) = ϕ(γ(z)) = z, that implies γ−1(z) = ϕ(z) ∈ Möb(H). Thus, all Möbius
transforms have inverses which are also mobius transforms

□

In addition to the existence of inverses which are also Möbius transforms, we can also
show that the composition of two Möbius transforms is still a Möbius transforms.

Theorem 6.2. The composition of two Möbius transforms is still a Möbius transform.

Proof. Let γ1, γ2 ∈ Möb(H). Then, γ1(z) =
az+b
cz+d

and γ2(z) =
ez+f
gz+h

for some a, b, c, d, e, f, g, h ∈
R and ad− bc > 0 and eh− fg > 0. Then,

γ1(γ2(z)) =
a ez+f
gz+h

+ b

c ez+f
gz+h

+ d

=
aez + af + bgz + bh

cez + cf + gdz + dh

=
(ae+ bg)z + (af + bh)

(ce+ gd)z + (cf + dh)

(1)

Since (ae+ bg), (af + bh), (ce+ gd), (cf + dh) ∈ R, all that remains is to show that

(ae+ bg)(cf + dh)− (af + bh)(ce+ gd) > 0.

This takes a little bit of computation.

(ae+ bg)(cf + dh)− (af + bh)(ce+ gd) = aecf + bgcf + aedh+ bgdh− afce− bhce− bhgd− afgd

= bgcf + aedh− bhce− afgd

= bc(gf − he) + ad(eh− fg)

= (ad− bc)(eh− fg)

(2)

And since ad− bc > 0 and eh−fg > 0, we see that (ad+ bg)(cf +dh)− (af + bh)(ce+gd) =
(ad− bc)(eh− fg) > 0. Thus, γ1(γ2(z)) is a Möbius transform □
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For those who know group theory, you can verify that Möb(H) is a group under composi-
tion of functions.

Möbius transforms are of relevance to hyperbolic geometry because Möb(H) is the set
of orientation preserving isometries of H. To show this, we must first show that a Möbius
transform is a bijection from H to H.

Lemma 6.3. Let γ(z) = az+b
cz+d

∈ Möb(H). Then, γ is a bijection from H to H.

Proof. Firstly, let z ∈ H. If z ∈ H, ℑ(z) > 0. Now, consider the value of ℑ(γ(z)).

ℑ(γ(z)) = γ(z)− γ(z)

2i

=
az + b

2i(cz + d)
− az + b

2i(cz + d)

=
(az + b)(cz + d)− (cz + d)(az + b)

2i(cz + d)(cz + d)

=
aczz + bcz + adz + bd− aczz − adz − bcz − bc

2i|cz + d|2

=
ad(z − z)− bc(z − z)

2i|cz + d|2

=
ad− bc

|cz + d|2
ℑ(z)

(3)

Because γ ∈ Möb(H), ad − bc > 0. This implies that ℑ(γ(z)) = ad−bc
|cz+d|2ℑ(z) > 0. Thus,

γ(z) ∈ H. This implies that
γ : H → H

z → γ(z)
.

Also, by Theorem 6.1,
γ−1 : H → H

z → γ(z)
.

This implies that γ is a bijection from H to H for all γ ∈ Möb(H)
□

Note that although Möbius transforms are bijections from H to H.

Theorem 6.4. Möbius transforms are isometries of H.

Proof. Let x, y ∈ H and γ(z) = az+b
cz+d

∈ Möb(H) and assume that dH(x, y) ̸= dH(γ(x), γ(y)).
Then, without loss of generality, assume that dH(x, y) < dH(γ(x), γ(y)).
Recall that from Definition 5,

dH(x, y) := inf{LengthH(σ)|σis a piece wise continuously differentiable path from x to y}.
From this definition we see that there must exist a piece wise differentiable path σ from x
to y such that dH(x, y) ≤ LengthH(σ) < dH(γ(x), γ(y)), because if no such path existed,
dH(γ(x), γ(y)) would be a number greater than dH(x, y) which is still a lower bound of
{LengthH(σ)|σis a piece wise continuously differentiable path from x to y}. Fix σ. Observe
that γ(σ) is a piece wise continuously differentiable path from γ(x) to γ(y).
Next, observe the following:
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LengthH(γ(σ(t)) =

∫ 1

0

1

ℑ(γ(σ(t))
|(γ ◦ σ)′(t)|dt

=

∫ 1

0

2i

γ(σ(t))− γ(σ(t))
|γ′(σ(t))σ′(t)|dt

=

∫ 1

0

2i
aσ(t)+b
cσ(t)+d

− aσ(t)+b

cσ(t)+d

|γ′(σ(t))||σ′(t)|dt

=

∫ 1

0

2i|cσ(t) + d|2

(aσ(t) + b)(cσ(t) + d)− (cσ(t) + d)(aσ(t) + b)
| ad− bc

(cσ(t) + d)2
||σ′(t)|dt

=

∫ 1

0

2i(ad− bc)

ac|σ(t)|2 + bcσ(t) + adσ(t) + bd− ac|σ(t)|2 − adσ(t)− bcσ(t)− bd
|σ′(t)|dt

=

∫ 1

0

2i(ad− bc)

ad(σ(t)− σ(t))− bc(σ(t)− σ(t))
|σ′(t)|dt

=

∫ 1

0

2i

σ(t)− σ′(t)
|σ′(t)|dt

=

∫ 1

0

1

ℑ(σ(t))
|σ′(t)|dt = LengthH(σ(t))

(4)

Thus, LengthH(γ(σ(t)) = LengthH(σ(t)). This implies that LengthH(γ(σ(t)) < dH(γ(x), γ(y)),
which is impossible considering the way dH(γ(x), γ(y)) is defined. Thus, by contradiction,
dH(x, y) = dH(γ(x), γ(y)).

□

An important corollary of this result is the fact that Möbius transforms preserve geodesics.

Corollary 6.4.1. If γ ∈ Möb(H) and σ is a geodesic from a to b, then γ(σ(t)) is a geodesic
from γ(a) to γ(b).

Proof. Assume γ(σ(t)) is not a geodesic from γ(a) to γ(b). Then, there exists a path from
γ(a) to γ(b), let us call it ϕ(t), which is shorter than γ(σ(t)). Since γ−1(t) is a Möbius
transform, and Möbius transforms preserve length, it follows that the length of γ−1(ϕ(t)) is
less than σ(t). however, since γ−1(phi(t)) is a path from a to b, this violates the assumption
that σ(t) is a geodesic. Thus, ϕ(t) cannot exist. □

The above theorem shows that Möbius transforms are isometries of H. However, distance
is not the only geometric structure which Möbius transforms preserve. In fact, Möbius
transforms always send circles with real center and vertical lines to circles with real center
and vertical lines.

Theorem 6.5. All circles with real center and vertical lines can be represented in the form

αzz + βz + βz + γ = 0

for α, β, γ ∈ R.
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Proof. The equation of a vertical line in the complex plane is ℜ(z) = k, where ℜ(z) is the
real component of z and k ∈ R. ℜ(z) = 1

2
(z + z), which implies that z + z − 2k. Letting

α = 0, β = 1, and γ = −2k, we see that the equation for a vertical line can be written in
the form αzz + βz + βz + γ = 0

Next, consider the equation of a circle in the complex plane with real center. Such a circle
has the form |z − a|2 = r2, where a, r ∈ R. Observe that

|z − a|2 = (z − a)(z − a) = (z − a)(z − a) = zz − az − az + a2 = r2.

And thus, letting α = 1, β = −a, and γ = a2 − r2, we see that the equation for a circle with
a real center can be written in the form

αzz + βz + βz + γ = 0.

□

We will denote the set of vertical lines and circles with real center with H.
Using this equation, we will show that under a Möbius transforms map elements of H to

elements of H

Lemma 6.6. Möbius transforms map elements of H to elements of H.

Proof. Let K ∈ H and ϕ ∈ Möb(H). Then, by Theorem 6.5, K is the set of points in
C ∪ {∞} such that they satisfy the equation

αzz + βz + βz + γ

where α, β, γ ∈ R. Thus, the image of K is the set of all points z ∈ C ∪ {∞} such that

αϕ−1(z)ϕ−1(z) + βϕ−1(z) + βϕ−1(z) + γ = 0.

From Theorem 6.1 we see that ϕ−1(z) = dz−b
−cz+a

Thus, the equation becomes

0 = α
dz − b

−cz + a
(
dz − b

−cz + a
) + β

dz − b

−cz + a
+ β(

dz − b

−cz + a
) + γ

= α
(dz − b)(dz − b)

(cz − a)(cz − a)
+ β(

(dz − b)(−cz + a) + (dz − b)(−cz + a)

| − cz + a|2
) + γ

(5)

Which simplifies to the equation

(αd2 − 2βcd+ γc2)zz + (−αbd+ βad+ βbc− γac)(z + z) + (αb2 − 2βab+ γa2) = 0.

Letting α′ = αd2 − 2βcd + γc2), β′ = −αbd + βad + βbc − γac and γ′ = αb2 − 2βab + γa2

we see that the equation takes the form α′zz + β′z + β′z + γ′ with α′, β′, γ′ ∈ R. Thus, the
image of K under the Möbius transform is also in H □

The above theorem shows that the image of a vertical line or real circle under a Möbius
transforms is still a vertical line or a real circle. This theorem will prove useful for proving
an additional very useful theorem

Theorem 6.7. Let A,B ∈ H. Then, there exists a Möbius transform such which maps A
to B.
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Proof. Note that by Theorem 6.2 the composition of two Möbius transforms is still a Möbius
transform, so if we show that a series of Möbius transforms can turn any vertical line or
circle with real center into another vertical line or circle with real center, that implies there
exists a Möbius transform which does the same thing as the series of Möbius transforms.

We shall show that any element of H can be mapped to the imaginary axis via a series of
Möbius transforms. Let A ∈ H.

First, if A is a vertical line, simply translate the line horizontally until it is the imaginary
axis, as horizontal translations are Möbius transforms.

If A is not a vertical line, then A is a circle with a real center. Say the circle has center
a and radius r. Applying first the Möbius transform f(z) = z − a and g(z) = z

r
shows that

there exists a Möbius transform which sends A to the circle of unit radius and center 0.
Then, observe the behavior of the Möbius transform h(z) = z−1

z+1
on the circle of unit radius

and center 0. The points 1 and i lie on the circle of unit radius and center 1.

h(i) =
−1 + i

1 + i
=

−(1− i)(1− i)

(1 + i)(1− i)
=

−(1− 2i− 1)

2
=

2i

2
= i

and

h(1) =
1− 1

1 + 1
=

0

2
= 0.

From Lemma 6.6, we know that the image of the unit circle under h(z), which we will denote
K, must be either a vertical line or a circle with real radius. Note that because 0 ∈ K and
i ∈ K, K cannot be a circle with real radius, as the points which are equidistant from 0 and
i, and which thus could possibly be the center for a circle containing 0 or i lie on the line
ℑ(z) = 1/2. Thus, K is a vertical line. Since i ∈ K, K must be the imaginary axis.
We have thus shown that for any A ∈ H, there exists a Möbius transform which sends it

to the imaginary axis. Let A,B ∈ H. Then, let γ1, γ2 ∈ Möb(H) be the Möbius transforms
which sends A and B to the imaginary axis respectively. Then, γ2(γ

−1
1 (z)) is a Möbius

transform by Theorem 6.2 and Theorem 6.1 and maps A to B. Since A and B are arbitrary,
we are done. □

7. Geodesics, Angles, Area, and Triangles

If you will recall, previously in this paper the explicit form of the metric was stated, but
it was not derived from the path-length definition. In this section, we will derive the metric,
as well as state the definitions for Angles, Areas, and Triangles.

First, we shall describe geodesics and distances for points on the imaginary axis

Lemma 7.1. For ai and bi such that a, b ∈ R, a, b > 0, and a < b, then, the geodesic between
these two points is a vertical line, and dH(ai, bi) = ln b

a
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Proof. Suppose γ(t) = x(t) + y(t)i and is a path from ai to bi. Then,

LengthH(γ(t))

=

∫ 1

0

√
(x′(t))2 + (y′(t))2

y(t)
dt

≥
∫ 1

0

|y′(t)|
y(t)

dt

≥
∫ 1

0

y′(t)

y(t)
dt

= ln(y(t))
∣∣1
0

= ln(
b

a
)

(6)

This shows that LengthH(γ(t)) ≥ ln( b
a
). Next, we need to show that a vertical line segment

between ai and bi has Let σ(t) = (b − a)ti + ai, which is a vertical line segment from ai to
bi. Then,

LengthH(σ(t)) =

∫ 1

0

(b− a)

(b− a)t+ a
dt = ln(t+

a

b− a
)
∣∣∣1
0
= ln(

b

a
).

This implies that LengthH(γ(t)) ≥ LengthH(σ(t)) for all paths γ(t) from ia to ib. Thus,
dH(ai, bi) = ln( b

a
), and σ(t) which is a vertical line, is a geodesic. □

From this result, we can then prove that all geodesics are either vertical lines or circles of
real radius

Theorem 7.2. The unique geodesic between any two points in H is the unique circle of real
radius or vertical line which passes through those two points

Proof. By Theorem 6.7, there is a Möbius transform which maps the imaginary Axis to the
vertical line or circle of real radius which contains the two points. By Corollary 6.4.1, since
the imaginary axis is a geodesic, so is the vertical line or circle of real radius which passes
through the two points □

Now that we have described the geodesics, defining the explicit form of the metric is a
matter of integrating along the geodesics. However, there is an easier way to determine the
metric, which will be described in the following proof.

Theorem 7.3. The explicit form of the metric in H is

dH(z, w) = cosh−1(1 +
|z − w|2

2ℑ(z)ℑ(w)
).

Proof. Let z, w ∈ H. Then, Define LHS(z, w) = cosh(dH(z,w)) andRHS(z, w) = 1+ |z−w|2
2ℑ(z)ℑ(w)

.

Let γ be the Möbius transform which sends z and w to the imaginary axis. Let γ(z) = ai
and γ(w) = bi for real numbers a and b. Then, we shall show that

LHS(z, w) = LHS(γ(z), γ(w)) = RHS(γ(z), γ(w)) = RHS(z, w).

Firstly, the fact that LHS(z, w) = LHS(γ(z), γ(w)) follows from the fact that γ is an
isometry
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Next, note that

LHS(ai, bi) = cosh(ln(
b

a
)) =

b
a
+ a

b

2
=

a2 + b2

2ab
.

Also,

RHS(ai, bi) = 1 +
|a− b|2

2ab
= 1 +

a2 − 2ab+ b2

2ab
=

a2 + b2

2ab
.

Thus, LHS(γ(z), γ(w)) = RHS(γ(z), γ(w))
Finally, let γ(z) = az+b

cz+d
. Then,

RHS(γ(z), γ(w))

= 1 +
|γ(z)− γ(w)|2

2ℑ(γ(z)ℑ(γ(w))

= 1 +
|az+b
cz+d

− aw+b
cw+d

|2

2 (ad−bc)2

|cz+d|2|cw+d|2ℑ(z)ℑ(w)

=
|cz + d|2|cw + d|2| (aczw+bcw+adz+bd−aczw−bcz−adw−bc)

|cz+d||cw+d| |2

2(ad− bc)2ℑ(z)ℑ(w)

=
|(ad− bc)(z − w))|2

2(ad− bc)2ℑ(z)ℑ(w)

=
|(z − w))|2

2ℑ(z)ℑ(w)
= RHS(z, w)

(7)

This implies that LHS(z, w) = RHS(z, w), and thus that dH = cosh−1( |z−w|2
2ℑ(z)ℑ(w)

) □

Before we continue, we must first define the inner product, norm, angle and area in
Hyperbolic Space.

Definition 9. The inner product of two vectors v⃗ with components v1 and v2 and w⃗ with
components w1 and w2 at the position z in Hyperbolic space is

⟨v⃗, w⃗⟩ := v1w1 + v2w2

ℑ(z)2
.

The norm of a vector at z in H is defined analogously to Euclidean Space, except with the
Hyperbolic inner product rather than the Euclidean One.

Definition 10. ||v⃗|| =
√

⟨v⃗, v⃗⟩
Definition 11. Let γ and σ be two paths, and let γ(0) = σ(0), that is, the paths intersect.
Then, the angle between the two paths at the point γ(0) = σ(0), denoted θ, is defined as

θ = cos−1
( ⟨γ′(0), σ′(0)⟩
||γ′(0)||σ′(0)||

)
,

where ⟨·, ·⟩ is the inner product.

Note that although the definition of the norm and inner product in H is different from the
Euclidean definition, because the inner product is scaled by a factor of 1

ℑ(z)2
and the norm

is scaled by a factor of 1
ℑ(z)

, the two effects cancel, and the notion of angle in Hyperbolic

Space is the exact same as Euclidean Space.



THE GAUSS-BONNET THEOREM FOR REGULAR POLYGONS IN THE HYPERBOLIC PLANE 11

Definition 12. Let A be some subset of H. Then, the area of A is∫ ∫
A

1

ℑ(z)2
dz.

As one would expect, the notions of angle and area in H are invariant under Möbius
transform.

Theorem 7.4. Angle is invariant under Möbius transforms.

Proof. Let γ ∈ Möb(H). Then, let γ(x + yi) = u(x, y) + v(x, y)i. By a theorem in from
complex analysis, ux = vy and uy = −vx The tangent vector v⃗ after applying the transform
γ is Dv⃗, where D is the matrix (

ux uy

−uy ux

)
.

Observe that

DTD =

(
u2
x + u2

y 0
0 u2

x + u2
y

)
.

This implies that D√
u2
x+u2

y

is an orthogonal matrix. Since D = D√
u2
x+u2

y

√
u2
x + u2

y, this implies

D is the composition of an orthogonal matrix and multiplication by a constant. Since both
these operations preserve the euclidean angles between vectors, and euclidean and hyperbolic
angles are equivalent, γ preserves the angles between vectors.

□

Theorem 7.5. Area is invariant under Möbius Transform

Proof. Let A ⊂ H. Let γ = az+b
cz+d

∈ Möb(H). Then, the determinant of the Jacobian matrix
of the transform is

(ad− bc)2

((cx+ d)2 + c2y2)2
.

In addition, let h(x, y) = 1
y2
. Then,

(h ◦ γ(x, y)) = (
(cx+ d)2 + c2y2

(ad− bc)y
)2.

From this, we conclude that the area of γ(A) is∫ ∫
γ(A)

1

y2
dxdy

=

∫ ∫
A

h ◦ γ(z) (ad− bc)2

((cx+ d)2 + c2y2)2
dxdy

=

∫ ∫
A

(
(cx+ d)2 + c2y2

(ad− bc)y
)2

(ad− bc)2

((cx+ d)2 + c2y2)2
dxdy

=

∫ ∫
A

1

y2
dxdy

(8)

Thus, area is preserved under Möbius transform. □

Finally, we define two more concepts, the definition of the boundary of H, which is in turn
necessary to define the generalized notion of a triangle in H
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Definition 13. We define the boundary of H, called ∂H to be the set R ∪ {∞}

Definition 14. We define a triangle in H as follows. For any 3 points in H or ∂H, we
define a triangle to be the set bounded by the geodesics connecting these 3 points.

Note that because we allows some of these points to be in ∂H, in some triangles, the
geodesics may not meet in H

8. The Gauss - Bonnet Theorem

Now, all that remains is to prove the Gauss - Bonnet Theorem. This Theorem demon-
strates a particularly interesting fact about hyperbolic geometry, that is, the area of a shape
is related to it’s internal angles. In Euclidean Geometry, the area of a triangle is independent
of its angles. We can scale a triangle up or down without affecting it’s angles. However, this
is not true in Hyperbolic Geometry, as we will soon prove.

Theorem 8.1. Let △ be a triangle in H. Then, the area of △, denoted Area(△), is π −
(α + β + γ), where α, β, γ, are the internal angles of the triangle.

Proof. First, we prove this theorem for the special case where one vertex of the triangle is
in ∂H.

Recall that Möbius transforms preserve angle and area. Thus, if the theorem holds for a
triangle after a certain set of Möbius transforms, it will hold for the triangle before those
Möbius transforms.

Let the vertexes of the triangle be a, b, c, with a ∈ ∂H.

Firstly, if the vertex of the triangle in ∂H is not ∞ apply the transform z−(a+1)
z−a

, which
sends a to ∞. Next, apply a horizontal transformation to send the center of the geodesic
connecting b and c to the origin. Finally, apply the transform kz to scale the geodesic from
b to c to radius 1. The resulting triangle looks like this

Real

Imaginary

b
c β
γ

βγ

We can calculate the area of this triangle by integrating.
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Area(△)

=

∫ ℜ(b)

ℜ(c)

∫ ∞

√
1−x2

1

y2
dydx

=

∫ ℜ(b)

ℜ(c)

1√
1− x2

dx

=

∫ β

π−γ

−1dθ (After substituting x = cos(θ))

= π − β − γ

(9)

This proves the theorem in the case where α = 0 (which happens when a ∈ ∂H)
Next, we will use this result to prove the theorem for the general triangle.
Let the points a, b, c be the vertices of a triangle, and α, β, γ, be the respective internal

angles. By Theorem 6.7, there exists a Möbius Transform which sends a and c to the
imaginary axis. Then, let δ be the angle between b and the vertical line passing through b
after this transform.

Real

Imaginary

ba

c

α

π − γ

γ
δ

β

By the previous result, we know Area(ab∞) = π − (β + δ) − α, and Area(cb∞) =
π − (π − γ)− δ = γ − δ

Thus, since Area(abc) = Area(ab∞)−Area(cb∞) = π−(β+δ)−α−γ+δ = π−α−β−δ
This proves the theorem.

□

The Gauss-Bonnet theorem has many interesting consequences. For example, it implies
that triangles have a maximum area, when all 3 vertecies are on ∂H, and thus all internal
angles are 0. This shape is known as an ”ideal triangle”, and has area π. It also implies that
the sum of angles in a Hyperbolic Triangle is always less than π.
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