
ZER-KNOWLEDGE AND INTERACTIVE PROOFS

JOSHUA KOO

Contents

1. Introduction 1
2. The Diffie-Hellman Key Exchange 1
3. The Discrete Logarithm Problem 2
4. RSA 2
5. Zero Knowledge Proofs 4
6. Ali Baba Curve 5
7. Hamiltonian Cycles 6
8. Interactive Proofs 8
9. Non-Isomorphism 9
10. PSPACE 9
11. QBF 10
12. IP = PSPACE 10

1. Introduction

In the topics of computational complexity theory and cryptography,
interactive and zero-knowledge proof systems represent computation as
a communication process between two parties: a prover and a verifier.
These parties engage in message exchanges to determine whether a
particular string belongs to a language or not. The prover is equipped
with unrestricted computational capabilities but lacks trustworthiness,
while the verifier possesses limited computational resources but is con-
sistently assumed to be honest. The verifier and prover exchange mes-
sages until the verifier obtains a solution and becomes sufficiently per-
suaded of its correctness.

2. The Diffie-Hellman Key Exchange

One of the most basic but important concepts in cryptography is
the Diffie-Hellman Key Exchange, a mathematical method of creating
a cryptographic key to exchange information between two parties in a
secure manner. The goal of the exchange is so that even if you know

1



2 JOSHUA KOO

all the public info, not knowing any of the private info makes it near
impossible to construct the key, while knowing at least one piece of
private info allows you to do so. To see how the exchange works, let
us label the two parties as Alice and Bob. Together, they will first
pick some prime number p. They then pick a base g such that g is a
primitive root modulo p. Then, in secret, Alice picks a number a, and
similarly, Bob picks a number b. Alice then computes ga (mod p) and
sends it out to the public including Bob (this is public information)
and Bob similarly computes gb (mod p) and sends it to Alice. Alice
now knows the number gb (mod p) so she can now compute (gb)a = gab

(mod p). In a similar manner, Bob can also compute gab (mod p). Here,
gab (mod p) is the private key that can be used to encrypt messages
that the public does not know. This is because even if you know ga

(mod p) or gb (mod p), it is very difficult to figure out gab (mod p).
The figure below shows a conceptual idea of how the cryptographic
aspect of how the system works.

key.png

3. The Discrete Logarithm Problem

Instead of modulo, we will now look at integers.

4. RSA

RSA (Rivest-Shamir-Adleman) is a widely used public-key cryp-
tography system that was invented by Ron Rivest, Adi Shamir, and
Leonard Adleman in 1977. It is named after the initials of its in-
ventors. RSA is widely used in various applications, including secure
communication, digital signatures, and secure data transmission.



ZER-KNOWLEDGE AND INTERACTIVE PROOFS 3

RSA is based on the mathematical problem of factoring large com-
posite numbers into their prime factors. The security of RSA relies on
the difficulty of factoring large numbers, which is currently believed to
be a computationally difficult problem for classical computers. This
makes RSA a popular choice for secure communication.

The RSA system involves three main steps: key generation, encryp-
tion, and decryption. Let’s go through each step in detail:

(1) Key Generation:
• Choose two distinct prime numbers, p and q. These primes
should be large, typically several hundred digits long, to
ensure security. Calculate the modulus, n, by multiplying
p and q: n = p∗q. Calculate Euler’s totient function, ϕ(n),
where ϕ(n) = (p − 1) ∗ (q − 1). Euler’s totient function
counts the number of positive integers less than n that are
coprime (have no common factors) with n.
• Choose an encryption exponent, e, which is a positive in-
teger greater than 1 and less than ϕ(n). e should also be
coprime with ϕ(n).
• Calculate the decryption exponent, d, which is the modular
multiplicative inverse of emodulo ϕ(n). In other words, d is
the value that satisfies the equation: (d ∗ e) (mod ϕ(n)) =
1.
• The public key consists of the modulus, n, and the encryp-
tion exponent, e. The private key consists of the modulus,
n, and the decryption exponent, d.

(2) Encryption: To encrypt a message, represent it as a number, m,
such that 0 ≤ m < n. The message should be smaller than the
modulus. Apply the encryption function: c = (me) (mod n).
The ciphertext, c, is the result of the encryption process. It can
be transmitted over an insecure channel.

(3) Decryption: To decrypt the ciphertext, c, apply the decryp-
tion function:m = (cd) (mod n). The resulting value, m, is the
original plaintext message. The security of RSA lies in the dif-
ficulty of factoring the modulus, n, into its prime factors. It
is computationally infeasible to determine the private key, d,
without knowing the prime factors of n. As long as the private
key remains secret, the encryption is considered secure.

It is worth noting that the size of the modulus, n, and the choice
of prime numbers are crucial for the security of RSA. If the primes
are too small, the system becomes vulnerable to attacks that exploit



4 JOSHUA KOO

the factorization process. Therefore, the selection of large primes is
essential to ensure the strength of the RSA system.

5. Zero Knowledge Proofs

Zero-knowledge proofs (ZKPs) are a revolutionary cryptographic
concept that allows one party, the prover, to convince another party,
the verifier, of the truth of a statement without revealing any addi-
tional information beyond the validity of the statement. In other words,
zero-knowledge proofs enable the prover to demonstrate knowledge of
a secret without disclosing any details about the secret itself.

The concept of zero-knowledge proofs was first introduced by Shafi
Goldwasser, Silvio Micali, and Charles Rackoff in 1985. Since then,
they have become a fundamental tool in cryptography and have found
applications in various domains, including secure authentication, digi-
tal signatures, privacy-preserving protocols, and blockchain technology.

The fundamental idea behind zero-knowledge proofs is to establish
trust and verify the correctness of a statement or claim without reveal-
ing any sensitive information. This concept is particularly valuable in
scenarios where privacy and confidentiality are of utmost importance.
For example, consider a scenario where Alice wants to prove to Bob that
she knows a password without actually disclosing the password itself.
Zero-knowledge proofs enable Alice to convince Bob of her knowledge
without revealing any information that could be exploited by a mali-
cious party. To achieve zero-knowledge, the prover must demonstrate
three crucial properties:

• Completeness: The prover should be able to convince the veri-
fier that the statement is true. If the statement is indeed valid,
the verifier should accept the proof with high probability.
• Soundness: If the statement is false, the prover should not be
able to convince the verifier of its validity except with negligi-
ble probability. Soundness ensures that an untruthful prover
cannot succeed in deceiving the verifier.
• Zero-knowledge: The proof should not reveal any additional
information beyond the validity of the statement. Even after
interacting with the prover, the verifier should gain no knowl-
edge about any secret information.

Zero-knowledge proofs are typically interactive (which we will be
going into more later), meaning that the prover and the verifier engage
in a series of computational steps to establish trust. The interaction
involves multiple rounds of communication, where the prover convinces



ZER-KNOWLEDGE AND INTERACTIVE PROOFS 5

the verifier by responding to challenges or queries without revealing any
sensitive information.

Various techniques and protocols have been developed to construct
zero-knowledge proofs. These include simulation-based proofs, alge-
braic proofs, and non-interactive proofs using cryptographic hash func-
tions. Simulation-based proofs involve the prover constructing a sim-
ulated proof, which is indistinguishable from a genuine proof, without
revealing any secrets. Algebraic proofs rely on mathematical proper-
ties and transformations to demonstrate knowledge of a secret without
revealing it explicitly. Non-interactive zero-knowledge proofs leverage
cryptographic hash functions to create proofs that can be verified with-
out requiring direct communication between the prover and the verifier.
We will now go over an example of a zero knowledge proof.

6. Ali Baba Curve

There is a well-known story presenting the fundamental ideas of zero-
knowledge proofs, first published in 1990 by Jean-Jacques Quisquater
and others in their paper ”How to Explain Zero-Knowledge Protocols to
Your Children”.[6] Using the common Alice and Bob anthropomorphic
thought experiment placeholders, the two parties in a zero-knowledge
proof are Peggy as the prover of the statement, and Victor, the verifier
of the statement.

In this story, Peggy has uncovered the secret word used to open a
magic door in a cave. The cave is shaped like a ring, with the entrance
on one side and the magic door blocking the opposite side. Victor
wants to know whether Peggy knows the secret word; but Peggy, being
a very private person, does not want to reveal her knowledge (the secret
word) to Victor or to reveal the fact of her knowledge to the world in
general.

They label the left and right paths from the entrance A and B. First,
Victor waits outside the cave as Peggy goes in. Peggy takes either path
A or B; Victor is not allowed to see which path she takes. Then, Victor
enters the cave and shouts the name of the path he wants her to use
to return, either A or B, chosen at random. Providing she really does
know the magic word, this is easy: she opens the door, if necessary,
and returns along the desired path.

However, suppose she did not know the word. Then, she would only
be able to return by the named path if Victor were to give the name
of the same path by which she had entered. Since Victor would choose
A or B at random, she would have a 50



6 JOSHUA KOO

Thus, if Peggy repeatedly appears at the exit Victor names, he can
conclude that it is extremely probable that Peggy does, in fact, know
the secret word.

One side note with respect to third-party observers: even if Victor
is wearing a hidden camera that records the whole transaction, the
only thing the camera will record is in one case Victor shouting ”A!”
and Peggy appearing at A or in the other case Victor shouting ”B!”
and Peggy appearing at B. A recording of this type would be trivial
for any two people to fake (requiring only that Peggy and Victor agree
beforehand on the sequence of A’s and B’s that Victor will shout). Such
a recording will certainly never be convincing to anyone but the original
participants. In fact, even a person who was present as an observer at
the original experiment would be unconvinced, since Victor and Peggy
might have orchestrated the whole ”experiment” from start to finish.

Further, if Victor chooses his A’s and B’s by flipping a coin on-
camera, this protocol loses its zero-knowledge property; the on-camera
coin flip would probably be convincing to any person watching the
recording later. Thus, although this does not reveal the secret word
to Victor, it does make it possible for Victor to convince the world
in general that Peggy has that knowledge—counter to Peggy’s stated
wishes. However, digital cryptography generally ”flips coins” by relying
on a pseudo-random number generator, which is akin to a coin with
a fixed pattern of heads and tails known only to the coin’s owner. If
Victor’s coin behaved this way, then again it would be possible for
Victor and Peggy to have faked the experiment, so using a pseudo-
random number generator would not reveal Peggy’s knowledge to the
world in the same way that using a flipped coin would.

Notice that Peggy could prove to Victor that she knows the magic
word, without revealing it to him, in a single trial. If both Victor and
Peggy go together to the mouth of the cave, Victor can watch Peggy go
in through A and come out through B. This would prove with certainty
that Peggy knows the magic word, without revealing the magic word
to Victor. However, such a proof could be observed by a third party, or
recorded by Victor and such a proof would be convincing to anybody.
In other words, Peggy could not refute such proof by claiming she
colluded with Victor, and she is therefore no longer in control of who
is aware of her knowledge.

7. Hamiltonian Cycles

The following scheme is due to Manuel Blum.[10]



ZER-KNOWLEDGE AND INTERACTIVE PROOFS 7

In this scenario, Peggy knows a Hamiltonian cycle for a large graph
G. Victor knows G but not the cycle (e.g., Peggy has generated G and
revealed it to him.) Finding a Hamiltonian cycle given a large graph
is believed to be computationally infeasible, since its corresponding
decision version is known to be NP-complete. Peggy will prove that
she knows the cycle without simply revealing it (perhaps Victor is
interested in buying it but wants verification first, or maybe Peggy
is the only one who knows this information and is proving her identity
to Victor).

To show that Peggy knows this Hamiltonian cycle, she and Victor
play several rounds of a game.

At the beginning of each round, Peggy creates H, a graph which is
isomorphic to G (i.e. H is just like G except that all the vertices have
different names). Since it is trivial to translate a Hamiltonian cycle
between isomorphic graphs with known isomorphism, if Peggy knows a
Hamiltonian cycle for G she also must know one for H. Peggy commits
to H. She could do so by using a cryptographic commitment scheme.
Alternatively, she could number the vertices of H. Next, for each edge
of H, on a small piece of paper, she writes down the two vertices that
the edge joins. Then she puts all these pieces of paper face down on
a table. The purpose of this commitment is that Peggy is not able to
change H while, at the same time, Victor has no information about H.
Victor then randomly chooses one of two questions to ask Peggy. He
can either ask her to show the isomorphism between H and G (see graph
isomorphism problem), or he can ask her to show a Hamiltonian cycle
in H. If Peggy is asked to show that the two graphs are isomorphic,
she first uncovers all of H (e.g. by turning over all pieces of papers
that she put on the table) and then provides the vertex translations
that map G to H. Victor can verify that they are indeed isomorphic.
If Peggy is asked to prove that she knows a Hamiltonian cycle in H,
she translates her Hamiltonian cycle in G onto H and only uncovers
the edges on the Hamiltonian cycle. This is enough for Victor to check
that H does indeed contain a Hamiltonian cycle. It is important that
the commitment to the graph be such that Victor can verify, in the
second case, that the cycle is really made of edges from H. This can
be done by, for example, committing to every edge (or lack thereof)
separately.

Completeness
If Peggy does know a Hamiltonian cycle in G, she can easily satisfy
Victor’s demand for either the graph isomorphism producing H from
G (which she had committed to in the first step) or a Hamiltonian



8 JOSHUA KOO

cycle in H (which she can construct by applying the isomorphism to
the cycle in G).

Zero-knowledge
Peggy’s answers do not reveal the original Hamiltonian cycle in G. Each
round, Victor will learn only H’s isomorphism to G or a Hamiltonian
cycle in H. He would need both answers for a single H to discover
the cycle in G, so the information remains unknown as long as Peggy
can generate a distinct H every round. If Peggy does not know of
a Hamiltonian cycle in G, but somehow knew in advance what Victor
would ask to see each round then she could cheat. For example, if Peggy
knew ahead of time that Victor would ask to see the Hamiltonian cycle
in H then she could generate a Hamiltonian cycle for an unrelated
graph. Similarly, if Peggy knew in advance that Victor would ask
to see the isomorphism then she could simply generate an isomorphic
graph H (in which she also does not know a Hamiltonian cycle). Victor
could simulate the protocol by himself (without Peggy) because he
knows what he will ask to see. Therefore, Victor gains no information
about the Hamiltonian cycle in G from the information revealed in each
round.

Soundness
If Peggy does not know the information, she can guess which ques-
tion Victor will ask and generate either a graph isomorphic to G or a
Hamiltonian cycle for an unrelated graph, but since she does not know
a Hamiltonian cycle for G she cannot do both. With this guesswork,
her chance of fooling Victor is 2n, where n is the number of rounds. For
all realistic purposes, it is infeasibly difficult to defeat a zero-knowledge
proof with a reasonable number of rounds in this way.

8. Interactive Proofs

NP is the class of languages decidable by a nondeterministic Turing
machine in polynomial time. It is also equivalent to the class of lan-
guages verifiable in polynomial time. For the rest of this paper, it will
be useful to think of NP languages not in terms of nondeterminism,
but in terms of verification. We can view NP as the set of languages
for which a supercomputer can provide a certificate to a deterministic
polynomial time machine. No languages are added to NP if we extend
this definition to allow the deterministic polynomial time machine to
talk back and forth. This is because the supercomputer is capable
of simulating the polynomial machine, anticipating its questions, and
providing its answers all at the beginning. Thus NP is the language ob-
tained by permitting interaction with a supercomputer whose responses



ZER-KNOWLEDGE AND INTERACTIVE PROOFS 9

must be verifiable. Similarly, we may view BPP as the result of aug-
menting a deterministic polynomial time machine with an additional
capability: randomness. Consider the following diagram, where right
arrows denote the result of introducing randomness, and up arrows
denote the result of introducing interaction:

Thus NP results from adding interaction to P, and similarly, BPP
results from adding randomness to P. What happens when we add both
interaction and randomness to P? We will define the result to be IP,
the class of languages decidable by an interactive proof system.

To be more precise, we must formally define what is meant by an
interactive proof system. A message history is a string of the form
m1#m2# . . .#mi, where the mi denote successive messages in a di-
alogue. A verifier V is a probabilistic, polynomial-time computable
function such that given an input string w and a message history
m1#m2# . . .#mi, it computes V (w,m1#m2 . . .#mi) = mi+1 for even
i. Also, V must accept or reject after a polynomial number of in-
teractions. Note that mi+1 is not deterministic, but determined only
up to a probability distribution. A prover P is an arbitrary function
that computes P (w,m1#m2# . . .#mi) = mi+1 for odd i, with the only
restriction that mi+1 is of polynomial length.
Given a prover P and a verifier V, they interact by alternately aug-

menting the message history until V accepts or rejects. We denote
this interaction by V ←→ P . Note that any interaction requires a
polynomial number of steps of the verifying machine. Given an input
string w, there is a probability associated with V ←→ P accepting w.
We denote this probability by Pr[V ←→ P accepts w]. Formally, a
language L ∈ IP if there exists a verifier V such that:

9. Non-Isomorphism

10. PSPACE

PSPACE is the set of all decision problems that can be solved by a
Turing machine using a polynomial amount of space. Formally, we will
define PSPACE as the following:

PSPACE =
⋃
k∈N

SPACE(nk)

Let us go over an example of a complete PSPACE problem, namely
the quantified Boolean formula problem (QBF).



10 JOSHUA KOO

11. QBF

12. IP = PSPACE

From here, one can try to prove that IP = PSPACE. The proof
is far too long for this paper, but you can read more about it from
Introduction the Theory of Computation by Michael Sipser.

Here is a general idea:
To prove that Interactive Proofs (IP) is equal to the complexity class

PSPACE, we need to show two things: that any problem in IP can be
solved by a PSPACE machine, and that any problem in PSPACE can
be solved by an Interactive Proof System.

First, let’s prove that any problem in IP can be solved by a PSPACE
machine.

Proof: Suppose we have a problem P that belongs to the class IP.
This means that there exists an Interactive Proof System (IPS) for
problem P. The IPS consists of a prover P and a verifier V.

To show that P is in PSPACE, we need to design a PSPACE machine
M that solves problem P. The PSPACE machine M will simulate the
interaction between the prover P and the verifier V.

The simulation proceeds as follows:
The PSPACE machine M simulates the actions of the verifier V by

making all the necessary queries to the prover P. The prover P responds
to the queries made by M. M keeps track of the messages exchanged
between P and V and uses this information to make further queries.
The simulation continues until the verifier V reaches a decision. Since
the verifier V operates in polynomial space in the original Interactive
Proof System, the PSPACE machine M can simulate this process in
polynomial space as well. Therefore, any problem in IP can be solved
by a PSPACE machine, proving that IP is a subset of PSPACE.

Next, let’s prove that any problem in PSPACE can be solved by an
Interactive Proof System.

Proof: Suppose we have a problem P that belongs to the class
PSPACE. This means that there exists a polynomial space machine
M that solves problem P.

To show that P is in IP, we need to design an Interactive Proof
System (IPS) for problem P. The IPS consists of a prover P and a
verifier V.

The IPS proceeds as follows:
The verifier V generates a random string and sends it to the prover

P. The prover P uses this random string to compute the response. V
verifies the response by simulating the computation of the polynomial
space machine M on the input, using the random string and the prover’s



ZER-KNOWLEDGE AND INTERACTIVE PROOFS 11

response. V reaches a decision based on the verification. Since the
polynomial space machine M can be simulated by the verifier V in the
Interactive Proof System, any problem in PSPACE can be solved by
an Interactive Proof System. Thus, PSPACE is a subset of IP.

Combining both proofs, we have shown that IP is a subset of PSPACE
and PSPACE is a subset of IP. Therefore, IP = PSPACE.

In conclusion, we have proven that Interactive Proofs (IP) is equal
to the complexity class PSPACE.

Euler Circle, Mountain View, CA 94040


	1. Introduction
	2. The Diffie-Hellman Key Exchange
	3. The Discrete Logarithm Problem
	4. RSA
	5. Zero Knowledge Proofs
	6. Ali Baba Curve
	7. Hamiltonian Cycles
	8. Interactive Proofs
	9. Non-Isomorphism
	10. PSPACE
	11. QBF
	12. IP = PSPACE

