Kronecker-Weber Theorem

Jinfei Huang

:3

July 17, 2023

イロト イ押ト イヨト イヨト

重

A field obtained by adjoining a complex root of unity $\zeta_n = e^{2\pi i/n}$ to the rational numbers Q is called a cyclotomic field.

Definition

Let \mathbb{L}/\mathbb{K} be a field extension. The Galois group Gal(\mathbb{L}/\mathbb{K}) is the set of $\mathbb K$ -automorphisms of $\mathbb L$.

イロト イ母 トイヨ トイヨト

 QQQ

A field obtained by adjoining a complex root of unity $\zeta_n = e^{2\pi i/n}$ to the rational numbers $\mathbb Q$ is called a cyclotomic field.

Definition

Let \mathbb{L}/\mathbb{K} be a field extension. The *Galois group* Gal(\mathbb{L}/\mathbb{K}) is the set of $\mathbb K$ -automorphisms of $\mathbb L$.

$$
(\mathbb{Z}/n\mathbb{Z})^{\times} \cong \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}), \quad \text{and } n \mapsto (\zeta_n \mapsto \zeta_n^a)
$$

Thus, $\mathbb{Q}(\zeta_n)$ is a finite abelian extension of \mathbb{Q} of order $\phi(n)$: its Galois group Gal($\mathbb{Q}(\zeta_n)/\mathbb{Q}$) is abelian. In fact, every subfield of a cyclotomic field is also abelian; are these the only finite abelian extensions of \mathbb{Q} ?

Theorem (Kronecker-Weber)

Every finite abelian extension of $\mathbb Q$ is contained in a cyclotomic field $\mathbb Q(\zeta_n)$.

Example

The extension $\mathbb{Q}(\sqrt{5})$ is abelian because Gal $(\mathbb{Q}(\sqrt{5})/\mathbb{Q})\cong \mathbb{Z}/2\mathbb{Z}.$ The extension $\mathbb{Q}(\sqrt{5})$ is abelian because Gall $(\mathbb{Q}(\sqrt{5}))$ $(\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z}$.
 $\mathbb{Q}(\sqrt{5}) \subseteq \mathbb{Q}(\zeta_5)$, since $\sqrt{5} = e^{2\pi i/5} - e^{4\pi i/5} - e^{6\pi i/5} + e^{8\pi i/5} \in \mathbb{Q}(e^{2\pi i/5})$.

イロト イ押 トイヨ トイヨ トー

イロト イ押ト イヨト イヨト Jinfei Huang (:3) [Kronecker-Weber Theorem](#page-0-0) July 17, 2023 4 / 16

 Ω

A Kronecker

History

- announced the theorem
- Lagrange resolvents
- struggled with extensions of degree a power of 2
- Weber
	- published the first accepted "proof" (1886)
	- mistake went unnoticed for 90 years until it was corrected by Olaf Neumann

Hilbert

- gave the first complete proof in 1896
- uses higher ramification groups
- ideas gave rise to class field theory

An *algebraic number field K* is a finite extension of the field of rational numbers Q. Its ring of integers \mathcal{O}_K is defined as the subring of $x \in K$ that are *integral* over \mathbb{Z} , i.e. x satisfies a monic polynomial equation with integer coefficients.

Definition

Let A be an integral domain with field of fractions \mathbb{K} . A fractional ideal $\mathfrak a$ of A is an A-submodule of K such that there is some $0 \neq d \in A$ with $d\mathfrak{a} \subset A$.

Definition

A Dedekind domain is an integral domain such that every nonzero fractional ideal is invertible.

Proposition

Every nonzero proper ideal a in a Dedekind domain A can be factored into a finite product $\mathfrak{a} = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_n^{e_n}$ $(e_i > 0)$ of distinct prime ideals $\mathfrak{p}_i \neq \mathfrak{p}_j$. Furthermore, this factorization is unique up to permutation.

Importantly, the ring of integers \mathcal{O}_K of an algebraic number field K is a Dedekind domain. Also, it turns out that \mathcal{O}_K is a finite free Z-module.

Let p be a prime number and K an algebraic number field. The ideal

$$
(\rho)=\rho\mathcal{O}_K=\mathfrak{P}_1^{e_1}\cdots\mathfrak{P}_g^{e_g}
$$

admits a factorization into distinct prime ideals \mathfrak{P}_i of \mathcal{O}_K . We say that p is **ramified** in K if one of the exponents e_i is > 1 ; otherwise, p is unramified.

Example

In the number field $\mathbb{Q}(i)$, which has ring of integers $\mathbb{Z}[i]$, one has $2 = (1 + i)(1 - i)$, so $(2) = \mathfrak{B}^2$ where $\mathfrak{B} = (1 + i)$ is prime.

イロト イ母 トイヨ トイヨト

Trace and discriminant

Definition

Let B/A be a ring extension such that B is a free A-module of rank n. For each x in B, multiplication by x defines an A-linear endomorphism $T_x : B \to B$, the trace of which we call the *trace* $Tr_{B/A}(x)$ of x. Thus, $Tr_{B/A}$ specifies a map from B to A.

Definition

With B/A as above, and let $\alpha_1, \ldots, \alpha_n$ be a basis for B over A. The discriminant disc($\alpha_1, \ldots, \alpha_n$) of the basis $\alpha_1, \ldots, \alpha_n$ is defined as the determinant of its trace pairing matrix:

$$
\text{disc}(\alpha_1,\ldots,\alpha_n)=\text{det}(\text{Tr}_{B/A}(\alpha_i\alpha_j))\in A.
$$

イロト イ押ト イヨト イヨト

If $\alpha_1, \ldots, \alpha_n$ and $\alpha'_1, \ldots, \alpha'_n$ be two bases for the free A-module B. Write $\alpha'_j = \sum \overline{a_{ji}} \alpha_i$, and let $M = (a_{ij})$ be the change of basis matrix. Then

$$
\mathrm{Tr}_{B|A}(\alpha'_k \alpha'_l) = \sum_{i,j} \mathrm{Tr}_{B|A}(a_{ki}\alpha_i a_{lj}\alpha_j) = \sum_{i,j} a_{ki} \mathrm{Tr}_{B|A}(\alpha_i \alpha_j) a_{ji},
$$

so $({\sf Tr}_{B|A}(\alpha'_k\alpha'_l))=M\cdot({\sf Tr}_{B|A}(\alpha_i\alpha_j))\cdot M^{\mathcal{T}}$ and

$$
\mathsf{disc}(\alpha'_1,\ldots,\alpha'_n)=(\mathsf{det}\,M)^2\,\mathsf{disc}(\alpha_1,\ldots,\alpha_n).
$$

Therefore, as the matrix M is invertible, the discriminant is well-defined up to multiplication by the square of a unit in A. When $A = \mathbb{Z}$, the discriminant is independent of the choice of basis.

Primes that ramify

Since the ring of integers of a number field is a finite free $\mathbb Z$ -module, we are enabled to choose a \mathbb{Z} -basis $\alpha_1, \ldots, \alpha_n$ and define the *discriminant* of K as disc(\mathcal{O}_K/\mathbb{Z}) = disc(α_1,\ldots,α_n). Sometimes the notation Δ_K is used.

(□) (_□) (

 Ω

Since the ring of integers of a number field is a finite free \mathbb{Z} -module, we are enabled to choose a \mathbb{Z} -basis $\alpha_1, \ldots, \alpha_n$ and define the *discriminant* of K as disc(\mathcal{O}_K/\mathbb{Z}) = disc(α_1,\ldots,α_n). Sometimes the notation Δ_K is used.

Theorem

Let K be an algebraic number field, p a prime number. Then p ramifies in K if and only if p divides the integer Δ_K .

Theorem

For any number field $K \neq \mathbb{Q}$, we have $|\Delta_K| > 1$.

Consequently, only finitely many primes p ramify in a number field K. If K is a proper extension, there is at least one such p .

イロト イ押 トイヨ トイヨ トー

Let us calculate the discriminant of $K = \mathbb{Q}(\zeta_p)$ for an odd prime p. The ring of integers $\mathbb{Z}[\zeta_p]$ of K admits a \mathbb{Z} -basis $1,\zeta_p,\ldots,\zeta_p^{p-1}.$

$$
\Delta_K = \text{disc}(1, \zeta_p, \dots, \zeta_p^{p-1}) = \prod_{1 \leq i < j \leq n} (\zeta_p^i - \zeta_p^j).
$$

We have the identities $\rho=\prod_{j=1}^{p-1}(1-\zeta_p^j)$ and $(-1)^{p-1}=\prod_{j=0}^{p-1}\zeta_p^j.$ Differentiating $X^p-1=\prod_{j=0}^{p-1}(X-\zeta_p^j)$ and substituting $X=\zeta_p^i$, then multiplying over all such i gives $p^p(-1)^{(p-1)^2} = \prod_{i,j=0,\,i\neq j}^{p-1}(\zeta_p^i - \zeta_p^j).$ After some algebra, we see that $\Delta_{\mathcal{K}}=(-1)^{(p-1)/2}p^{p-2}.$

K ロ X K @ X K 할 X K 할 X - 할 X YO Q @

Theorem (Kronecker-Weber)

Every finite abelian extension of $\mathbb O$ is contained within a cyclotomic field.

Lemma

If the theorem holds for cyclic extensions of prime-power order, then it holds for all finite abelian extensions.

Proof (sketch).

Suppose K/\mathbb{Q} is finite abelian. Then Gal(K/\mathbb{Q}) decomposes into a direct product of cyclic groups G_1,\ldots,G_r of prime-power degree. If K_i is the fixed field of $\prod_{j\neq i} G_j$, then $K_i\subseteq \mathbb{Q}(\zeta_{n_i})$ for some n_i . Setting $n=n_1\cdots n_r$ yields

$$
K=K_1\cdots K_r\subseteq \mathbb{Q}(\zeta_n),
$$

Lemma

It suffices to show the theorem is true for cyclic extensions K/\mathbb{Q} of prime-power degree p^m such that p is the only prime that ramifies in K.

- \bullet Case 1: p is an odd prime
- Case 2: $p = 2$
	- Base case deals with quadratic extension
	- Every cyclic extension K/\mathbb{Q} of degree 2^m is contained in a cyclotomic field

イロト イ母 トイヨ トイヨ トー

 Ω

Lemma

Let p be a prime and let K/\mathbb{Q} be a finite p-power abelian extension unramified outside p. Then Gal(K/\mathbb{Q}) is cyclic.

Setup: $K/{\mathbb Q}$ cyclic of degree p^m such that p is the only prime that ramifies in K.

Proof of case 1 (sketch).

Recall that $\mathsf{Gal}(\mathbb{Q}(\zeta_{p^{m+1}})/\mathbb{Q}) = (\mathbb{Z}/p^{m+1}\mathbb{Z})^\times$, a cyclic group of order $\phi(p^{m+1})=(p-1)p^m.$ This group has a cyclic subgroup of index $p^m.$ Let K' be its fixed field. Then $Gal(K' / Q) \cong \mathbb{Z}/p^m \mathbb{Z} = Gal(K / Q)$. Since K and \mathcal{K}' are unramified outside ρ , so is $\mathcal{K}\mathcal{K}'$. The degree of \mathbb{K}'/\mathbb{Q} is a power of p, so by the previous lemma, $\mathbb{K}\mathbb{K}'/\mathbb{Q}$ is cyclic. Finally, a degree argument shows that $K=K'=KK'$, so $K\subseteq \mathbb{Q}(\zeta_{p^{m+1}}).$

KOD KAR KED KED E VAN

Theorem (Local Kronecker-Weber)

Every finite abelian extension K of \mathbb{Q}_p is contained in $\mathbb{Q}_p(\zeta_m)$ for some m.

The local and global versions are equivalent.

Question

Can we extend the Kronecker-Weber on abelian extensions of the rationals to any base number field?

This is known as Hilbert's 12th Problem; it is open as of 2023.

Thank you

 2990