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Abstract. The present exposition presents an approximately self-contained proof of the global
Kronecker-Weber theorem, making extensive use of higher ramification groups in the spirit of

Hilbert. Along the way, we examine the rudiments of algebraic number theory, cyclotomic fields,

and the basic theory of valuations.

1. Introduction

The celebrated Kronecker-Weber theorem asserts that every finite abelian extension of the rational
numbers is contained within a cyclomotic field. First announced in 1853, the result is one of the
earliest in what is now known as class field theory, or the study of abelian extensions of local and
global fields. Proclaiming his discovery, Kronecker writes,

“...We obtain the remarkable result that the root of every abelian equation with
integer coefficients can be represented as a rational function of roots of unity...”

Kronecker’s attempted approach, featuring Lagrange resolvents, succeeded in only giving a par-
tial proof, by his own admission; alas, Kronecker-Weber did not succumb1 for the case of cyclic
extensions with degree 2n, n ≥ 3, and therefore retained its status as a conjecture.
In 1886, Weber supplied a proof using much of the similar ideas as his predecessor. Accordingly,
he was credited for being the first to provide a complete and valid justification. Over ninety
years elapsed before Olaf Neumann finally noticed a flaw in Weber’s argument, which overturned
a widely-held belief within the mathematical community and somewhat undermined the historical
accuracy of the main result’s naming convention.
By contemporary accounts, Hilbert became the first to prove the Kronecker-Weber theorem in full
generality, as originally conjectured, in his 1896 paper (in which he too accredited Weber, with no
small amount of irony). Hilbert attacked the problem from a different angle, and found a way to
leverage his then recently-developed theory of higher ramification groups. It is worth mentioning
the strategy he employed has connections to later ideas in class field theory.
Concerning the layout of this paper, Section 2 is divided into four subsections, each intended to
rapidly treat a topic of necessary background information. Integrality (2.1) is split from the rest of
the commutative algebra preliminaries (2.2), as the latter contains more specialized lemmas to be
used in the sequel. In subsection 2.3, we state the fundamentals of field and classical Galois theory,
followed by a discussion on cyclotomic fields. Subsection 2.4 focuses on bilinear forms, dual bases,
and nondegeneracy.
Section 3 marks the end of review material and makes the transition to algebraic number theory
by defining the trace, norm, and discriminant. Section 4 introduces fractional ideals and proves
a central property about unique factorization of ideals in Dedekind domains. In the subsequent
Section 5, we devoted our attention a special class of Dedekind domains called discrete valuation
rings and the closely associated notion of a discrete valuation. The aim of Section 6 is to synthesize
some of these concepts while laying the groundwork for a particular setup we are interested in.
Sections 7 and 8 investigate the situation when additional assumptions are imposed; importantly,
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here we begin the study of ramification theory. We note that Section 7 includes a proof of the
fundamental identity; then, Section 8 will sharpen the result in the Galois case by considering an
action of the Galois group. Higher ramification groups are detailed in Section 9, and a number
significant properties are given. Section 10 on algebraic number fields and in their rings of integers
brings us back to a concrete framework; we determine the prime numbers which ramify in an
algebraic number field in terms of its discriminant. In Section 11, we perform some calculations
with cyclotomic fields in order to understand them on a deeper level. This puts us in a position to
finally tackle the Kronecker-Weber theorem.
In Section 12, a series of lemmas builds up to the main result, which, by an application of ram-
ification theory, reduces to a special case in the penultimate Section 13. The conclusion is that
one only has to consider cyclic extensions of prime power degree pm where p is the only prime
that ramifies. At this point, we examine two separate cases depending on the parity of p; both are
covered in Section 14, but the harder case, when p = 2, relies on a technical induction argument
and is accordingly reserved for last.

2. Preliminaries and conventions

All rings are tacitly assumed to be commutative and unital, because noncommutative rings are a
hoax. Accordingly, we use the terms “domain” and “integral domain” interchangeablely. Every ring
homomorphism φ respects the identity; that is, φ carries 1 to 1. Definitions, commonly embedded
into the text, shall be indicated in bold.

2.1. Integrality. Recall there is a ring theoretic generalization for the notion of algebraic elements
in a field extension. Given an extension B/A of rings, we say an element x ∈ B is integral over
A if x is a root of some monic polynomial with coefficients in A. If every element of B is integral
over A, we shall say that B is integral over A, and, in the case when A is a domain and B its field
of fraction K, that A is integrally closed.
As in the theory of fields, the notation A[x] denotes the smallest subring of B containing A and x.
It is easily checked that A[x] is the set of polynomials in x with coefficients in A. Let now us state
a technical-sounding proposition that will play a crucial role in the proof of Theorem 4.4 later on.

Proposition 2.1. Let B/A be a ring extension. Then an element x ∈ B is integral over A if and
only if there exists a faithful A[x]-module M that is finitely generated as an A-module [AM69,
Proposition 5.1].

The set of elements of a ring B that are integral over a subring A is called the integral closure
of A in B. The basic fact to keep in mind about integrality is this:

Proposition 2.2. If B/A is a ring extension, the integral closure of A in B is a subring of B
containing A [AM69, Corollary 5.3].

Morevover, integral dependence is transitive. The proof thereof is not unlike that of its field theory
counterpart (transitivity of algebraic extensions).

Proposition 2.3. Let A ⊆ B ⊆ C be rings. If C is integral over B and if B is integral over A,
then C is integral over A [AM69, Corollary 5.4].

Corollary 2.4. If B/A is a ring extension and A is the integral closure of A in B, then B is
integral over A.

Proof. By the above, the integral closure of A in B is integral over A, and thus contained in A. ■

2.2. Review of commutative algebra. This subsection records some algebraic results for the
reader’s convenience, starting off with a well-known fact concerning modules over PIDs. Adopt the
convention where the zero module is free with an empty basis.
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Theorem 2.5. Every submodule N of a free module M over a principal ideal A is free with
rankN ≤ rankM .

Remark 2.6. Theorem 2.5 is true whether rankM is finite or infinite. The latter case can be shown
per an application of Zorn’s lemon.

Proof. We want to show every submodule N of An is free of rankN ≤ n. Proceed by induction.
The case n = 0 is trivial. If n = 1, then N is just an ideal of A. By assumption, N = (a) has a
single generator. If a is nonzero, one has A ∼= (a) (x 7→ ax), since A is an integral domain.
Suppose the theorem has been proved for some n ≥ 1. Let N be a submodule of An+1 = An⊕A. If
π : An ⊕A→ An denotes projection to the first component, then π(N) is a submodule of An. By
the induction hypothesis, π(N) is free of rank d ≤ n. Take a basis π(e1), . . . , π(ed), ei ∈ N , of π(N).
The elements e1, . . . , ed are linearly independent in N , so Ae1 · · · + Aed ∼= Ad. It is easy to check
that N is the sum of A-submodules Ae1 + · · ·+ Aed and ker(π|N ). But ker(π|N ) ⊆ kerπ = 0⊕ A
is a submodule of A. As we know from the n = 1 case, ker(π|N ) is free of rank 0 or 1. This says
either ker(π|N ) = 0, in which case N ∼= Ad is free of rank d ≤ n + 1, or that ker(π|N ) = Ae for
some nonzero e, so that e1, . . . , ed, e is a basis for N , a free module of rank d+ 1 ≤ n+ 1. ■

Lemma 2.7. If A is a Noetherian ring, every A-submodule of An is finitely generated, for all n.

Proof. Induct on n, as above. The Noetherian condition takes care of the base case n = 1, where
submodules of A are ideals by a different name. Now suppose n ≥ 1, and that every submodule
of An is finitely generated. Let N be a submodule of An+1 = An ⊕ A, and let π : An ⊕ A → An

be the natural projection. By the induction hypothesis, π(N) has a finite set of generators, say
π(e1), . . . , π(ed), ei ∈ N . Then N is the sum of submodules Ae1 + · · · + Aed and ker(π|N ). But
ker(π|N ) ⊆ kerπ = 0⊕A is finitely generated, and (hence) so is N . ■

Corollary 2.8. Every finitely generated module M over a Noetherian ring A is Noetherian.

Proof. If e1, . . . , en ∈ M is a set of generators, then ((a1, . . . , an) 7→ a1e1 + · · ·+ anen) : A
n → M

exhibits M as a quotient of An. This implies every submodule of M is finitely generated, in light
of Lemma 2.7 and the correspondence theorem. ■

Lemma 2.9. If A is a ring and m is a maximal ideal, then A/m ∼= Am/mAm.

Proof. Let us consider the natural composition A→ Am → Am/mAm, the kernel of which contains
m. The induced homomorphism A/m → Am/mAm is injective as the domain is a field. For any
s ∈ A−m, this map sends the inverse of s (mod m) to the element 1/s (mod mAm), by uniqueness
of inverses for s/1 (mod mAm). This proves surjectivity. ■

Lemma 2.10. Let A be an integral domain with field of fractions K. The conditions below are
equivalent:

(i) A is integrally closed;
(ii) Ap is integrally closed for all prime ideals p;
(iii) Am is integrally closed for all maximal ideals m.

Proof. Assume A is integrally closed, and let p be a prime ideal. Suppose x ∈ K = FracAp satisfies
a monic polynomial equation xm+am−1x

m−1+ · · ·+a0 = 0 for ai ∈ Ap. Multiplying by a common
denominator s ∈ A−p of the coefficients ai, and then by sm−1, one obtains an equation of integral
dependence for sx over A, which means sx ∈ A and x ∈ Ap. Therefore Ap is integrally closed.
Now suppose Am is integrally closed for all maximal ideals m. If x ∈ K is integral over A, it is a
fortiori integral over the localization Am ⊇ A at every maximal ideal m, and x ∈ Am. But the ideal
{a ∈ A | ax ∈ A} of denominators of x cannot be proper: otherwise, it would be contained in a
maximal ideal m, while x ∈ Am can be written as a fraction with denominator in A−m. Therefore
1 ∈ {a ∈ A | ax ∈ A}. ■
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Lemma 2.11. Let A be a Noetherian local integral domain. If the unique maximal ideal m of A
is principal, then A is a PID.

Proof. Let π ∈ A generate m. Every nonzero nonunit element in a Noetherian domain admits a
(possibly nonunique) factorization into irreducibles. But each irreducible element of the local ring
A is contained in m, and hence is an associate of π. In other words, every nonzero element a ∈ A
can be written as a = πv(a)u for some v(a) ≥ 0 and u ∈ A×. Now for an arbitrary ideal a with a
finite system of generators a1, . . . , ak, the element πv with v = min v(ai) generates a = (πv). ■

Theorem 2.12 (Hilbert basis theorem). If A is a Noetherian ring, the polynomial ring A[X] is
Noetherian.

Remark 2.13. By iteration, the polynomial ring A[X1, . . . , Xn] in n variables is also Noetherian,
provided A is Noetherian (for example, when A is a field).

2.3. Miscellaneous field theory. Fix an arbitrary field K. Given two field extensions L1,L2 of
K, define HomK(L1,L2) to be the set of ring homomorphisms L1 → L2 that restrict to the identity
on K.
An irreducible polynomial f in K[X] is inseparable if f has double roots in some extension field
of K, and separable otherwise. We say an algebraic extension L/K is separable if every element
x ∈ L is separable, i.e. the minimial polynomial of x over K is separable. Every algebraic extension
in characteristic zero is separable; see [Kna16, Proposition 9.27]. It can also be shown that every
algebraic extension of a finite field is separable [Kna16, p. 477]. To check that a finite extension is
separable, it suffices to find a set of separable generators [Kna16, Corollary 9.30].
Just like algebraic extensions, separability behaves nicely in towers.

Proposition 2.14. Let K ⊆ L ⊆M be a tower of algebraic field extensions. If M/K is separable,
then M/L and L/K are separable.2

Proof. Let x ∈M be an arbitrary element with minimal polynomial p(X) over L. Note that p(X)
divides the minimal polynomial p0(X) of x over K. Since the latter does not have double roots in
any extension field of K, the former cannot have double roots in any extension field of L. ■

Let L/K be an extension, K an algebraic closure of K. The cardinality of HomK(L,K), denoted
[L : K]sep, is independent of the choice of K since all algebraic closures of a field are isomorphic.
This sets up the following characterization of separability in the case when L is a finite extension.

Proposition 2.15. For any finite L/K, the value [L : K]sep is finite. In fact, one has

[L : K]sep ≤ [L : K],

with equality if and only if L is a separable extension of K.

Proof. Combine [Kna16, Corollary 9.29] and [Kna16, Corollary 9.30]. ■

Theorem 2.16 (Primitive element theorem). Every finite separable extension L/K is simple, i.e.
there exists some γ ∈ L such that L = K(γ) [Kna16, Theorem 9.34].

Corollary 2.17. If L/K and L′/K are finite separable, then so is the compositum LL′/K.

Proof. Write L = K(α) and L′ = K(α′) by the primitive element theorem. Then LL′ = K(α, α′),
which is a separable extension of K, since α, α′ are separable. ■

Lemma 2.18. Let L/K be an algebraic extension. Any embedding of K into an algebraically
closed field K′ extends to one of L into K′.

Proof. See [Kna16, Theorem 9.23] for a proof with a set-theoretic flavor. ■

2The converse is equally true, albeit less relevant in the present paper.
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Lemma 2.19. Let K ⊆ L ⊆ M be a tower of field extensions, and fix an algebraic closure K of
K. Define an equivalence relation on HomK(M,K) by declaring σ1 ∼ σ2 if and only if σ1|L = σ2|L.
SupposeM/L is separable and finite. Then each equivalence class contains exactly [M : L] elements.

Proof. For each σ ∈ HomK(M,K), the isomorphism σ : M → σM induces a one-to-one correspon-
dence τ 7→ τ ◦ σ from HomσL(σM,K) onto the equivalence class [σ]∼, as in

M
∼=
��

τ◦σ

!!
σM τ // K.

Now since M is a separable finite extension of L, by Proposition 2.15,

|[σ]∼| = |HomσL(σM,K)| = [σM : σL]sep = [M : L]sep = [M : L].

The second equality is obtained by considering K as an algebraic closure of σL, which makes sense
because, via Lemma 2.18, the inclusion K ↪−→ K extends to an embedding of σL into K. ■

An algebraic field extension L/K is normal if every irreducible polynomial in K[X] with a root in
L splits completely in L[X]. For an arbitrary extension L/K, its Galois group Gal(L/K) is the
group of K-automorphisms of L. A Galois extension whose Galois group is abelian (resp. cyclic)
is aptly called an abelian extension (resp. cyclic extension). There are a number of useful
characterizations for normality.

Proposition 2.20. Suppose L/K is finite. Then the following are equivalent:

(i) L is normal over K,
(ii) L is the splitting field of some nonconstant f(X) ∈ K[X],
(iii) every K-homomorphism of L into an algebraic closure L carries L into itself.

Proof. This is essentially a restatement of [Kna16, Proposition 9.34A]. ■

In a finite normal field extension L/K, by the above, corestriction onto L defines a bijection from
HomK(L,L) onto HomK(L,L). Now assuming L/K is furthermore Galois (separable and normal),
the size of the Galois group |Gal(L/K)| = [L : K] is equal to the degree [Kna16, Proposition 9.35],
which, in turn, is equal to the separable degree [L : K]sep = |HomK(L,L)| (choosing L as an alge-
braic closure of K). In short, we have a one-to-one correspondence Gal(L/K) = HomK(L,L) ←→
HomK(L,L) by corestriction.
Given a field extension L/K, there is an inclusion-reversing correspondence between intermediary
fields K ⊆ F ⊆ L and subgroups H of the Galois group Gal(L/F). Explicitly, each intermediary
field F maps to Gal(L/F) ≤ Gal(L/K), and, conversely, every subgroup H corresponds to its fixed
field LH = {x ∈ L | σx = σ for all σ ∈ H}. When is this correspondence one-to-one?

Theorem 2.21 (Fundamental theorem of Galois theory). If L/K is a finite Galois extension, the
inclusion-reversing maps F 7→ Gal(L/F) and H 7→ LH between intermediary fields of L/K and
subgroups of Gal(L/K) are inverses [Kna16, Theorem 9.38].

Lemma 2.22. If L/K and L′/K are normal extensions, then LL′ and L ∩ L′ are normal over K.

Proof. We first leverage Proposition 2.20. Let L,L′ be the splitting fields of f(X), f ′(X) ∈ K[X],
respectively. Then LL′ is the splitting field of the product of f and f ′. Now suppose g(X) is an
irreducible polynomial in K[X] with a root in L∩L′. The same root lies in L and L′, so g(X) splits
in both fields. By unique factorization, these two decompositions coincide, and the roots belong to
L ∩ L′. Thus, g(X) splits completely in (L ∩ L′)[X]. ■
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Proposition 2.23. Let L,L′ be finite Galois extensions of a given field K. The compositum LL′

is a finite Galois extension of K, and its Galois group Gal(LL′/K) is isomorphic to a subgroup of
the product Gal(L/K)×Gal(L′/K):

Gal(LL′/K) ∼= {(σ, σ′) | σ
∣∣
L∩L′ = σ′∣∣

L∩L′} ≤ Gal(L/K)×Gal(L′/K)

In particular, if L/K and L′/K are abelian, then so is LL′/K [DF04, Ch. 14, Proposition 21].

We shall borrow a result from Galois theory over finite fields.

Theorem 2.24. Any finite extension L of Fp is Galois. The Galois group Gal(L/Fp) is cyclic of
order n = [L : Fp], a generator of which is given by the Frobenius automorphism x 7→ xp.

Proof. A special case of [Kna16, Proposition 9.40]. ■

Of special interest to algebraic number theory are extensions obtained by adjoining a complex root
of unity ζn = exp(2πi/n) to the field of rational numbers Q. These are the cyclotomic fields. In
fact, our main result is a partial converse of the fact that Q(ζn)/Q is a finite abelian extension; we
prove a stronger statement.3

Proposition 2.25. The cyclotomic field Q(ζn) is a finite Galois extension of Q of degree ϕ(n),
whose Galois group is isomorphic to (Z/nZ)×.

Proof. First, Q(ζn) is the splitting field of the n-cyclotomic polynomial

Φn(X) ≡
∏

gcd(k,n)=1

(X − ζkn) ∈ Q[X]

over Q. In other words, Q(ζn)/Q is normal. Separability is immediate in characteristic 0. Recall
that Φn(X) is irreducible in Q[x]; as such it is the minimal polynomial of ζn, and [Q(ζn) : Q] =
degΦn(X) = ϕ(n).
Every Q-automorphism of Q(ζn) is determined by its action on ζn. The image of ζn under such an
automorphism σ must be another root of Φn(X), which is to say that σζn can only take on the values
ζan for 0 ≤ a < n, gcd(a, n) = 1. Since there are ϕ(n) = |Gal(Q(ζn),Q)| such integers, we know that
each value is achieved as σ varies over all the elements of Gal(Q(ζn),Q). We thus have a bijection
(Z/nZ)× → Gal(Q(ζn)/Q), where each residue a mod n gets mapped to the automorphism defined
by ζn 7→ ζan. ■

There is an elementary fact about cyclotomic polynomials that plays a useful role in calculations:

Lemma 2.26. Let q = pr be a prime power (r > 0). Then Φq(1) =
∏

gcd(k,q)=1(1− ζkq ) = p.

Proof. If r = 1, the claim is immediate from Φp(X) = 1 +X + · · ·+Xp−1. Moreover, the identity
Xn − 1 =

∏
d|n Φd(X) applied to n = q = pr shows that

1 +X + · · ·+Xq−1 = Φp(X)Φp2(X) · · ·Φpr (X).

Now set X = 1 and proceed by strong induction. ■

2.4. Bilinear forms. As a brief multilinear algebra review, let us restrict to the finite dimensional
case, where V is a K-vector space of dimension n. A bilinear form over V is another word for a
bilinear map from V × V to its base field K.

3The reader at this point may want to familiarize themselves with the basic properties of cyclotomic polynomials
if needed.
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3. Trace and norm

Definition 3.1. Let B/A be a ring extension such that B is a free A-module of rank n. For each x
in B, multiplication by x defines an A-linear endomorphism Tx : B → B, the trace and determinant
of which we call the trace TrB/A(x) and norm NB/A(x) of x, respectively. In symbols,

TrB/A(x) = Tr(Tx), NB/A(x) = det(Tx).

Thus, TrB/A and NB/A specify maps from B to A. Using properties of trace and determinant, it
is fairly easy to verify the following properties:

Proposition 3.2. If B/A is a ring extension such that B is a free A-module of rank n,

(i) TrB/A : B → A is A-linear,

(ii) NB/A : B → A is multiplicative and defines a group homomorphism from B× to A×, and
(iii) NB/A(a) = an for all a ∈ A.

Lemma 3.3. Let L/K be a finite separable extension. Let fx(X) = det(X idn−Tx) ∈ K[X] be
the characteristic polynomial of Tx (in the notation of Definition 3.1). Then fx(X) is a power of
the minimal polynomial p(X) of x over K:

fx(X) = p(X)d,

where d = [L : K(x)].

Proof. Let m = [K(x) : K]. We know that 1, x, . . . , xm−1 is a basis for K(x) over K. Now choose a
basis a1, . . . , ad for L over K(x). Then the pairwise products

a1, a1x, . . . , a1x
m−1; . . . ; ad, adx, . . . , adx

m−1

for L over K. What happens if we express Tx with respect to this basis? By definition, ajx
ℓ gets

sent to ajx
ℓ+1 under Tx, which has the effect of “shifting” each of aj , ajx, . . . , ajx

m−2 forward to
the next basis vector. Writing p(X) = Xm + cm−1X

m−1 + . . . + c0 for ci ∈ K, each ajx
m can be

rewritten as −c0aj − c1ajx − · · · − cm−1ajx
m−1. Therefore, the matrix of Tx can be written as a

block matrix

Tx =


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

 , M =


0 0 0 · · · −c0
1 0 0 · · · −c1
0 1 0 · · · −c2
...

...
...

. . .
...

0 0 0 · · · −cm−1

 ∈Mm(K),

with d copies of M along the main diagonal. The characteristic polynomial of M is then checked
to be Xm+ cm−1X

m−1+ · · ·+ c0 = p(X) by inducting on m and performing cofactor expansion on
the leftmost column. We conclude that fx(X) = det(X idn−Tx) = det(X idm−M)d = p(X)d. ■

Proposition 3.4. If L is a finite separable extension of K, then for each x ∈ L, one has

TrL/K(x) =
∑
σ

σx, NL/K(x) =
∏
σ

σx,

where σ ∈ HomK(L,K) ranges over all K-embeddings of L into a fixed algebraic closure K of
K. For a finite Galois extension L/K, the sum and product above are indexed by the elements
σ ∈ Gal(L/K).

Proof. Let d = [L : K(x)] and m = [K(x) : K]. Define an equivalence relation on HomK(L,K) by
declaring σ1 ∼ σ2 if and only if σ1(x) = σ2(x). According to Lemma 2.19, each equivalence class
with respect to ∼ contains d elements, so the number of classes is [L : K]sep/d = [L : K]/d = m.
Now let σ1, . . . , σm be a system of representatives. The minimal polynomial p(X) of x over K is
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of degree m, and the elements σ1(x), . . . , σm(x) of K are distinct roots of p(X). Hence, p(X) =
(X − σ1(x)) · · · (X − σm(x)). Lemma 3.3 tells us that fx(X) = p(X)d. But now

fx(X) =

m∏
i=1

(X − σi(x))
d =

∏
σ

(X − σ(x)).

Vieta’s formula yields the desired result. The second assertion evidently follows from our discussion
of normal and Galois extensions back in subsection 2.3. ■

Definition 3.5. Let B/A be a ring extension such that B is a free A-module of rank n, and let
α1, . . . , αn be a basis for B over A. The discriminant disc(α1, . . . , αn) of the basis α1, . . . , αn is
defined as the determinant of its trace pairing matrix:

disc(α1, . . . , αn) = det(TrB/A(αiαj)) ∈ A.

In the notation above, let α′
1, . . . , α

′
n be second basis for the free A-module B. Write α′

j =
∑

ajiαi,
and let A = (aij) be the change of basis matrix. Then

TrB|A(α
′
kα

′
ℓ) =

∑
i,j

TrB|A(akiαiaℓjαj) =
∑
i,j

aki TrB|A(αiαj)aji,

so (TrB|A(α
′
kα

′
ℓ)) = A · (TrB|A(αiαj)) ·AT and disc(α′

1, . . . , α
′
n) = (detA)2 disc(α1, . . . , αn). There-

fore, as the matrix A is invertible, the discriminant is well-defined up to multiplication by the
square of a unit in A. Consequently, the condition disc(α1, . . . , αn) = 0 is independent of the
choice of basis α1, . . . , αn. Another corollary is that discriminant is truly well-defined when A = Z
(the only units in Z are −1 and 1). We now define the discriminant disc(B/A) of B over A as
the discriminant disc(α1, . . . , αn) of an A-basis for B, regarding the latter as an equivalence class
under

a1 ∼ a2 ⇐⇒ a1 = u2a2 for some u ∈ A×, (a1, a2 ∈ A).

Lemma 3.6. Let L/K be a separable field extension with K-basis α1, . . . , αn. Then one has

disc(α1, . . . , αn) = det(σiαj)
2,

where σi ∈ HomK(L,K) ranges over all K-embeddings of L into a fixed algebraic closure K of
K. In particular, a K-basis of the form 1, γ, . . . , γn−1 has discriminant

∏
i<j(σiγ − σjγ)

2, by the
Vandermonde determinant from linear algebra.

Proof. Applying Proposition 3.4, we find that TrB/A(αiαj) =
∑

(σkαi)(σkαj), so the trace pairing

matrix is (σiαj)
T (σiαj). ■

Proposition 3.7. In a separable extension L/K, the discriminant disc(L/K) is nonzero.

Proof. By the primitive element theorem (Theorem 2.16), we have L = K(γ) for some γ ∈ L. Let
HomK(L,K) = {σ1, . . . , σn}. Since 1, γ, . . . , γn−1 is a basis for the K-vector space L (n = [L : K]),
we deduce that disc(1, γ, . . . , γn−1) ̸= 0 from the previous lemma (σiγ ̸= σjγ whenever i < j, for
a K-embedding σ of L is completely determined by σγ). ■

4. Dedekind domains

Definition 4.1. Let A be an integral domain. One says that A is a Dedekind domain if A is
Noetherian, integrally closed, and each nonzero prime ideal in A is maximal.

Remark 4.2. Equivalently, a Dedekind domain is a Noetherian, integrally closed domain A of Krull
dimension dimA ≤ 1. Some authors prefer to modify the above definition by appending a condition
that excludes fields; note the conventional differences.
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Example. The ring Z is a Dedekind domain. In fact, every PID is Dedekind. This is because every
UFD is integrally closed, which is essentially just a generalization of the rational root theorem.
Indeed, let A be a unique factorization domain; let K be the quotient field of A. Suppose x ∈ K
is integral over A. We have a polynomial equation of the form xm + am−1x

m−1 + · · ·+ a0 = 0 for
ai ∈ A. Writing x = a/s for a, s ∈ A gives am+am−1a

m−1s+ · · ·+a0s
m = 0. If si is an irreducible

factor of s, then si necessarily divides am and (hence) si|a. It follows that x = a/s ∈ A.

Example. Insert example from algebraic geometry (very cool)

Definition 4.3. Let A be an integral domain with field of fractions K. A fractional ideal a of
A is an A-submodule of K such that there is some a ∈ a with aa ⊆ A.

Ideals of the domain A is are fractional ideals. Conversely, any fractional ideal contained in A is
necessarily an ideal. Every fractional ideal is of the form (1/a)a′ for some ideal a′ and a ∈ A−{0}.
One can multiply two fractional ideals a, b. The elements of the product ab are finite sums of
elements of the form aibi (ai ∈ a, bi ∈ b). A fractional ideal a is said to be invertible if there is
another fractional ideal a−1 with aa−1 = A. The invertible fractional ideals form an abelian group
with identity element A. If the inverse a−1 of a exists, it is necessarily given by the generalized
ideal quotient (A : a) = {x ∈ K | xa ⊆ A}. This implies inversion of fractional ideals is inclusion
reversing.
More generally, the quotient (b : a) = {x ∈ K | xa ⊆ b} of fractional ideals a, b with a ̸= 0 is
also fractional ideal: indeed, find a, b ∈ A − {0} such that aa ⊆ A and bb ⊆ A. For any nonzero
element a0 ∈ aba ⊆ A, we have a0(b : a) = a0(abb : aba) ⊆ abb ⊆ A; thus a0(b : a) ⊆ A for some
a0 ∈ A− {0}.
For any domain A with fractional field K, a finitely-generated A-submodule of K is a fractional
ideal by clearing denominators on a system of generators. In fact, the former can be taken as an
equivalent definition if A is Noetherian (due to ideals being finitely generated). We now obtain the
handy characterization of Dedekind domains below.

Theorem 4.4. Let A be an integral domain with field of fractions K. Then A is Dedekind if and
only if every nonzero fractional ideal is invertible.

First, a couple of lemmas are in order.

Lemma 4.5. If A is an integral domain with field of fractions K, then every invertible fractional
ideal a of A is a finitely generated A-module.

Proof. Let a−1 be the inverse of a, i.e. aa−1 = A. This yields an equation a1a
′
1 + · · · + ana

′
n = 1

for suitable ai ∈ a, a′j ∈ a−1. Then for any a ∈ a, we find that a1(aa
′
1) + · · · + an(aa

′
n) = a, so

a ∈ Aa1 + · · ·+Aan. ■

Lemma 4.6. Every ideal (resp. nonzero ideal) a in a Noetherian ring A contains a finite product
of prime ideals (resp. of nonzero prime ideals).

Proof. Suppose otherwise, i.e. the set Σ of ideals in A that do not contain any finite product of
prime ideals is nonempty. Since A is Noetherian, Σ has a maximal element a. In particular, the
ideal a itself cannot be prime, so there exist x, y ̸∈ a with xy ∈ a. Then a + (x) and a + (y) both
contain finite products of prime ideals by the maximality of a, and so does their product. But
(a+ (x))(a+ (y)) = a2 + a(x) + a(y) + (xy) ⊆ a, contradicting the fact that a ∈ Σ.
A very similar argument, replacing Σ with the collection of nonzero ideals not containing any finite
product of nonzero primes, verifies the parallel claim of the lemma. ■

Lemma 4.7. Let A be a Noetherian integral domain with field of fractions K, such that every
nonzero prime ideal in A is maximal. Then for every nonzero proper ideal a, there is an element
x ∈ K−A with xa ⊆ A.
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Proof. Let a ̸= 0 be an arbitrary nonzero element of a. According to Lemma 4.6, the nonzero
ideal (a) contains a product p1p2 · · · pn of nonzero primes; let n be minimal with respect to this
property. Now choose a maximal ideal m containing a. Then m ⊇ p1p2 · · · pn, so m ⊇ pi for
some i, which means m = pi because pi is maximal. By the minimality of n, there is an element
b ∈ p1 · · · pi−1pi+1 · · · pn with b ̸∈ (a). In particular, the element x = b/a ∈ K is not contained in
A. Since a ⊆ pi and p1p2 · · · pn ⊆ (a), we conclude that ba ⊆ (a) and xa = (b/a)a ⊆ A. ■

Proof of Theorem 4.4. Suppose that A is a Dedekind domain. By the discussion following Defi-
nition 4.3, particularly the first paragraph, it suffices to check that every nonzero ideal a of A is
invertible. Recall the generalized ideal quotient (A : a) = {x ∈ K | xa ⊆ A} of A and a is a
fractional ideal. By definition, we have a(A : a) ⊆ A. The claim is that a(A : a) = A. Otherwise,
Lemma 4.7 would gives us xa(A : a) ⊆ A for some x ∈ K − A (since a(A : a) ⊇ aA ⊋ 0). Hence
x(A : a) ⊆ (A : a), so M = (A : a) is closed under multiplication by elements of A[x]. This allows
us to view M = (A : a) as an A[x]-module. Because A is Noetherian, M is finitely generated as an
ideal and an A-module, so x is integral over A in view of Proposition 2.1. Finally, the hypothesis
that A is integrally closed tells us x ∈ A, clearly a contradition.
Conversely, suppose all nonzero fractional ideals of A are invertible. All invertible ideals are finitely
generated by Lemma 4.5, implying that A is Noetherian. Now if x ∈ K is integral over A, in other
words xm + am−1x

m−1 + · · ·+ a0 = 0 for some ai ∈ A, then xm is in the nonzero fractional ideal
a = (1, x, . . . , xm−1). Observe that a is closed under multiplication by x, or a(x) ⊆ a. Therefore,
x ∈ (x) = a−1a(x) ⊆ a−1a = A, and A is integrally closed. It remains to prove that every nonzero
prime ideal p is maximal. Find a maximal ideal m containing p. Note that p = (pm−1)m, where
pm−1 ⊆ mm−1 = A is an ideal. A fortiori, either p ⊇ pm−1 or p ⊇ m. The first case would yield
m = A after multiplying by p−1. This is impossible, so p = m is maximal. ■

Remark 4.8. Theorem 4.4 can be taken as a consequence of the Lasker–Noether theorem on the
existence of primary decompositions in Noetherian rings (see e.g. the proof of [AM69, Proposi-
tion 9.1]).

One can define division of ideals of a ring in the obvious manner: by b|a, we mean that a = bc
for an ideal c. Dedekind domains feature a nice equivalence concerning divisibility, summarized in
words by the maxim “to contain is to divide.”

Corollary 4.9. If a, b are ideals in a Dedekind domain A, then b ⊇ a if and only b|a.

Proof. Suppose that b contains a. By Theorem 4.4, one can find a fractional ideal b−1 such that
bb−1 = A. Then c = b−1a ⊆ A is an ideal with a = bc. ■

Our goal is to show that ideals in a Dedekind domains satisfy an analogue of the unique factorization
of elements in a UFD.

Theorem 4.10. Every nonzero proper ideal a in a Dedekind domain A can be factored into a finite
product a = pu1

1 pu2
2 · · · pun

n (ui > 0) of distinct prime ideals pi ̸= pj . Further, this factorization is
unique up to permutation.

Proof. To show existence, we argue by contradiction. Suppose the set Σ of nonzero proper ideals
without such a prime factorization is nonempty. Since Dedekind domains are Noetherian by defi-
nition, we can take a maximal element a of Σ. There is a nonzero maximal ideal p containing a.
Note that A ⊆ p−1 because p ⊆ A, so

a = aA ⊆ ap−1 ⊆ pp−1 = A.

Neither inclusions can be equalities: aA = ap−1 would imply p−1 = A = p, and ap−1 = A would
yield a = p, contradicting a ∈ Σ. Thus, by the maximality of a, we see that ap−1 admits a prime
decomposition, and so does a.
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Now suppose a = pu1
1 · · · pun

n = qv11 · · · qvrr are two factorizations of a in terms of prime ideals pi, qj ,
with pi1 ̸= pi2 whenever i1 ̸= i2 and similarly for the qj . Then p1 contains qv11 · · · qvmm , so p1 ⊇ qj .
Assume j = 1 without loss of generality. It follows that p1 = q1 because q1 is a maximal ideal.
Cancelling p1 from both sides, which is possible thanks to Theorem 4.4, the distinctness of pi and
qj (in the suitable sense) forces u1 = v1. Repeating this process gives the desired conclusion. ■

5. Discrete valuation rings

Theorem 5.1. The local Dedekind domains that are not fields are precisely the local PIDs that
are not fields.

A ring A satisfying one of these two equivalent conditions is called a discrete valuation ring
(abbreviated DVR). They are the simplest rings except for fields.

Proof. We have seen that every PID is a Dedekind domain; it suffices prove every local Dedekind
domain A is a PID. Let m be the unique maximal ideal of A. We are done if A is a field4. Otherwise,
m ̸= 0. Since m is a finitely generated A-module, we have m ̸= m2 by Nakayama’s lemon. Pick an
element π ∈ m \m2. Note that (0) and m are the only primes of A. Since π ̸= 0, the local quotient
A/(π) only has one prime ideal m/(π). This means A/(π) is Noetherian of dimension 0, and hence
Artinian. By properties of local Artinian rings, the maximal ideal m/(π) is nilpotent. Take e ≥ 1
minimal such that me ⊆ (π). Assume e > 1 toward contradiction. Since me−1 ̸⊆ (π), one can find
r ∈ me−1 with r ̸∈ (π). These conditions imply x = r/π ̸∈ A and xm ⊆ (1/π)me ⊆ A; it follows
that xm is an ideal of A. Since π ̸∈ m2 and r ∈ m (this step rests on the assumption that e > 1),
we cannot have xπ = (1). Therefore xm ⊆ m. The multiplication-by-x endomorphism ϕ : m → m
on the finitely generated A-module m satisfies a monic polynomial relation with coefficients in A,
from Proposition ??. Now evaluate at a nonzero element of m and cancel it from the equation. We
obtain an equation of integral dependence for x over A, contradicting the fact that A is integrally
closed. Hence, e = 1, and m = (π) is principal. From Lemma 2.11, A is a PID. ■

In a principal ideal domain, the nonzero prime ideals are precisely the principal ideals (π) generated
by an irreducible element π. Thus, given a discrete valuation ring A with unique maximal ideal
m, there is exactly one irreducible element up to multiplication by a unit (any irreducible π would
generated m). Such an element is called a uniformizer of A.

Proposition 5.2. If A is a Dedekind domain with field of fractions K, then Ap is a DVR for any
nonzero prime ideal p of A.

Proof. (Nontrivial) localizations of a Noetherian domains are Noetherian domains. By Lemma 2.10,
Ap is integrally closed. The fact that nonzero prime ideals of Ap are maximal follows from the
one-to-one correspondence between prime ideals of Ap and those of A contained in p. Moreover, it
is known that Ap is a local ring with unique maximal ideal pAp. The point of stipulating p ̸= 0 is
to ensure that Ap is not a field (the maximal ideal is nonzero). ■

Definition 5.3. Let K be a field. A discrete valuation v on K is a surjective group homo-
morphism v : K× → Z, extended to the whole of K by setting v(0) = ∞, such that v(x + y) ≥
min(v(x), v(y)) for all x, y ∈ K.

Let A be a DVR with field of fractions K, and fix a uniformizer π ∈ A. By unique factorization of
elements, any nonzero x ∈ A can be expressed in the form πmu for unique m ∈ Z≥0 and u ∈ A×.
The integer m does not depend on the choice of uniformizer; we call it the valuation v(x) of x.
Now every nonzero element x ∈ K admits a unique representation of the form πmu, where m ∈ Z
this time (and u ∈ A×). So v extends to a map from K× to Z by setting v(x) = m. One can easily
verify that v is indeed a discrete valuation on K, and that A is the set {x ∈ K | v(x) ≥ 0}, whose
unique maximal ideal m = (π) = {x ∈ K | v(x) > 0} is the set of elements with positive valuation.

4Remember how, by our definition, fields are Dedekind domains (but not DVRs).
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Conversely, we can start with a discrete valuation v on a field K. The valuation ring of K is
A = {x ∈ K | v(x) ≥ 0}. Since v(xy) = v(x)v(y) for all x, y ∈ K, A is an integral domain; its
fraction field is K. Moreover, every element of A not in the proper ideal m = {x ∈ K | v(x) > 0} is
a unit (for if v(x) = 0, then v(x−1) = v(xx−1) = v(1) = 0, so x−1 ∈ A); this makes A into a local
ring. Due to surjectivity, we can pick some π ∈ m with v(π) = 1. For any x ∈ K with v(x) = n, we
have x = πnu for a unit u ∈ A (v(x/πn) = 0). Any ideal a of A is generated by an element x ∈ a
with minimal v(x). We conclude that A is a DVR with v as its associated discrete valuation.
In a Dedekind domain A with fraction field K, the localization Ap at nonzero prime ideal p is a
DVR (Proposition 5.2), which also has fraction field K. Let vp denote the discrete valuation on K
associated with Ap.

Example. For each prime p, the localization Z(p) of the Dedekind domain Z at (p) ̸= 0 gives rise
to the p-adic valuation on Q.

Definition 5.4. Let K be a field. By an absolute value on K, we mean a multiplicative function
| · | : K → R≥0 satisfying the triangle inequality (i.e. |x+ y| ≤ |x|+ |y| for all x, y ∈ K) such that
|x| = 0 if and only if x = 0.

Choose a real number b > 1. Every discrete valuation v on a field K induces an absolute value | · |v
on K by |x|v = b−v(x). If p is a prime ideal of a Dedekind domain A with field of fractions K, the
absolute value arising from vp will be denoted by | · |p.

6. The “AKLB setup”

This section, chiefly based on [Neu99], uses the following notation: let A be an integrally closed
integral domain with field of fractions K, let L be a finite separable extension of K, and let B be
the integral closure of A in L. Also, let n = [L : K] denote the degree of L over K.

Proposition 6.1. Every element x ∈ L can be written in the form x = β/α for some β ∈ B and
nonzero α ∈ A.

Proof. We really only need L/K to be an algebraic extension and A an arbitrary integral domain:
any x ∈ L satisfies a nontrivial polynomial equation of the form

arx
r + ar−1x

r−1 + · · ·+ a0 = 0

with coefficients ai ∈ K. Clearing denominators, we may take each ai to be in A. Multiplying by
ar−1
r yields

(arx)
r + a′r−1(arx)

r−1 + · · ·+ a′0 = 0

for a′i ∈ A. Thus β = arx is integral over A, and the claim follows after solving for x. ■

Corollary 6.2. The field of fractions FracB of the integral domain B is L.

Proof. The previous proposition gives B ⊆ L ⊆ FracB. On the other hand, L is a field and thus
contains every fraction of elements of B. ■

Proposition 6.3. If x ∈ B, the minimal polynomial p(X) of x over K takes coefficients in A.

Proof. Find a monic polynomial f(X) ∈ A[x] of which x is a root. Then p(X) divides f(X) in
K[x]. Hence, working within a splitting field, all the zeros of p(X) are integral over A, and so are
the coefficients, by Vieta. But K ∩ B = A (here we only use that A is integrally closed), and the
proposition follows. ■

Lemma 6.4. For any x ∈ B, the trace TrL/K(x) and norm NL/K(x) of x are contained in A.

Proof. Since x is integral over A, so are the elements σx for each σ ∈ HomK(L,K). The claim now
follows from Proposition 3.4 and the hypothesis that A is integrally closed. ■
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Lemma 6.5. Let α1, . . . , αn be a basis of L over K contained in B, and let d = disc(α1, . . . , αn).
Then one has

dB ⊆ Aα1 + · · ·+Aαn.

Proof. Let α ∈ B be arbitrary. Then if α = a1α1 + · · ·+ anαn (aj ∈ K), observe that

TrL/K(αiα) =
∑
j

TrL/K(αiαj)aj ,

exhibiting the column vector (TrL/K(αiα)) as the product of the trace pairing matrix (TrL/K(αiαj))
with the vector (aj). In light of Lemma 6.4, every entry appearing with TrL/K in the above equation
is an element of A. Multiplying both sides by the adjugate of the trace pairing matrix, we see that
daj ∈ A for all j, and dα ∈ Aα1 + · · ·+Aαn, as required. ■

A basis for B as an A-module is known as an integral basis. By Proposition 6.1, every integral
basis α1, . . . , αm is automatically a basis for L over K, hence m = n. The following result gives us
a sufficient condition for existence of A-bases.

Proposition 6.6. There exist free A-submodules M,M ′ of L such that M ⊆ B ⊆M ′. Therefore,
B is a finitely generated A-module if A is Noetherian, and free of rank n if A is a principal ideal
domain.

Proof. Pick a basis x1, . . . , xn of L over K. Using Proposition 6.1, write xi = βi/αi for βi ∈ B and
nonzero αi ∈ A. Clearly the set of x′

i = (α1α2 · · ·αn)xi ∈ B forms a basis of L/K contained in B.
So by Lemma 6.5 and Corollary 3.7, one has dB ⊆ Ax1 + · · · + Axn for d = disc(x1, . . . , xn) ̸= 0.
Note that Ax1+ · · ·+Axn is a rank-n free module. In view of Theorem 2.5, we know that dB ∼= B
is a free A-module with rankB ≤ n. But every integral basis has size n, i.e. rankB = n. ■

Proposition 6.7. If A is a Dedekind domain, then B is a Dedekind domain.

Proof. We immediately see that B is integrally closed by Corollaries 6.2 and 2.4. Next, suppose P
is a nonzero prime ideal of B. Then P∩A, being the contraction of P, is a prime ideal of A. Pick
a nonzero element y ∈ P. We can find a monic polynomial equation yr + ar−1y

r−1 + · · ·+ a0 = 0
with ai ∈ A and a0 ̸= 0. Clearly a0 ∈ P ∩A, so P ∩A is a maximal ideal of A. ■

7. Factorization in extensions

Within the “AKLB” setup of the previous section, let us investigate the splitting behavior of prime
ideals in extensions. Suppose throughout that A is a Dedekind domain, meaning nonzero ideals
factor uniquely in B by Theorem 4.10 and Proposition 6.7.

Definition 7.1. Let A be a Dedekind domain with field of fractions K, and let B be the integral
closure of A in a finite separable extension L of K. If p is a nonzero prime ideal in A, the extension
of which decomposes as a product

pB = Pe1
1 · · ·Peg

g , ei > 0

of distinct prime ideals Pi in B, the exponents e1, . . . , eg are called the ramification indices. For
each i, the canonical map A/p→ B/Pi is an embedding of fields, and the integer fi = [B/Pi : A/p]
is called the inertia degree of Pi over p; they are always finite, as we shall see in Theorem 7.2.
When g = n = [L : K], the prime ideal p is totally split in L, whereas if g = 1, it is said that p is
nonsplit in L.
The prime ideal Pi is unramified if ei = 1 and if the extension B/Pi is separable over A/p. If
not, it is ramified, and totally ramified if furthermore we have fi = 1. We say that p ramifies
in L if at least one of the Pi are ramified. Similarly, the extension L/K itself is ramified if A has
at least one prime ideal p which ramifies, and so on and so forth.
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Example. When A = Z and p = (p) for some prime number p, we shall simply say that p ramifies
in L. This amounts to asserting that one of the ramification indices is > 1, because any algebraic
extension of the finite field Z/(p) is separable by default. For instance, the prime 2 ramifies in
L = Q(i) because (2) = (1 + i)(1− i) = (1 + i)2 in Z[i], the integral closure of Z in Q(i).

Let B/A be ring extension. Let p and P be prime ideals of A and B, respectively. If P ∩ A = p,
we shall say that P lies over p. In the above definition, the prime factors Pi of p are precisely
the prime ideals of B that lie over p: indeed, if P ∩ A = p, then P divides p by Corollary 4.9.
Conversely, the prime Pi ∩A ⊆ A contains the maximal ideal p, so Pi ∩A = p.

Theorem 7.2 (Fundamental identity). Let A be a Dedekind domain with field of fractions K, let
B be the integral closure of A in a finite separable extension L of K, and let p be a nonzero prime
ideal in A. Suppose pB = Pe1

1 · · ·P
eg
g (ei > 0) is the decomposition of pB into distinct prime ideals

Pi in B. Then dimA/p(B/Pei
i ) = eifi and

g∑
i=1

eifi = n,

where n = [L : K] and fi = [B/Pi : A/p].

Proof. Since the pi are coprime, so are their powers peii . The Chinese remainder theorem gives us
B/pB ∼=

∏g
i=1 B/Pei

i . Regarding B/pB and B/Pei
i as vector spaces over κ = A/p, this means

dimκ(B/pB) =

g∑
i=1

dimκ(B/Pei
i ).

Note that m = dimκ(B/pB) <∞ because B is finitely generated as an A-module (Proposition 6.6).
Let ω1, . . . , ωm be a basis for B/pB over κ. We claim that ω1, . . . , ωm form an integral basis of B
over A, and (hence) basis for L/K, from which the desired dimκ(B/pB) = n directly follows. If
there exist a1, . . . , am ∈ A, not all zero, such that a1ω1+ · · ·+amωm = 0, then consider the nonzero
ideal a = (a1, . . . , am) of A. Pick an element a ∈ a−1\a−1p. The elements aa1, . . . , aam lie in A but
do not all belong to p. We arrive at a nontrivial linear dependence relation aa1ω1+ · · ·+aamωm ≡
0 mod p among the ω1, . . . , ωm, which gives a contradiction. Now define the A-submodule N =
Aω1 + · · ·+Aωm of B. Since ω1, . . . , ω generate B/pB over κ, B is the sum of submodules N and
pB, which means B/N = (N + pB)/N = p(B/N). Recall that B is a finitely generated A-module
(Proposition 6.6), and so is B/N . By the determinant trick [AM69, Corollary 2.5], there exists
some x ≡ 1 (mod p) with x(B/N) = 0; in other words, xB ⊆ N = Aω1+ · · ·+Aωm. Clearly x ̸= 0.
Therefore, in light of Proposition 6.1, one has L = xL = Kω1 + · · ·+Kωm.
It remains to prove dimκ(B/Pei

i ) = eifi. For each r, we view the B-module Pr
i /P

r+1
i as a vector

space over B/Pi. Any proper subspace of Pr
i /P

r+1
i would correspond to an ideal of B that is

strictly contained between Pr
i and Pr+1

i , of which there are none. Hence Pr
i /P

r+1
i has dimension

1 over B/Pi and dimension fi = [B/Pi : A/κ] over κ. Since Pr/Pei is a κ-subspace of B/Pei for
each r ≤ ei, we have the following descending chain

B/Pei ⊇ P/Pei ⊇ · · · ⊇ Pei−1/Pei ⊇ 0.

of κ-vector spaces. Finally, as the successive quotients are isomorphic to Pr/Pr+1, one has

dimκ(B/Pei) =

ei−1∑
r=0

(dimκ(P
r/Pei)− dimκ(P

r+1/Pei)) =

ei−1∑
r=0

dimκ(P
r/Pr+1) = eifi.

■

Proposition 7.3. Let p be a prime ideal of A, and P a prime ideal lying over p with ramification
index e. Then vP(x) = evp(x) for all x ∈ K.
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Proof. If π is a uniformizer of Ap, let us write x = πku for some unit u ∈ Ap, so that k = vp(x) by
definition. ■

8. Hilbert’s ramification theory

The notation of this section will be the same as that of the previous, with the additional assumption
that L/K is a Galois extension. Let G = Gal(L/K) be the Galois group of L/K. In this case, we
have |G| = n = [L : K].
Observe that σB = B for any σ ∈ G, because the conjugate σx of an integral element x ∈ B also
satisfies the same equation of integrality; this shows σB ⊆ B, and symmetrically σ−1B ⊆ B. Let
P be a prime ideal of B over p, a nonzero prime of A. Then σP ∩ A = σ(P ∩ A) = σ(p) = p
for every σ ∈ G, so the image σP ⊆ σB = B is another prime ideal of B over p. That is to say,
we have a group action of G on the set of prime ideals over p. The prime ideals σP in the orbit
of P are said to be the conjugates of P. So far, that L/K is Galois has not been used, but the
following relies on this hypothesis to prove the group action in question is transitive:

Proposition 8.1. The prime ideals of B over p are conjugates of each other. Put another way,
the orbit of each P over p is the entire set of prime ideals over p.

Proof. Let P,P′ be two such prime ideals. Assume, for sake of contradiction, that σP ̸= P′ for
any σ ∈ G. The Chinese remainder theorem says there is an x ∈ B with x ≡ 0 (mod P′) and
x ≡ 1 (mod σP) for every σ ∈ G. From Proposition 3.4, we know that NL/K(x) =

∏
σ∈G σx is a

multiple of x (each σx lies in B). This, combined with Lemma 6.4, tells us NL/K(x) ∈ P′ ∩ A =
p ⊆ P. However, σx ̸∈ P for any σ ∈ G, so NL/K(x) ̸∈ P. ■

In the Galois case, the fundamental identity becomes considerably simpler.

Theorem 8.2 (efg Theorem). As in Theorem 7.2, let p = Pe1
1 · · ·P

eg
g be the prime factorization

of a nonzero prime ideal p of A. If the extension L/K is Galois, the ramification indices e1 =
· · · = eg = e are equal, and likewise for the inertia degrees f1 = · · · = fg = f . In this case, the
fundamental identity reads

n = efg.

Definition 8.3. Let P be a prime ideal of B. The subgroup DP = {σ ∈ G | σP = P} is called the
decomposition group of P over K. The fixed field ZP = LDP = {x ∈ L | σx = x for all σ ∈ Dp}
of DP is called the decomposition field of P over K.

Henceforth, we write κ(p) = A/p and κ(P) = B/P.

Proposition 8.4. The extension κ(P)/κ(p) is normal.

Proof. Let x̄ ∈ κ(P), and let g(X) be the minimal polynomial of x̄ over κ(p). Denote by f(X) the
minimal polynomial of x ∈ B overK. Note that f(X) takes coefficients in A, by Proposition 6.3. ■

Proposition 8.5. If P is a prime ideal of B, each σ ∈ DP induces an automorphism σ̄ on κ(P)
by x mod P 7→ σx mod P. This defines a surjective group homomorphism DP → Gal(κ(P)/κ(p)).

Definition 8.6. Let P ⊆ B be a prime ideal lying over p. The kernel IP ⊆ DP of the homomor-
phism DP → Gal(κ(P)/κ(p)) is called the inertia group of P over K.

9. Higher ramification groups

Proposition 9.1. The group IP/V1 is isomorphic to a subgroup of κ(p)×.

Lemma 9.2. The ramification groups Vi are normal subgroups of DP, and form a descending
chain: V0 ⊵ V1 ⊵ V2 . . .
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10. Rings of integers

Definition 10.1. An algebraic number field K is a finite extension field of Q. The integral closure
of Z in an algebraic number field K is called the ring of integers OK of K.

The ring of integers OK of an algebraic number field K is a Dedekind domain by Proposition 6.7.

Lemma 10.2. Let K be an algebraic number field, and let α1, . . . , αn be an integral basis for OK

over Z. Then for any prime number p, the residues ᾱ1, . . . , ᾱn are a basis for OK/pOK over Z/(p)
satisfying

disc(ᾱ1, . . . , ᾱn) = disc(α1, . . . , αn) (mod p).

Proof. If one has a linear dependence ā1ᾱ1 + · · ·+ ānᾱn = 0 (ai ∈ Z) among the ᾱi, then a1α1 +
· · ·+ anαn ∈ pOK . This means ai ∈ pZ and āi = 0 for each i. Now for any x ∈ OK , the matrix for
multiplication by x (with respect to the basis α1, . . . , αn) reduces modulo p to the multiplication
matrix for x̄ on OK/pOK (with respect to ᾱ1, . . . , ᾱn). It follows that Tr(x̄) = Tr(x) (mod p) for
all x ∈ OK . Taking determinants of the trace pairing matrices gives the desired. ■

Lemma 10.3. Let A be a ring. If B1, B2 are ring extensions of A that are finite free A-modules.
Choosing bases {ei} and {fj} for B1 and B2, respectively, the basis e1, . . . , en, f1, . . . , fm of B1×B2

satisfies
disc(e1, . . . , en, f1, . . . , fm) = disc(e1, . . . , en) disc(f1, . . . , fm).

A fortiori, the discriminant of (B1 × B2)/A vanishes if and only if one of disc(B1/A), disc(B2/A)
equals zero (this condition is independent of which basis we choose).

Proof. For any x ∈ B1, multiplication by x on B1 × B2 kills the second component and acts on
the first component the same way x multiplies on B1. Writing out the multiplication matrix for
x on B1 × B2 in terms of e1, . . . , en, f1, . . . , fm, one can see that Tr(B1×B2)/A(x) = TrB1/A(x) for
all x ∈ B1. Likewise, Tr(B1×B2)/A(x) = TrB2/A(x) for all x ∈ B2. Since eifj = 0 in B1 × B2, we
calculate the trace pairing matrix for e1, . . . , en, f1, . . . , fm:(

(TrB1×B2
(eiek)) 0

0 (TrB1×B2(fjfℓ))

)
=

(
(TrB1/A(eiek)) 0

0 (TrB2/A(fjfℓ))

)
(writing TrB1×B2

instead of Tr(B1×B2)/A to simplify notation). Now take determinants. ■

An elegant theorem of Dedekind classifies precisely which primes ramify in a number field.

Theorem 10.4 (Dedekind). Let p be a prime number and K an algebraic number field. Then p
ramifies in K if and only if p divides the integer disc(OK/Z).

Proof. Say (p) = pOK = Pe1
1 · · ·P

eg
g in OK , so that, by the Chinese remainder theorem, O/pOK

∼=
OK/Pe1

1 × · · · ×OK/P
eg
g . Each factor OK/Pei

i is a ring extension of Z/pZ, and a finite dimension
Z/pZ-vector space (this is covered in Theorem 7.2). Combining the previous two lemmas, one sees
that p|disc(OK/Z) if and only if disc((OK/pOK)/(Z/pZ)) = 0 in Z/pZ, which is equivalent to one
of the disc((OK/Pei

i )/(Z/pZ)) vanishing. We finish off the proof with one additional lemma. ■

Lemma 10.5. Let p be a prime number, K an algebraic number field, and P ⊆ OK a prime which
lies over p with ramification index e. Then disc((OK/Pe)/(Z/pZ)) = 0 if and only if e > 1.

Proof. If e = 1, then OK/Pe = OK/P is a finite extension of the finite field Z/pZ, so its discrimi-
nant is nonzero by Corollary 3.7. Suppose e > 1, and take an element x ∈ P−Pe; this is possible
because P is invertible in the Dedekind domain OK . Note that x̄ is nonzero nilpotent in OK/Pe.
We can extend the linearly independent subset {x̄} to a Z/pZ-basis {x̄1, . . . , x̄r} of OK/Pe with
x1 = x. The first column of the trace pairing matrix for this basis consists of the values Tr(xix).
But since xix is nilpotent, the corresponding multiplication map on OK/Pe is nilpotent and all its
eigenvalues are zero. The trace of xix is just the sum of those eigenvalues. Therefore, the entire
first column dies, and so disc(x̄1, . . . , x̄r) = 0 in Z/pZ. ■
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11. Ramification in Q(ζp)

Cyclotomic fields were defined in Section 2. We now investigate their properties more closely. The
first objective of this section is to explicitly describe the ring of integers B of Q(ζn), which proves
to be rather nontrivial. Proofs in the literature examine the case when n is a prime power, before
deducing the general theorem. Following [], we shall instead opt for a less standard approach.
Certainly ζn ∈ B itself is integral over Z, so Z[ζn] is contained in B. Our claim is that Z[ζn] = B.
Observe that Frac(Z[ζn]) = Q(ζn): the inclusion Z[ζn] ↪−→ Q(ζn) extends to an embedding of its
field of fractions Frac(Z[ζn]) into Q(ζn), by the relevant universal property. Since Frac(Z[ζn]) ⊇ Z
is a field, it contains Q; whence Frac(Z[ζn]) ⊇ Q(ζn). It therefore is enough to prove that Z[ζn] is
integrally closed.

Lemma 11.1. Let A be a local integral domain with field of fractions K. Then a nonzero fractional
ideal a of A is invertible if and only if a is principal.

Proof. Suppose a is invertible; that is, there exists a fractional b of A such that ab = 1, yielding
an equation a1b1 + · · · + ambm = 1 for ai ∈ a, bi ∈ b. Each element aibi lies in A, so one of these
products (say, a1b1) does not belong to the maximal ideal m of the local ring A. This means a1b1
is a unit. Every element x ∈ a can be exhibited as an element x = a1(xb1)(a1b1)

−1 of Aa1 (since
xb1 ∈ A). Hence the fractional ideal a is generated by a1. ■

Notation. For a polynomial f(X) ∈ Z[X], the image of f(X) under the homomorphism Z[X]→
Fp[X] which reduces coefficients modulo p will be written as f(X) mod p.

Lemma 11.2. Let α ∈ C be algebraic over Z with minimal polynomial f(X) over Q. For every
maximal ideal m of Z[α], there exists a prime number p and a polynomial g(X) in Z[X] such that
g(X) mod p is an irreducible factor of f(X) mod p, and m = (p, g(α)) divides the principal ideal
(p) = pZ[α].

Reducing the coefficients of f(X) ∈ Z[X] modulo p makes sense by Proposition 6.3.

Proof. Every nonzero ideal of Z[α], including m, contains a nonzero rational integer: indeed, if we
pick an element x ̸= 0 of the ideal, the minimal polynomial of x over Q has a nonzero constant
term. Multiply out by a common denominator of the coefficients to obtain a constant term in Z
contained in the ideal. Hence m ∩ Z is a nonzero prime ideal of Z, necessarily of the form pZ for a
certain prime p.
The evaluation map Z[X] → Z[α] (which has kernel f(X) by the division algorithm in Z[X])
descends to an isomorphism Z[X]/(f(X)) ∼= Z[α]. Whence, we identify Z[α]/(p) The key now is
to Z[α]/pZ[α] with Fp[X]/(f(X) mod p). ■

Lemma 11.3. For each maximal ideal m of Z[ζn], the unique maximal ideal of (Z[ζn])m is principal.

Theorem 11.4. The ring of integers of Q(ζn) is Z[ζn].

Proof. In view of Lemma ■

Theorem 11.5. Let p be a prime. Then (p) = Pp−1 in Z[ζp], where P = (1− ζp) is a prime ideal.
When p is odd, P is totally ramified.

Proof. Assume p is an odd prime. One has p =
∏

i(1−ζip) as a special case of Lemma 2.26. Consider

ui = (1− ζip)/(1− ζp) = 1 + ζp + · · ·+ ζi−1
p , which we claim is a unit in Z[ζp]. Indeed, pick j such

that ij ≡ 1 (mod p). Then u−1
i = (1−ζijp )/(1−ζip) ∈ Z[ζp]. Since p =

∏
(1−ζip) = (1−ζp)p−1

∏
ui,

we conclude that (p) = (1− ζp)
p−1. On the other hand, efg = p− 1 from the fundamental identity

in the Galois case. This means P = (1− ζp) cannot decompose further, and must be prime. Hence
e = p− 1 > 1 and f = 1.
Now if p = 2, then Q(ζ2) = Q(−1) = Q, so trivially (p) = P. ■
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Proposition 11.6. If p is an odd prime, the discriminant of K = Q(ζp) is ∆K = (−1)(p−1)/2pp−2.
In particular, p is the only prime which ramifies in Q(ζp).

Proof. Via Theorem 10.4, the second claim is immediate from the first. The ring of integers Z[ζp]
of K admits a Z-basis 1, ζp, . . . , ζ

p−2
p . If σ1, . . . , σp−1 are the Q-embeddings of Q(ζp) into a fixed

algebraic closure Q ⊆ C, the conjugates {σiζp} are precisely the powers ζp, . . . , ζ
p−1
p (the roots of

the minimal polynomial Φp(X) ∈ Q[x] of ζp). Proposition 3.6 says that

∆K = disc(1, ζp, . . . , ζ
p−1
p ) =

∏
1≤i<j≤p−1

(ζip − ζjp).

Since Xp − 1 =
∏p−1

j=0(X − ζjp), substituting X = 0 gives the auxiliary identity

(−1)p−1 =

p−1∏
j=0

ζjp.

Differentiating both sides of Xp − 1 =
∏p−1

j=0(X − ζjp) and substituting X = ζip, then multiplying
over all such i gives

pp(−1)(p−1)2 =

p−1∏
i,j=0, i ̸=j

(ζip − ζjp).

After some algebra, we see that ∆K = (−1)(p−1)/2pp−2. ■

12. A series of lemmast

Lemma 12.1. Let K/Q be a finite Galois extension. If a prime number p is the only prime that
ramifies in K, then p is totally ramified.

Lemma 12.2. Let p be a prime and let K/Q be a finite p-power abelian extension such that no
prime other than p ramifies in K. Then K/Q is cyclic.

Lemma 12.3. Let p be an odd prime, and let K/Q be an extension of degree p such that no prime
other than p ramifies. Then the second ramification group V2 is trivial.

13. A twofold reduction

Theorem 13.1 (Kronecker-Weber). Every finite abelian extension of Q is contained within a
cyclotomic field Q(ζn).

Lemma 13.2. It suffices to show Theorem 13.1 for cyclic extensions K/Q of prime-power degree.

Proof. Suppose K/Q is finite abelian. Then Gal(K/Q) decomposes into a direct product of cyclic
groups G1, . . . , Gr of prime-power degree. If Ki is the fixed field of

∏
j ̸=i Gj , then Ki ⊆ Q(ζni

) for
some ni. Setting n = n1 · · ·nr yields

K = K1 · · ·Kr ⊆ Q(ζn),

■

Lemma 13.3. It suffices to show Theorem 13.1 is true for cyclic extensions K/Q of prime-power
degree pm such that p is the only prime that ramifies in K.

14. The final ascent
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