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Abstract

The functors Ext and Tor provide valuable information pertaining to sequences
of modules and their interactions with the functors Hom and ⊗ respectively; this
exposition provides an elementary (non-category theoretic) definition of Ext and
Tor, as well as the basic sequence extending properties of each functor.
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1 Introduction

The functors Hom and ⊗ fail to be exact; Ext and Tor measures the failure
of these functors to be exact and in fact characterizes the cases in which they
succeed to be exact, related to the notions of projective and flat modules–both
of which are of great importance in fields such as algebraic geometry. The
exposition begins with a brief overview of the preliminaries, then moves into
the discussion of elementary homological algebra, afterwards defining Ext and
Tor. We discuss the independece of these functors from choice of projective
resolution in their construction, as well as their sequence extending properties
and their classification of projective and flat modules.

2 Preliminaries

2.1 Groups

Definition 2.1 (Group). A group is a set G equipped with a binary operation
∗ : G×G→ G (where a∗b denotes ∗(a, b)) that satisfies the following properties:

There exists an eG ∈ G such that g ∗ eG = eG ∗ g = g for all g ∈ G.

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

For all g ∈ G, there is a g−1 such that g ∗ g−1 = g−1 ∗ g = eG.

A group is said to be abelian if ∗ is commutative.

eG is said to be an identity element of G, and g−1 is said to be an inverse
element of g.

Remark. When there is no risk of confusion, eG will be abbreviated to e.

Examples.

� The integers under addition form a group, as addition is associative, 0
acts as an identity, and inverses exist. In particular, the integers are an
abelian group.

� The set of all n × n matrices of nonzero determinant with coefficients
in a field F form a group under multiplication, as matrix multiplication
is associative, matrices of nonzero determinant are invertible (given the
coefficients are from a field), and the identity matrix acts as an identity.
This group is denoted GLn(F).

� The set of permutations of n points forms a group, denoted Sn. Consider
the elements of Sn to be bijections from the set of n points to itself, and
the satisfication of the group axioms follow.

Remark. The group operation is often ommitted when writing down expres-
sions, such that a ∗ b is reduced to ab. Repeated operation of an element to
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itself is also abbreviated to exponential notation, such that aa . . . a︸ ︷︷ ︸
n times

= an. This

is well-defined because of the assumed associativity of ∗.

Theorem 2.2. Inverses and identities are unique.

Proof. Suppose e and e′ are two identity elements in a group G. Then, ee′ = e,
but ee′ = e′, so e = e′. Now suppose b and c are two inverses of a. Then
cab = ce = e, but cab = eb = b, so c = b.

We will henceforth refer to e as the identity element of G, and g−1 as the inverse
of g.

Definition 2.3 (Subgroup). A subgroup of a group G is a subset H of G
containing the identity such that hh′ ∈ H for all h, h′ ∈ H. A subgroup is
denoted H ≤ G.

Proposition 2.4 (The subgroup criterion). Let G be a group, and let H be a
nonempty subset of G. H is a subgroup of G iff xy−1 ∈ H for all x, y ∈ H.

Proof. Working in the forward direction, the identity is in H, as for any h ∈ H,
set x = y = h and xy−1 = hh−1 = e is contained in H. Observe that H contains
inverses, for if x = e and y = h ∈ H, then xy−1 = ey−1 = y−1 is contained
in H. Finally, H is also closed under ∗, for if a, b ∈ H, set x = a, y = b−1, such
that xy−1 = ab ∈ H (note that (x−1)−1 = x for all x ∈ G).

The converse is clear.

Definition 2.5 (Group Homomporhism). Let G and H be groups, and φ :
G→ H a set map. The map φ is a homomorphism if φ(xy) = φ(x)φ(y) for all
x, y ∈ G.

G is said to be the domain of φ, H is said to be the codomain. If φ is bijective,
φ is said to be an isomorphism. Essentially, this means G and H have the same
structure, i.e., any group-theoretic fact about G carries over to H. In this case,
we write G ∼= H. Any isomorphism has an inverse that is also an isomorphism,
and if a homomorphism has an inverse, it is an isomorphism. Compositions
of homomorphisms are homomorphisms, and compositions of isomorphisms are
isomorphisms.

Remark. When there is no danger of confusion, group homomorphism will be
abbreviated to homomorphism.

Definition 2.6 (Image, Kernel). Let G, H be groups and φ : G → H a
homomorphism. The kernel of φ (denoted kerφ) is the set

{x ∈ G | φ(x) = eH}

i.e., the set of all x ∈ G such that φ(x) is the identity in H.
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The image of φ (denoted imφ) is the set

{h ∈ H | there exists g ∈ G such that h = φ(g)}.

Proposition 2.7. Let G, H be groups and φ : G→ H a homomorphism.

kerφ ≤ G. imφ ≤ H.

Proof. Suppose x, y ∈ kerφ. Then, φ(xy) = φ(x)φ(y) = eHeH = eH , so
xy ∈ kerφ. We have φ(xx−1) = φ(eG) = eH = φ(x)φ(x−1) = eHφ(x

−1), so
x−1 ∈ kerφ.

The second statement follows from the fact that imφ must be a group, but φ
is not guaranteed to be surjective.

Definition 2.8 (Coset). Fix a group G, and a subgroup H. A left coset of H is
the set of all elements of H “shifted on the left” by an element g of G, denoted
gH.

H = {h1, h2, . . . }

gH = {gh1, gh2, . . . }

Right cosets are defined analagously.

We denote the set of all cosets of H in G by G/H.

Theorem 2.9. Elements of G/H partition G.

Proof. We first observe that all elements ofGmust be contained in some element
of G/H, as H contains the identity.

Next, suppose gH, g′H ∈ G/H have nontrivial intersection, say gh1 = g′h2.
Then, gh1h

−1
2 = g′. Multiplying by h′ ∈ H, g(h1h

−1
2 h′) = g′h′, such that every

element of g′H is an element of gH. A symmetric argument shows gH ⊆ g′H,
so gH = g′H.

Since G =
⋃

g∈G gH and gH = g′H if gH ∩ g′H ̸= ∅, it follows that elements of
G/H partition G.

We wish to define a group structure onG/H by xHyH = xyH. This operation is
well defined iff xH = Hx for all x ∈ G, equivalent to the condition xHx−1 = H,
i.e. xhx−1 ∈ H for all h ∈ H.

Definition 2.10 (Normal Subgroup). Let N ≤ G. N is said to be normal if
gNg−1 = N for all g ∈ G, denoted N ⊴G.

Definition 2.11. Let G be a group. If N is a normal subgroup of G, then G/N
(with group operation gNg′N = gg′N) is said to be the quotient group of G
by N .
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Proposition 2.12. Let φ : G→ H be a homomorphism. Then, kerφ⊴G.

Proof. We have already proved Proposition 2.7.

We now show the normality of kerφ. Let x ∈ kerφ, g ∈ G, and consider
φ(gxg−1). This expression reduces to φ(g)φ(g−1) = φ(g)φ(g)−1 = eH , such
that gxg−1 ∈ kerφ.

Theorem 2.13 (First Isomorphism Theorem). Let G, H be groups and φ : G→
H a homomorhpism. Then, imφ ∼= G/ kerφ. In particular, if φ is surjective,
H ∼= G/ kerφ.

Proof. Let f : G → H be a surjective homomorphism, and K = ker f . We
show that the map f ′ : G/K → H defined by f ′(gK) 7→ f(g) is a well-defined
isomorphism, which proves the theorem–for an arbitrary homomorphism g, the
statement G/ ker g ∼= im g follows by defining g′ : G → im g, observing g′ is
surjective.

If g′K = gK, then g−1g′K = K and g−1g′ ∈ K. Thus, we have eH = f(g−1g′).
Rewriting, eH = f(g)−1f(g′), and we achieve f(g) = f(g′), showing the well-
definedness of f ′. The surjectivity of f ′ follows from the surjectivity of f ,
so we now seek to show the injectivity of f ′. Suppose f ′(gK) = f ′(g′K).
Then, f(g) = f(g′), and eH = f(g)−1f(g′) = f(g−1)f(g′) = f(g−1g′), thus
g−1g′ ∈ gK, and g′K = gK.

Example.

The group 5Z is an additive subgroup of Z, with cosets 0+5Z, 1+5Z, . . . , 4+5Z.
Because n + 5Z − n = 5Z for all n ∈ Z, 5Z is a normal subgroup in Z, and we
can construct the quotient group Z/5Z, the integers modulo 5.

2.2 Rings and Modules

2.2.1 Basics

Definition 2.14 (Ring). A ring is a set R equipped with an abelian group
structure + (ring addition) and an operation ∗ : R×R→ R (ring multiplication)
such that for all a, b, c ∈ R,

a ∗ (b+ c) = ab+ ac,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

When ∗ is commutative, R is said to be a commutative ring. When there exists
an identity for ∗ (some 1 ∈ R such that 1 ∗ r = r ∗ 1 = r for all r ∈ R), R is said
to be unital. It is not required in general for the ∗ operation to be commutative,
or have an identity. In this paper, we will consider all rings to be commutative
and unital.
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The identity element of the operation + is denoted 0.

Definition 2.15 (Module). A left R-module is a setM that is an abelian group
under + (module addition) together with an operation ∗ : R×M →M (scalar
multiplication) such that for all m,m′ ∈M and r, r′ ∈ R,

r ∗ (r′ ∗m) = (rr′) ∗m,

(r + r′) ∗m = r ∗m+ r′ ∗m

r ∗ (m+m′) = r ∗m+ r ∗m′,

1R ∗m = m,

0R ∗m = 0M .

It is said that M is a module over R.

Remark. The ∗ symbol will often be ommitted, so it is important that the reader
keep in mind the distinction between ring multiplication and scalar multiplication
on module elements. When the ring R is clear from context, R-modules may be
referred to simply as modules.

Examples.

Rings.

� Consider the set Z equipped with integer addition and multiplication.
This set is a ring. Note that multiplicative inverses do not exist for all
elements.

� Consider the set of all n×n matrices with entries in some ring R, denoted
Mn(R). Notably, this ring is not commutative.

Modules.

� Every ring is a module over itself, as ring multiplication satisfies the axioms
of scalar multiplication, and all rings are groups under addition.

� Vector spaces are modules over fields.

� The zero module, 0, is a module over every ring–its underlying group is
the trivial group, consisting only of the identity.

Theorem 2.16 (Z-modules). Every abelian group is a Z-module and vice-versa.

Proof. Let M be a Z module. By definition, M is an abelian group, so the
backwards direction is shown. By the module axioms, (a + b)m = am + bm
for all a, b ∈ Z, m ∈ M . Define a ∗ m as m+ · · ·+m︸ ︷︷ ︸

a times

. In particular, take

a = b = 1 ∈ Z. Note that elements of Z can be written uniquely as a sum of
1’s, and the statement follows.
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Definition 2.17 (Submodule). A subset N of M is said to be a submodule of
M if N ≤M and rn ∈ N for all n ∈ N , r ∈ R.

Definition 2.18 (Module Homomorphism). A set map φ : M → N between
two left(or right) R-modules is said to be a module homomorphism if for all
m,m′ ∈M and r ∈ R,

φ(rm+m′) = rφ(m) + φ(m′).

Such maps may also be called R-linear maps, or just as linear maps when the
ring R is understood. If φ is bijective, φ is said to be an isomorphism, and
we write M ∼= N . Note that all module homomorphisms must be group homo-
morhpisms.

The kernel and image of a module homomorphism are as the definitions for a
group homomorphism.

Proposition 2.19. Let φ : M → N be a module homomorphism. Then, kerφ
is a submodule of M , and imφ is a submodule of N .

Proof. This follows almost directly from Proposition 2.7; all that remains to be
shown is the closure of kerφ under scalar multiplication.

Take x ∈ kerφ, r ∈ R. Then, φ(rx) = r0N = 0N , so rx ∈ kerφ.

The second statement follows from the fact that imφ is a module, but φ is not
necessarily surjective.

Observe that modules are groups, thus we can take their quotients. We wish to
define a module structure on these quotient groups.

Definition 2.20 (Quotient Module). Let M be a module, N be a submodule
ofM . Construct the quotient group M/N , which is possible due to the assumed
commutativity of M under +. Define r ∗ (m + N) (for some m + N ∈ M/N ,
r ∈ R) as r ∗ m + N . This is well-defined because N is closed under scalar
multiplication. This is the quotient module M/N .

Theorem 2.21 (First Isomorphism Theorem for Modules.). Given a module
homomorphism φ : M → N , imφ ∼= M/ kerφ. In particular, if φ is surjective,
N ∼=M/ kerφ.

Proof. Let f : M → N be a surjective homomorphism, and K = ker f . Like
before, we show that the map f ′ : M/K → N defined by f ′(m+K) 7→ f(m) is
a well-defined isomorphism, and the statement M/ ker g ∼= im g for an arbitrary
lienar map g follows similarly to the proof of Theorem 2.13.

Ifm′+K = m+K, thenm′−m ∈ K, and 0N = f(m′−m) = f(m′)−f(m), so f ′

is well-defined. The surjectivity of f ′ follows from the surjectivity of f . Suppose
f ′(m+K) = f ′(m′+K) so f(m) = f(m′), and 0N = f(m′)−f(m) = f(m′−m),
thus m′ −m′ ∈ K, and m+K = m′ +K.
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2.2.2 Sums, Hom, and Free Modules

Definition 2.22 (Direct Sum). Let A,B be R-modules. The direct sum of A
and B, denoted A ⊕ B, is the set of all ordered pairs (a, b) where a ∈ A and
b ∈ B. For an arbitrary direct sum

⊕
i∈I Mi, we require that only finitely many

elements are nonzero.

Intuitively, we consider A,B to be submodules of a larger module A ⊕ B such
that every element can be written uniquely as a + b for a ∈ A, b ∈ B, which
justifies the condition on infinite direct sums.

Note that A⊕B ∼= B ⊕A.

Definition 2.23 (Hom). We denote the set of all homomorphisms from two R-
modules A to B by HomR(A,B). When the ring R is clear, we write Hom(A,B)
instead. We can define an abelian group structure on Hom(A,B) by (f+g)(a) =
f(a) + g(a) for f, g ∈ Hom(A,B), a ∈ A.

Proposition 2.24. Let A,B,C be R-modules.

1. Hom(A,B ⊕ C) ∼= Hom(A,C)⊕Hom(B,C)

2. Hom(A⊕B,C) ∼= Hom(A,C)⊕Hom(B,C).

Proof. (1) Let π1 be the natural projection from B⊕C → B, π2 be the natural
projection from B⊕C → C. If f ∈ Hom(A,B⊕C), then π1◦f and π2◦f give ele-
ments of Hom(A,B) and Hom(A,C). The map f 7→ (π1◦f, π2◦f) is a homomor-
phism, as f + g 7→ (π1 ◦ (f + g), π2 ◦ (f + g)) = (π1 ◦ f + π1 ◦ g, π2 ◦ f + π2 ◦ g)
= (π1 ◦ f, π2 ◦ f) + (π1 ◦ g, π2 ◦ g). We wish to show this map is in fact an
isomorphism, so we now construct an inverse mapping. Given (f1, f2) with
f1 ∈ Hom(A,B) and f2 ∈ Hom(A,C), define f ∈ Hom(A,B ⊕ C) by f(a) =
(f1(a), f2(a)) for a ∈ A. This defines a homomorphism from Hom(A,B) ⊕
Hom(A,C) to (Hom(A,B ⊕ C)), which is an inverse to the map constructed
before.

(2) Let f ∈ Hom(A ⊕ B,C). Then, define a map f 7→ (f ◦ π1, f ◦ π2), where
π1, π2 are natural projections from A⊕B to A and B respectively. This map is a
homomorphism, and its inverse is the map (f1, f2) 7→ f := f(a) = (f1(a), f2(a)),
thus, the isomorphism is shown.

Definition 2.25 (Free Module). Let F be an R-module. F is said to be free, or
be a free module, if there exists a basis for F . That is, there exists a set E ⊆ F
such that every f ∈ F can be written as an R-linear combination of elements
of E, and if r1e1 + · · · + rnen = 0 for ri ∈ R, ei ∈ E, then ri = 0 for all i.
Consequently, every f can be written uniquely as an R-linear combination of
elements of F . It is said that F is free on E.

Examples.

1. Modules over fields are called vector spaces, and are all free.
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2. For any ring R, R is a free module over itself.

Theorem 2.26. Given a basis A, there is a free R-module on the elements of
A F (A) with the property that given an R-module M and a set map φ : A→M ,
there is a unique Φ: F (A) →M such that the following diagram commutes.

A F (A)

M

φ

ι

Φ

Proof. For nonempty A, define F (A) to be the set of all set maps A → R
with finite support. We define for f, g ∈ F (A), a ∈ A, r ∈ R, (f + g)(a) =
f(a) + g(a) and (rf)(a) = r(f(a)). Then, F (A) is a module, and ι sends a to
the function that is 0 at all inputs but a. We can consider elements of F (A)
to be linear combinations of the ι(a), abbreviated a for simplicity. the Define
Φ by Φ(

∑
ra) =

∑
rφ(a). We observe Φ is well defined by the uniqueness of

the linear combination representation of F (A), and by definition Φ restricted
to A is φ. Given that F (A) is generated by A, a homomorphism on F (A) is
determined by its values on A, proving uniqueness.

2.2.3 Bilinear Maps and Tensor Products

Definition 2.27 (Bilinear Map). An R-bilinear map is a map of the form
φ : A×B → C (where A,B,C are R-modules) such that the maps a 7→ φ(a, b′)
and b 7→ φ(a′, b) are module homomorphisms for all a′ ∈ A, b′ ∈ B. When the
ring R is clear from context, φ may be referred to as a bilinear map.

Proposition 2.28. Let A,B be R-modules. Then, there exists an R-module T
and a bilinear map t : A × B → T such that for any R-module C and bilinear
map f : A× B → C, there is a unique module homomorhpism f ′ : T → P such
that f = f ′ ◦ t. This module T is unique up to unique isomorphism.

Proof. We first show the uniqueness of the module T . Using notation from
the proposition, Let T ′ be another module with the same property, and t′ be
the corresponding bilinear map. Then, there is a unique j : T → T ′ such that
t′ = j ◦ g, as well as a j′ : T ′ → T such that t = j′ ◦ t′. Each of j ◦ j′ and j′ ◦ j
must be the identity, thus j is an isomorphism and uniqueness is proved.

We now show the existence of such a module. Let F be the free R-module on
elements of A×B. Let D be the submodule of F of all elements of the forms:

(x+ x′, y)− (x, y)− (x′, y)

(x, y + y′)− (x, y)− (x, y′)

(rx, y)− r(x, y)

(x, ry) = r(x, y)
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for x, x′ ∈ A, y, y′ ∈ B, r ∈ R. Let T = F/D, and let x⊗ y denote the image of
(x, y) ∈ C in T . Then, T is generated by elements of the form x⊗ y, and from
the definitions this quotient map is bilinear (all elements of D are killed in T ;
e.g. (x+ x′)⊗ y = x⊗ y + x′ ⊗ y).

Any linear map f from A×B into another module P extends linearly to another
linear map f̄ : F → P . Suppose f is bilinear. Then, f̄ vanishes on the generators
of D, and thus on D, and induces a well-defined linear map f ′ of T into P such
that f ′(x⊗ y) = f(x, y). The map f ′ is uniquely determined, thus, T together
with the map g : A × B → T where g(x, y) 7→ x ⊗ y satisfies the conditions
specified in the proposition.

Definition 2.29 (Tensor Product). In the notation of the above propotision,
the module T is said to be the tensor product of A and B, denoted A⊗R B, or
A⊗B when the ring R is understood.

Let f : A → A′ and g : B → B′ be linear maps. Then, there is a unique map
f ⊗ g : A ⊗ B → A′ ⊗ B′ such that (f ⊗ g)(a ⊗ b) = f(a) ⊗ g(b) for all a ∈ A,
b ∈ B.

Remark. The remainder of this paper concerns modules over a fixed ring R.

3 Basic Homological Algebra

3.1 Definitions

Definition 3.1 (Cochain Complex). Let {C•, d•} be a sequence of modules
module homomorphisms:

· · · Cn−1 Cn Cn+1 · · · .dn−2 dn−1 dn dn−1

This sequence is called a cochain complex if dn+1 ◦ dn = 0 for all n, that is,
dn+1(dn(x)) = 0 for all x ∈ Cn. Equivalently, im dn ⊆ ker dn+1.

This concept can be dualized by reversing all of the arrows in the diagram,
leading to the notion of a chain complex. In this case, the indices are denoted
by a subscript ({C•, d•}).

Definition 3.2 (Exact Sequence). A sequence is said to be exact at Cn if
im dn−1 = ker dn. A sequence is exact, or is an exact sequence, if it is exact at
every term.

In particular, if

0 M M ′f

is exact, f is injective, and if

N N ′ 0
f ′
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is exact, f ′ is surjective.

A short exact sequence is an exact sequence of the form

0 A B C 0.

If B ∼= A⊕ C, the above sequence is said to split, or be a split exact sequence.

Definition 3.3 (Homology, Cohomology). The cohomology module of a co-
chain sequence {C•, d•} at n (denoted Hn(C), Hn(C) for homology) is defined
to be ker dn/ im dn−1 (ker dn/ im dn+1 for homology).

Definition 3.4 (Homomorphism of Cochain Complexes). A homomorphism
between cochain complexes {C•, dC,•}, {D•, dD,•} is a family of module homo-
morphisms fi : C

i → Di such that the following diagram commutes.

· · · Cn Cn+1 · · ·

· · · Dn Dn+1 · · ·

fn fn+1

dC,n−1

dD,n−1

dC,n

dD,n

dC,n+1

dD,n+1

Symbolically, fn+1d
C,n = dD,nfn Homomorphisms are defined analagously for

cochain complexes.

Proposition 3.5. A homomorphism between (co-)chain complexes induces ho-
momorphisms between their respective (co-)homology groups.

Proof. We first show f maps ker dC,n to ker dD,n. Let x ∈ ker dC,n. Then,
fn+1d

C,n(x) = 0 because fn+1 maps 0 to 0, and fn+1d
C,n(x) = dD,nfn(x) = 0,

so fn(ker d
C,n) ⊆ ker dD,n.

We now show f maps im dC,n−1 to im dD,n−1. Note that dC,n−1(Cn−1) =
im dC,n−1, and dD,n−1(Dn−1) = im dD,n−1. Because fn−1(C

n−1) ⊆ Dn−1, we
observe dD,n−1fn−1(C

n−1) ⊆ im dD,n−1. Then, dD,n−1fn−1(C
n−1) = fnd

C,n−1(Cn−1) =
fn(im dC,n−1) ⊆ im dD,n−1, so f maps im dC,n−1 to im dD,n−1.

Thus, f induces a map from Hn(C) to Hn(D).

This proof is analagous for chains.

Definition 3.6 (Short Exact Sequence of Cochains.). A sequence of cochains

0 → {A•} → {B•} → {C•} → 0

is a short exact sequence if each

0 → An → Bn → Cn → 0

is exact.
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3.2 The Snake Lemma and the Long Exact Sequence of
Cohomology

The following theorems play a major role in the importance of Ext and Tor,
namely in the extension of sequences that fail to be exact under Hom and
⊗.

Theorem 3.7 (The Snake Lemma). Consider a commutative diagram

A′ A A′′ 0

0 B′ B B′′

d′ d d′′

f g

f ′ g′

with exact rows. Then, there exists an exact sequence

ker d′ ker d ker d′′ coker d′ coker d coker d′′δ

Proof. The individual sequences ker d′ → ker d→ ker d′′ and coker d′ → coker d→
coker d′′ are easy to understand, and exactness follows from the hypothesized
exactness of the diagram.

We construct δ as follows: consider an element x ∈ ker d′′ and select y ∈ A such
that g(y) = x. We observe d ◦ g′(y) = d′′ ◦ g(y) = d′′(x) = 0, so d(y) ∈ ker g′.
By exactness, we find z ∈ B′ such that f ′(z) = d(y). The element z is unique
by exactness, and we can define δ(x) = z + im d′ ∈ coker d′.

We first show δ is well-defined. Suppose instead of y, we chose y′ with g(y′) = x.
Then, g(y − y′) = 0, y − y′ ∈ ker g = im f , so we can choose a ∈ A′ with
(y − y′) = f(a). By exactness, there are unique b, b′ with d(y) = f ′(b) and
d(y′) = f ′(b′), and we observe f ′(d′(a)) = d(f(a)) = d(y − y′) = f ′(b − b′).
Since f ′ is injective, b− b′ = d′(a) ∈ im d, so b+ im d′ − δ(x) = b+ im d′.

Theorem 3.8 (Long Exact Sequence in Cohomology). Let

0 → {A•} → {B•} → {C•} → 0

be a short exact sequence of cochains. Then, there exists an exact sequence

0 H0(A) H0(B) H0(C)

H1(A) H1(B) H1(C)

· · ·

δ0

δ1

Where the maps between Hn are the induced maps on cohomology modules. The
δn are called connecting homomorphisms.
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Proof. Consider the diagram

An/ im dA,n−1 Bn/ im dB,n−1 Cn/ im dC,n−1 0

0 ker dA,n ker dB,n ker dC,n

We observe that (in the notation of the snake lemma) the kernels are the nth
cohomology groups of the respective sequence, and the cokernels are the n−1th
groups. Then, the sequence exists and is exact by the snake lemma.

4 Ext(−, D)

4.1 Definitions

Proposition 4.1. Suppose we have an exact sequence

0 A B C 0.
f g

and a module D. Then, there exists an exact sequence

0 Hom(C,D) Hom(B,D) Hom(A,D)
g′ f ′

with g′ := φ 7→ φ ◦ g, f ′ := ψ 7→ ψ ◦ f for φ ∈ Hom(C,D), ψ ∈ Hom(B,D)

Proof. g′ is injective because g is surjective, meaning k◦g = k′◦g implies k = k′,
so the induced map is injective.

We wish to show ker f ′ ⊆ im g′. Let t ∈ ker f ′, so t◦f = 0. If a ∈ A, t(f(a)) = 0,
so f(a) ∈ ker t (because a is an arbitrary element of A, this means f(A) ⊆ ker t,
and in fact, ker g ⊆ ker t). Note that C ∼= B/f(A). Let t′ : B/f(A) → D such
that t′(b+f(A)) 7→ t(b). This map is well defined because if b+f(A) = b′+f(A),
i.e. b− b′ ∈ f(A), then t(b− b′) = 0 = t(b)− t(b′) and t(b) = t(b′). Let φ denote
the canonical isomorphism from B/f(A) to C. Observe t = t′ ◦φ−1 ◦ g, and we
have shown that if t ∈ ker f ′, there exists a map t′ ◦ φ such that g′(t′ ◦ φ) = t,
showing ker f ′ ⊆ im g′.

Reverse contaiment follows from the fact that f ′ ◦ g′ = 0, which in turn follows
from the observation that g ◦ f = 0.

Note that neither the map A 7→ Hom(D,A) nor A 7→ Hom(A,D) completely
preserve exact sequences.

13



Definition 4.2 (Projective module). Let P be a module. P is said to be
projective if for every surjective linear map f : A → B and every linear map
g : P → B, there exists a (not necessarily unique) linear map h : P → A such
that f ◦h = g. Pictorially, this can be represented by the commutative diagram

P

A B 0
f

g∃h

where the row is exact.

Proposition 4.3. The following are equivalent:

1. P is projective.

2. Every exact sequence 0 → A→ B → P → 0 splits.

3. There exists an M such that P ⊕M is free.

Proof. (1)→(2) Consider the diagram

P

A B P 0

id

g

h

f

where the row is exact. Let b ∈ B. Then, b−h(g(b)) ∈ ker g, soM = ker g+im f ;
that is, every element of B can be written as a sum of an element of ker g and
an element of im f . This is a direct sum, because if b = k+ i with k ∈ ker g and
i = f(a) ∈ im f for some a ∈ A, g(b) = a. Then, a is uniquely determined by b,
and so is i, and so is k. Then, B ∼= ker g ⊕ imh, and the sequence splits.

(2)→(3) Let F be the free module on elements of P , and let f : F → P be
the “evaluation” homomorphism (rp as an element of F is mapped to rp as an
element of P , with r ∈ R). Then, the sequence

0 ker f F P 0
f

is exact, and we can apply (2) to split F into a direct sum with P .

(3)→(1) Suppose P ⊕ Q ∼= F where F is free with basis S. Let π denote the
natural projection F → P . In the notation of (2), g ◦π is a map F → B. Define
bs = f(π(s)) for s ∈ S and as as any element of A such that f(as) = bs. There
is a unique φ : F → A with φ(s) = as, and by definition f ◦φ(s) = f(as) = bs =
f ◦ π(s). Define φ′ : P → A by φ′(p) = φ((p, 0)). Then, f ◦ φ′ = g.

14



Definition 4.4 (Projective Resolution). A projective resolution of a module A
is an exact sequence

0 A P0 P1 · · ·

such that all Pi are projective.

We now ivnestigate the failure of Hom(−, D) to preserve exact sequences. To
do so, we will define Ext.

Definition 4.5 (Ext). Let A be a module, fix a module D, and let

0 A P0 P1 · · ·
d′
1 d′

2ϵ′

be a projective resolution of A. Form the sequence {P •
A} =

0 Hom(A,D) Hom(P0, D) Hom(P1, D) · · ·ϵ d1 d2

and note that while not necessarily exact, this sequence is still a cochain com-
plex. We define

ExtnR(A,D) = Hn(P •
A)

for n ≥ 1, and
Ext0R(A,D) = ker d1.

Equivalently, ExtnR(A,D) are the cohomology groups of Hom(P •
A, D) with the

Hom(A,D) term removed.

Proposition 4.6.
Ext0(A,D) ∼= Hom(A,D).

Proof. By Proposition 4.1, the term Hom(A,D) in the diagram of the defini-
tion of Ext is exact, so ker d1 = im ϵ ∼= Hom(A,D).

4.2 Independence

We now wish to show that this construction is independent of the particular
choice of projective resolution {P •

A}. We first observe a ”lifting” property for
homomorphisms of projective resolutions.

Proposition 4.7. Given projective resolutions of A and A′ and a map f : A→
A′,

0 A P0 P1 · · ·

0 A′ P ′
0 P ′

1 · · ·ϵ

ϵ

d′
0

d0

f

d1

d′
1
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There are lifts fn : Pn → P ′
n of f such that the following diagram commutes.

0 A P0 P1 · · ·

0 A′ P ′
0 P ′

1 · · ·ϵ

ϵ

d′
1

d1

f

d2

d′
2

f0 f1

Proof. [DF03]. Since P0 is projective, we can lift f ◦ ϵ to f0 : P0 → P ′
0 such that

the square commutes, and we may inductively continue this process to achieve
the remaining fn.

Proposition 4.8. We refer to the second diagram of Proposition 4.7. For
every n, there is a homomorphism φn between the Ext groups of each resolution,
and these maps depend only on f , not on the lifts fn.

Proof. [DF03]. The induced maps are clear. The second statement of the propo-
sition is seen to be equivalent to the statement that the zero map between A
and A′ induces the zero maps as φn. Suppose f = 0. We define sn : Pn → P ′

n+1

such that
fn = d′n+1 ◦ sn + sn−1 ◦ dn.

Applying Hom(−, D) preserves the properties of the sn (with the induced maps,
arrows reversed as always).

0 Hom(A,D) Hom(P0, D) Hom(P1, D) · · ·

0 Hom(A′, D) Hom(P ′
0, D) Hom(P ′

1, D) · · ·

s1 s2f1f0f
s−1 s0

Note that this diagram is not necessarily commutative.

Given the maps and the relations with sn, we can see that the induced maps
are 0, proving the propostition.

Theorem 4.9. The groups Extn(A,D) are independent of particular projective
resolution.

Proof. [DF03]. Consider the diagram

0 Hom(A,D) Hom(P0, D) Hom(P1, D) · · ·

0 Hom(A′, D) Hom(P ′
0, D) Hom(P ′

1, D) · · ·

0 Hom(A,D) Hom(P0, D) Hom(P1, D) · · ·

f1f0f

g1g0g

16



WithA = A′, f = idA→A′ , g = idA′→A. These maps induce maps φn : Extn(A,D) →
Extn(A′, D) and ψn : Extn(A′, D) → Extn(A,D). The maps gn ◦ fn are seen to
be lifts of idA, which is seen to induce maps ψn ◦ φn, which is the identity, and
reversing the roles of A and A′ as well as f and g allows us to deduce that ψ
and φ are two-sided inverses of each other, and thus are isomorphisms.

4.3 Projectivity and Extending Exact Sequences Under
Hom

We have shown Ext to be independent of choice of projective resolution. Now
we seek to show the extending property of Ext.

Lemma 4.10. A direct sum of two projective modules is projective.

Proof. Let P, P ′ be projective modules. Since there are modules Q, Q′ such
that P ⊕ Q and P ′ ⊕ Q′ are free, direct sums commute, and the sum of a free
module with a free module is free, we observe P ⊕P ′⊕Q⊕Q′ ∼= P ⊕Q⊕P ′⊕Q′

is a free module.

Lemma 4.11. Let

0 {A•} {B•} {C•} 0

be a short exact sequence of cochains. If {A•}, {C•} are exact, then so is {B•}.

Proof. Using Theorem 3.8, we observe an exact sequence

· · · 0 Hn(B) 0 · · ·

The only way for this sequence to be exact is for Hn(B) to be zero, thus {B•}
is exact.

Proposition 4.12. Let

0 A B C 0

be a short exact sequence of modules, and let A and C have projective resolutions
Pn and P ′

n respectively. Then, B has a resolution given by Pn ⊕ P ′
n, and the
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following diagram is commutative with exact columns, and split exact rows.

...
...

...

0 P1 P1 ⊕ P ′
1 P ′

1 0

0 P0 P0 ⊕ P ′
0 P ′

0 0

0 A B C 0

0 0 0

Proof. [DF03]. The middle column is projective via Lemma 4.10. The maps
to make each row exact are the appropriate inclusion and projection maps.

We define µ : P ′
0 → B as a projective lift of the map P ′

0 → C, which by definition
commutes with the appropriate arrows. Define λ as the composition of maps
P0 → A → M (it may be helpful to recall the informal characterization of
the direct sum to see why this map commutes with the relevant arrows), and
π : P0⊕P ′

0 →M such that π(p, p′) 7→ λ(p)+µ(p′). This process can be extended
inductively to produce the relevant (commutative!) grid. The exactness of the
middle column follows from Lemma 4.11.

Theorem 4.13. Let

0 A B C 0

be a short exact sequence of modules. Then,

0 Hom(C,D) Hom(B,D) Hom(A,D)

Ext1(C,D) Ext1(B,D) Ext1(A,D)

· · ·
δ1

δ0

is a long exact sequence.

Proof. [DF03]. Removing the row A,B,C and taking homomorphisms into D,
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we observe a diagram

...
...

...

0 Hom(P1, D) Hom(P1 ⊕ P ′
1, D) Hom(P ′

1, D) 0

0 Hom(P0, D) Hom(P0 ⊕ P ′
0, D) Hom(P ′

0, D) 0

0 0 0

with split rows by Proposition 2.24. Then, by Thorem 3.8, we observe the
desired exact sequence.

Theorem 4.14. Let P be a module. Then, P is projective iff Extn(P,A) = 0
for all modules A and n ≥ 1.

Proof. It is clear by Proposition 4.3 and Theorem 4.13 that P is projective
if the higher Ext groups vanish. To show the converse, we note that P has a
projective resolution

0 P P 0
id

from which we derive

0 Hom(P,A) Hom(P,A) 0 0 · · ·id

and we deduce the vanishing of Extn.

In this sense, Ext(−, D) measures how “close” D is to being projective.

5 Tor(D ⊗ −)

5.1 Definitions

Proposition 5.1. Given an exact sequence of modules

0 A B C 0
f g

we have an exact sequence

D ⊗A D ⊗B D ⊗ C 0.
1⊗f 1⊗g
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Proof. [DF03]. Given that g is surjective, we note that D ⊗ C is generated by
simple tensors of the form d ⊗ c for d ∈ D, c ∈ C. Thus, c = g(b) for some
b ∈ B, and 1⊗ g(d⊗ b) = d⊗ g(b) = d⊗ b shows 1⊗ g is surjective.

We have im 1⊗f ⊆ im 1⊗g because (1⊗g)(
∑
d⊗f(a)) =

∑
d⊗g◦f(a) = 1⊗0 =

0. There is a projection π : D⊗B/ im(1⊗f) → D⊗B/ ker(1⊗g) = D⊗C. The
composite projection with the natural projection (D⊗B → D⊗B/ im(1⊗ f)),
D ⊗ B → D ⊗ B/ im(1 ⊗ f) → D ⊗ C is just the map 1 ⊗ g. We seek to show
that π is an isomorphism.

Define π′ : D × C → D ⊗ B/ im(1 ⊗ f) so that π′(d, c) 7→ d × b for any b ∈ B
where g(b) = c. This is well defined because any other element b′ mapping to c
differs from b by an element of ker g = im f , so b′ = b + f(a) for some a ∈ A,
and d⊗ f(a) ∈ im 1⊗ f . We observe π′(rd, c) = π′(d, rc), which induces a map
π : D×C → D⊗M/ im(1⊗ f) where π(d⊗ c) = d⊗ b. Thus, π ◦π = 1 because
π ◦ π(d⊗ b) = π(d⊗ g(b)) = d⊗ b. Likewise, π ◦ π = 1, so π is an isomorphism
and exactness is proved.

We note ⊗ does not necessarily preserve exact sequences, but there are some
cases in which it does–in this case, the module D is said to be flat.

Definition 5.2 (Tor). Let D,B be modules. Form a projective resolution {B•}
of B

0 B P0 P1 · · ·ϵ d1 d2

and apply D ⊗− to achieve {D ⊗B•}.

0 D ⊗B D ⊗ P0 D ⊗ P1 · · ·
1⊗ϵ 1⊗d1 1⊗d2

This is still a chain complex by an argument in the proof of Proposition 5.1,
and we define

Torn(D,B) = Hn(D ⊗B•)

for n ≥ 1, and
Tor0(D,B) = Hn(D ⊗ P0/ im 1⊗ d1).

Proposition 5.3.
Tor0(D,B) ∼= D ⊗B

Proof. See Proposition 5.1.

Proposition 5.4. Tor is independent of choice of projective resolution.

Proof. The same argument used in the proof of Theorem 4.9 applies to Tor.
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5.2 Flatness and Extending Exact Sequences under⊗
We now seek to prove an analagous property of ”extending sequences” for Tor
and ⊗.

Proposition 5.5 (Long Exact Sequence in Homology). Given a short exact
sequence of chains

0 {A•} {B•} {C•} 0

there is a long exact sequence

0 H0(A) H0(B) H0(C)

H1(A) · · ·

δ

Proof. Apply Theorem 3.7 to

An/ im dn+1 Bn/ im dn+1 Cn/ im dn+1 0

0 ker dn+1 ker dn+1 ker dn+1

Lemma 5.6.
(A⊕B)⊗ C ∼= A⊗ C ⊕B ⊗ C.

A⊗ (B ⊕ C) ∼= A⊗B ⊕A⊗ C.

Proof. Consider the map (A ⊕ B) × C → A ⊗ C ⊕ B ⊗ C where ((a, b), c) 7→
(a ⊗ b, a ⊗ c). This map is bilinear, so by the definition of the tensor product
there is a unique homomorphism t : (A⊕B)⊗C → A⊗C⊕B⊗C so t((a, b)⊗c) =
(a⊗ c, b⊗ c).

Now consider the maps A × C → (A ⊕ B) ⊗ C where (a, c) → (a, 0) ⊗ n and
B × C → (A ⊕ B) ⊗ C where (b, c) → (0, b) ⊗ n. These maps are bilinear, so
there are maps f1 : A⊗C → (A⊕B)⊗C s.t. f1(a⊗c) = (a, 0) and f2 : B⊗C →
(A⊕B)⊗C s.t f2(b⊗c) = (0, b). Then, we define F : A⊗C⊕B⊗C → (A⊕B)⊗C
s.t. F (a⊗ c, b⊗ c′) = f1(a⊗ c) + f2(b⊗ c′) is an inverse to t.

Theorem 5.7. Given an exact sequence

0 A B C 0
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there is an exact sequence

· · ·

Tor1(D,A) Tor1(D,B) Tor1(D,C)

D ⊗A D ⊗B D ⊗ C 0

δ0

δ1

Proof. Form projective resolutions of A, B, and C as in Proposition 4.12
and apply D ⊗ −. By Lemma 5.6 we have a short exact sequence of chain
complexes, and we can apply Proposition 5.5 to observe the desired exact
sequence.

Theorem 5.8. Let D be a module. Then, D is flat iff Torn(D,B) = 0 for all
modules B and n ≥ 1.

Proof. See Theorem 4.14.
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