
The Probabilistic Method

Isaac Sun

Euler Circle

July 2023

The Probabilistic Method July 2023 1 / 17



Background

Usually proofs in mathematics are very concrete and thorough

The probabilistic method is a non-constructive way to prove the
existence of some combinatorial object

Proofs generally consist of proving an object has a positive probability
of occurring, or using the expected value of some random variable.
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Ramsey Numbers

Ramsey Numbers

The Ramsey number R(k, l) is the smallest integer n such that for every
2-coloring of the edges of a complete graph Kn by red and blue, there
exists a red Kk or a blue Kl .

This diagram above shows a 2-coloring of K5 with no monochromatic K3.
Thus R(3, 3) > 5.
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Ramsey Numbers

In 1929, Ramsey proved that R(k , l) is finite for any two integers (k, l).
Then in 1947, Erdős proved a lower bound for the diagonal Ramsey
numbers R(k , k)

Erdős 1947

If
(n
k

)
· 21−(

k
2) < 1, then R(k, k) > n. Thus, for all k ≥ 3,

R(k, k) > ⌊2k/2⌋.

Our proof idea with the probabilistic method here is to show that there is
some positive probability that there is no monochromatic Kk , meaning
that R(k, k) must be greater than ⌊2k/2⌋, since R(k , k) should have
probability 0 of having no monochromatic Kk . We will be considering all
possible colorings with equal probability.
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Then in 1947, Erdős proved a lower bound for the diagonal Ramsey
numbers R(k , k)
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Proof

Let’s take a look at a random 2-coloring of Kn where each edge is
independently colored with equal probability. For any set R of k vertices
on our probability space Kn, let AR be the event that this subgraph is
monochromatic (edges are all red or all blue). Since there are two colors
and

(k
2

)
edges,

Pr[AR ] = 2 ·
(
1

2

)(k2)
= 21−(

k
2).

By the union bound (the union of some probabilities is less than or equal
to their sum, consider a venn diagram),

Pr
[⋃

AR

]
≤

∑
Pr [AR ] =

(
n

k

)
· 21−(

k
2) < 1

Since the union of all possible AR does not fill up the entire probability
space,

Pr
[⋂

AR

]
> 0.
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Proof

With positive probability, none of the events AR occurred. Hence, a
2-coloring of Kn without a monochromatic Kk exists, meaning
R(k, k) > n. Note that if k ≥ 3 and we let n = ⌊2k/2⌋,(

n

k

)
· 21−(

k
2) <

nk

k!
· 2

1+k/2

2k2/2
≤ 21+k/2

k!
<

21+k/2

2k
< 1.

Thus, R(k , k) > ⌊2k/2⌋ for all k ≥ 3.
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Core Idea

The Ramsey numbers is a great example of the essence of the probabilistic
method: Using probability to determine the existence of combinatorial
objects non-constructively. Note how we never explicitly found a coloring
that didn’t have a monochromatic Kk in our proof.

A question worth noting is why we used probability instead of simply
counting. Using the fact that the total number of 2-colorings of Kn is
bigger than the number of monochromatic Kk would work just as well.
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Core Idea

Although most combinatorial problems deal with finite probability spaces,
it is not always possible to replace our probability arguments with counting
arguments, even in finite probability spaces. You can check out my paper
for more details regarding why we choose probability over counting.
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Linearity of Expectation

One of the common methods of the probabilistic Method is to use
Linearity of Expectation.

Linearity Of Expectation

Given a discrete random variable X =
∑

i ciXi for random variables Xi ,

E [X ] =
∑
i

ciE [Xi ].

Holds true regardless of independence between Xi

We can now say that there exists some point X in the probability
space X such that X ≥ E [X ] or X ≤ E [X ]
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Hamiltonian Paths

Tournament

A tournament on n players is an orientation of the edges of a complete
graph Kn.

Hamiltonian Path

A Hamiltonian path in a tournament T is a directed path that includes all
vertices of T .
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Hamiltonian Paths

Szele 1943

There exists a tournament T with n players and at least n!2−(n−1)

Hamiltonian paths.

Let X be the number of Hamiltonian paths in T , and for every
permutation σ of [n], let Xσ be the indicator random variable for whether
σ(1)σ(2) . . . σ(n) is a Hamiltonian path.

By Linearity of Expectation, since there are n− 1 edges and 1
2 chance that

it is in the right direction,

E [X ] =
∑

E [Xσ] = n!2−(n−1).

Thus there exists some T such that T has at least n!2−(n−1) Hamiltonian
paths.
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Dominating Sets

Dominating Set

A dominating set of a graph G is a set U ⊆ V (G ) such that every vertex
in V (G ) \ U has a neighbor in U.

The set consisting of points {3, 5} is a dominating set.
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Dominating Sets

Theorem

If G is a graph on n vertices with minimum degree δ > 1, then G has a
dominating set of at most n · 1+ln(δ+1)

δ+1 .

Here, if we take a small random subset X of V (G ), we really don’t know
much about any dominating sets. Now we use the idea of an alteration;
instead of only looking at random subsets of our graph, we also add on the
set of undominated vertices Y to set an upper bound on the dominating
set, making it a dominating set.
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Proof

Let’s pick each vertex independently with p ∈ [0, 1] this time to try to get
the best possible bound. Note that Pr[v ∈ Y ] ≤ (1− p)δ+1, since G has
minimum degree δ (anything greater than δ would give a smaller chance of
being in Y ). By Linearity of Expectation,

E [|Y |] =
∑

Pr[v ∈ Y ] ≤ n(1− p)δ+1.

Since (1− p) ≤ e−p,

E [|X |+ |Y |] = E [|X |] + E [|Y |]
≤ np + n(1− p)δ+1

≤ n(p + e−p(δ+1))

(1)
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Proof

Taking the derivative of this expression with respect to p and setting it to
zero gives us that this expression is minimized at p = ln(δ+1)

δ+1 . Hence, there
exists some X such that

|X |+ |Y | ≤ E [|X |+ |Y |] ≤ n · 1 + ln(δ + 1)

δ + 1
,

and X ∪ Y is a dominating set of G as desired.
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Conclusion

The key takeaways are as follows:

The probabilistic method is a non-construtive method to prove that
certain combinatorial objects exist.

Common methods include using Linearity of Expectation or
Alterations to give our desired object.

Some other important theorems that can be proven by the
probabilistic method include Turán’s theorem and the Weierstrass
Approximation theorem

If you would like to learn more, check out my paper!
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