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Abstract. We will discuss the fundamentals of the probabilistic method. Then, we proceed
with some basic methods and some background material. Next we discuss different methods
of the probabilistic method, including Linearity of Expectation, alterations, the second
moment, and the Local Lemma. We conclude the paper with a brief conclusion of the
importance of the probabilistic method.

1. Introduction

Fundamentally, we think about proofs very thoroughly. Often times, to prove a state-
ment, we have to prove that it always works under certain conditions imposed, or to disprove
something we find a counterexample to the statement. This usually makes proofs regarding
probabilities difficult, because there are indeterminate variables. But what if we could prove
the existence of something non-constructively? The fundamental idea of the probabilistic
method is to non-constructively prove the existence of something by calculating the prob-
ability or expected value, and using it in a way to show that some sort of combinatorial
structure must exist or not exist. Possibly the easiest way to understand the probabilistic
method is to look at one of its most famous examples, the Ramsey numbers.

Definition 1.1 (Ramsey Number). The Ramsey number R(k, l) is the smallest integer n
such that for every 2-coloring of the edges of a complete graph Kn (each pair of vertices is
connected by an edge) red and blue, there exists a red Kk or a blue Kl.

In 1929, Ramsey proved that R(k, l) is finite for any two integers (k, l). Let us find a lower
bound for the diagonal Ramsey number R(k, k)

Theorem 1.2 (Erdős 1947). If
(
n
k

)
· 21−(

k
2) < 1, then R(k, k) > n. Thus, for all k ≥ 3,

R(k, k) > ⌊2k/2⌋.

Proof. Let’s take a look at a random 2-coloring of Kn where each edge is independently
colored with equal probability. For any set R of k vertices on our probability space Kn, let
AR be the event that this subgraph is monochromatic (edges are all red or all blue). Since
there are two colors and

(
k
2

)
edges,

Pr[AR] = 2 ·
(
1

2

)(k2)
= 21−(

k
2).

By the union bound,

Pr
[⋃

AR

]
≤
∑

Pr [AR] =

(
n

k

)
· 21−(

k
2) < 1
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Since the union of all possible AR does not fill up the entire probability space,

Pr
[⋂

AR

]
> 0.

With positive probability, none of the events AR occurred. Hence, a 2-coloring of Kn without
a monochromatic Kk exists, meaning R(k, k) > n. Note that if k ≥ 3 and we let n = ⌊2k/2⌋,(

n

k

)
· 21−(

k
2) <

nk

k!
· 2

1+k/2

2k2/2
≤ 21+k/2

k!
<

21+k/2

2k
< 1.

Thus, R(k, k) > ⌊2k/2⌋ for all k ≥ 3. □

The diagonal Ramsey numbers highlights the core of the probabilistic method, using prob-
ability as a way to prove this lower bound. However, a question worth noting is why we used
probability instead of simply counting. Using the fact that the total number of 2-colorings of
Kn is bigger than the number of monochromatic Kk would work just as well. And although
most combinatorial problems deal with finite probability spaces, it is not always possible to
replace our probability arguments with counting arguments, even in finite probability spaces.
From this point onward, we’ll be looking into the different applications and methods of the
probabilistic method.

2. Basic Methods

Definition 2.1 (Tournament). A tournament on n players is an orientation of the edges of
Kn. A tournament T has the property Sk if for every set of k players there is a player who
beats them all.

Theorem 2.2. If
(
n
k

)
(1 − 2−k)n−k < 1, there is a tournament on n vertices that has the

property Sk

Proof. Let’s take a look at a random tournament on n vertices where each edge is oriented
independently with equal probability. Let AR be the event that there is no vertex that beats
them all.

Pr[AR] =
∏

Pr[v does not beat them all]

=
∏

(1− Pr[v beats them all])

=
∏

(1− 2−k)

= (1− 2−k)n−k.

(2.1)

Now by the union bound,

Pr
[⋃

AR

]
≤
∑

Pr[AR] =

(
n

k

)
· (1− 2−k)n−k < 1.

Thus,

Pr
[⋂

AR

]
> 0.

With positive probability, none of the events AR occur; hence, there exists a tournament on
n vertices with the property Sk.

□
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Let’s look at one more example:

Definition 2.3 (Dominating Set). A dominating set of a graph G is a set U ⊆ V (G) such
that every vertex in V (G) \ U has a neighbor in U .

Theorem 2.4. If G is a graph on n vertices with minimum degree δ > 1, then G has a
dominating set of at most n · 1+ln δ+1

δ+1
.

Here, if we take a small random subset X of V (G), we really don’t know much about any
dominating sets. Here, we use the idea of an alteration; instead of only looking at random
subsets of our graph, we also add on the set of undominated vertices Y to set an upper
bound on the dominating set.

Proof. Let’s pick each vertex independently with p ∈ [0, 1]. Pr[v ∈ Y ] ≤ (1− p)δ+1, since G
has minimum degree δ. By Linearity of Expectation,

E[|Y |] =
∑

Pr[v ∈ Y ] ≤ n(1− p)δ+1.

Since (1− p) ≤ e−p,

E[|X|+ |Y |] = E[|X|] + E[|Y |]
≤ np+ n(1− p)δ+1

≤ n(p+ e−p(δ+1))

(2.2)

Taking the derivative of this expression with respect to p and setting it to zero gives us that
this expression is minimized at p = ln δ+1

δ+1
. Hence, there exists some X such that

|X|+ |Y | ≤ E[|X|+ |Y |] ≤ n · 1 + ln δ + 1

δ + 1
,

and X ∪ Y is a dominating set of G as desired. □

The two key takeaways from this proofs is the application of Linearity of Expectation, and
the addition of some set Y , which is a method called an Alteration, where a random outcome
is altered to gain the desired outcome.

3. Preliminaries

Before we proceed, let us briefly go over some probability theory.

Definition 3.1 (Probability Space). A probability space is a triple (Ω,Σ, P ), where Ω is a
sample space, Σ is a σ-algebra on Ω, and P is a probability measure on Σ. Elements Ai on
Σ are events, and Pr[A] for some event A is the probability of A (Note that Pr[] and P ()
both denote probability).

For example, given a finite graph where you randomly choose edges to color white or black,
Ω would be the set of all possible colorations, and Σ would be the set of all subsets of Ω so
that every event is measurable. The probability measure could give an equal probability to
every coloring of the graph.

Lemma 3.2 (Union bound). For a countable set of events A1, A2, . . .

Pr

[
∞⋃
i=1

Ai

]
≤

∞∑
i=1

Pr[Ai].
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Proof. One of the axioms of a probability space states that for disjoint events B1, B2, . . .,

Pr
[⋃

Bi

]
=
∑

Pr[Bi].

Now to modify Ai such that they are disjoint, let

Bi = Ai −
i−1⋃
j=i

Aj.

Note that if

x ∈
∞⋃
i=1

Bi

then x ∈ Bk for some k, and

Bk = Ak −
k−1⋃
j=1

Aj,

so x ∈ Ak, meaning
∞⋃
i=1

Ai ⊂
∞⋃
i=1

Bi.

Similarly, if

x ∈
∞⋃
i=1

Ai,

then x ∈ Ak for some minimum k such that i < k, which means x /∈ Ai. Thus,

x ∈ Bk = Ak −
k−1⋃
j=1

Aj,

and so,
∞⋃
i=1

Bi ⊂
∞⋃
i=1

Ai =⇒
∞⋃
i=1

Bi =
∞⋃
i=1

Ai.

Since Bi ⊂ Ai, Pr[Bi] ≤ Pr[Ai], and

Pr
[⋃

Ai

]
= Pr

[⋃
Bi

]
=
∑

Pr[Bi] ≤
∑

Pr[Ai].

□

Definition 3.3 (Random Variable). A random variable on a probability space (Ω,Σ, P ) is
a function X : Ω → R that is F -measurable. Almost all of the random variables will be
discrete in this paper, meaning that they only take up a countable number of outcomes.

Definition 3.4 (Expected Value (Expectation)). The expected value of a random variable
X is denoted as E[X]. More formally, for random variables on finite probability spaces,

E[X] =
∑
ω∈Ω

Pr[ω]X(ω).

With this out of the way, let’s look at some methods of the probabilistic method.
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4. Linearity of Expectation

Theorem 4.1 (Linearity Of Expectation). Given a discrete random variable X =
∑

i ciXi

for random variables Xi,

E[X] =
∑
i

ciE[Xi].

Proof. Let us prove that E[X + Y ] = E[X] + E[Y ] for random variables X and Y , and
extend the result through induction. By definition,

E[X + Y ] =
∑
x

∑
y

[(x+ y) · P (X = x, Y = y)]

=
∑
x

∑
y

[x · P (X = x, Y = y)] +
∑
x

∑
y

[y · P (X = x, Y = y)]

=
∑
x

x
∑
y

P (X = x, Y = y) +
∑
y

y
∑
x

P (X = x, Y = y)

=
∑
x

x · P (X = x) +
∑
y

y · P (Y = y)

= E[X] + E[Y ].

Note note that each step is repeatable for each given variable added, which concludes our
proof. □

Although it may not be intuitive, this holds even ifXi are not independent! Often times we
will be showing that there must exist some X on our probability space such that X ≤ E[X]
or X ≥ E[X].

For example, consider the following HMMT Problem:

Question 4.2 (HMMT 2006). At a nursery, 2006 babies sit in a circle. Suddenly each baby
randomly pokes either the baby to its left or to its right. What is the expected value of the
number of unpoked babies?

Solution 4.3. Number the babies arbitrarily 1, 2, . . . , 2006. Let Xi be the indicator variable
such that

Xi =

{
1 if baby i is unpoked

0 otherwise.
.

Now note that E[Xi] =
(
1
2

)2
for each i since there is a 1

2
chance that a baby misses and each

baby has two babies on either side.

E[X1 + . . . X2006] = E[X1] + . . . E[X2006] = 2006 · 1
4
=

1003

2
.

Definition 4.4 (Hamiltonian Path). A Hamiltonian path in a tournament T is a directed
path that includes all vertices of T .

Theorem 4.5 (Szele 1943). There exists a tournament T with n players and at least n!2−(n−1)

Hamiltonian paths for all positive integers n.
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Proof. Let X be the number of Hamiltonian paths in T , and for every permutation σ of [n],
let Xσ be the indicator random variable for whether σ(1)σ(2) . . . σ(n) is a Hamiltonian path.
By Linearity of Expectation,

E[X] =
∑

E[Xσ] = n!2−(n−1).

Thus there exists some T such that T has at least n!2−(n−1) Hamiltonian paths.
□

This proof is such a powerful idea; we don’t know anything about our tournament, yet we
can exploit the randomness to calculate the expected value to show the existence of some
lower bound of the number of Hamiltonian paths. For the curious, Alon (1990) proved that
the upper bound for the number of Hamiltonian paths in a tournament with n players to be

n!
(2−σ(1))n

.

Definition 4.6 (Bipartite Graph). A bipartite graph G is a graph whose vertices can be
divided into two disjoint and independent sets U and V such that every edge connects a
vertex from U to one in V .

Theorem 4.7. Every graph G has a bipartite subgraph with at least |E(G)|
2

edges, where E(G)
denotes the number of edges of G.

Proof. Let T be a random subset of the vertices of T where each vertex is chosen indepen-
dently with a probability of 1/2. Let H be the graph with the same vertices of G and edges
that only contain one vertex in T . Note that H is a bipartite subgraph of G. Since each
edge has a 1/2 probability of being chosen,

Pr[e ∈ E(H)] =
1

2
.

The probability that some edge {x, y} is in E(H) is the sum of the probability that x ∈ T

and y /∈ T plus the probability that x /∈ T and y ∈ T , which is just 2 ·
(
1
2

)2
. By Linearity of

Expectation,

E[|E(H)|] =
∑

e∈E(G)

Pr[e ∈ E(H)] =
∑

e∈E(G)

1

2
=

|E(G)|
2

as desired. □

Another example of using Linearity of Expectation is actually with vectors!

Theorem 4.8 (Vector Balancing). Let v1, . . . , vn ∈ Rn, with all |vi| = 1. There exist
ϵ1, . . . , ϵn = ±1 such that

|ϵ1v1 + . . .+ ϵnvn| ≤
√
n

and there also exist ϵ1, . . . , ϵn = ±1 such that

|ϵ1v1 + . . .+ ϵnvn| ≥
√
n.

Proof. Let ϵ1, . . . , ϵn be chosen independently and uniformly, and letX = |ϵ1v1+. . .+ϵnvn|2 =∑n
i=1

∑n
j=1 ϵiϵjvi · vj. Thus

E[X] =
n∑

i=1

n∑
j=1

vi · vjE[ϵiϵj] =
n∑

i=1

n∑
j=1

(vivj)E[ϵiϵj].
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When i ̸= j,

E[ϵiϵj] = E[ϵi]E[ϵj] = 0,

and when i = j,

E[ϵ2i ] = 1.

Thus,

E[X] =
n∑

i=1

|vi|2 = n

which means that there exists ϵi such that X ≤ n and X ≥ n. Taking the square root
finishes our proof. □

There’s also a pretty nice generalization of balancing weighted vectors as follows:

Theorem 4.9 (Balancing Weighted Vectors). Let v1, v2, . . . , vn ∈ Rn, with all |vi| ≤ 1. Let
p1, . . . , pn ∈ [0, 1] and w = p1v1 + . . .+ pnvn. Then there exist ϵ1, . . . , ϵn ∈ {0, 1} such that

|w − v| ≤
√
n

2
,

where v = ϵ1v1 + . . .+ ϵnvn.

Proof. Remark: pi = 1/2 for 1 ≤ i ≤ n is equivalent to the theorem above.

As for the idea behind this proof, we want to choose ϵi independently such that

Pr[ϵi = 1] = pi,Pr[ϵi = 0] = 1− pi.

Then, let X = |w − v|2 and show that E[X] ≤ n
4
, then square root to finish it off like

before. □

5. Alterations

Aside from Linearity of Expectation, one of the most powerful techniques of the proba-
bilistic method is the use of alterations. The idea is pretty simple: alter a random outcome
to get the desired object.

Theorem 5.1 (Better Ramsey Number Lower Bound). For any positive integer n,

R(k, k) > n−
(
n

k

)
21−(

k
2)

Proof. Consider a random 2-coloring of Kn. Let X be the number of monochromatic Kk.
Then,

E[X] =

(
n

k

)
21−(

k
2)

so there exists some two coloring for which X ≤ E[X]. Now, we fix this coloring by removing

one vertex from each monochromatic k-set from Kn. The coloring on the set of n−
(
n
k

)
21−(

k
2)

vertices now has no monochromatic k − set, giving us our desired, better lower bound. □

But what about off-diagonal Ramsey Numbers?
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Theorem 5.2 (Off-Diagonal Ramsey Numbers). If there exists p ∈ [0, 1] such that(
n

k

)
p(

k
2) +

(
n

l

)
(1− p)(

l
2) < 1,

then R(k, l) > n.

Equivalently, with the same previous alteration for diagonal Ramsey Numbers, we can get
this better bound as follows:

Theorem 5.3. For all p ∈ [0, 1] and positive integers n,

R(k, l) > n−
((

n

k

)
p(

k
2) +

(
n

l

)
(1− p)(

l
2)
)

Proof. In both theorems, consider a random 2-coloring of Kn by coloring each edge indepen-
dently red with probability p. Let X be the number of red k-sets plus the number of blue
l-sets. By Linearity of Expectation,

E[X] =

(
n

k

)
p(

k
2) +

(
n

l

)
(1− p)(

l
2).

For theorem 3.2, E[X] < 1, meaning there exists a two-coloring with X = 0. And with the
same logic of removing points from “bad” sets, we can get a lower bound with n − E[X]
points with no bad sets. □

Theorem 5.4 (Turán’s Theorem). If G is a Kr-free graph on n vertices, then

(a)|E(G)| ≤ (1− 1
r−1

)
(
n
2

)
,

(b) max achieved by the unique complete (r − 1)-partite graph with part sizes nearly equal.

Although we will not prove the entire theorem, we can prove a weak form of part a:

Theorem 5.5 (Half of Turán’s). Let G = (V,E) have n vertices and nd
2

edges, for d ≥ 1.
Then

α(G) ≥ n

2d
,

where α(G) denotes the independence number.

Proof. Let S be a random subset of V where each vertex is in S independently with proba-
bility p, and let X = |S| and Y = |E(G[S])|. Thus,

E[X] = np

and
Pr[e ∈ G[S]] = p2.

By Linearity of Expectation,

E[Y ] =
∑

e∈E(G)

Pr[e ∈ G[S]] = |E(G)|p2 = nd

2
p2.

Now applying Linearity of Expectation again, we get

E[X − Y ] = np− nd

2
p2.
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Letting p = 1
d
maximizes

E[X − Y ] =
n

2d
.

Hence, there exists X with X − Y ≥ E[X − Y ] = n
2d
. Deleting one end of each edge in G[S]

gives

α(G) ≥ X − Y ≥ n

2d
.

Remark:

|E(G)| ≥ n2

4α(G)
≥ n2

4(r − 1)

□

Definition 5.6 (Packing). Let C be a bounded measurable subset of Rd and B(x) be the
cube [0, x]d of side x. A packing of C into B(x) is a family of pairwise disjoin copies of C,
all lying inside B(x). Let f(x) denote the size of a largest such family.

The packing constant

δ(C) = µ(C) lim
x→∞

f(x)

xd
,

where µ(C) is the measure of C.

Theorem 5.7. Let C be bounded (∃w, |c| ≤ w∀c ∈ C), convex (if c1, c2 ∈ C, then pc1+(1−
p)c2 ∈ C∀p ∈ [0, 1]), and centrally symmetric (if c1 ∈ C, then −c1 ∈ C). Then

δ(C) ≥ 1

2d+1
.

Proof. Let P1, . . . , Pn be independently and uniformly selected from B(x), and let X be the
number of pairs {i, j} with (C+Pi)∩(C+Pj) ̸= ∅. We now calculate Pr[(C+Pi)∩(C+Pj) ̸= ∅]
as follows:

If (C + Pi) ∩ (C + Pj) ̸= ∅, then there exist c1, c2 ∈ C with

c1 + Pi = c2 + Pj,

or equivalently

Pj − Pi = c1 − c2 = 2
c1 − c2

2
.

Since −c2 ∈ C, c1
2
+
(−c2

2

)
∈ C by convexity,

Pj ∈ Pi + 2C.

Hence

Pr[(C + Pi) ∩ (C + Pj) ̸= ∅] ≤ Pr[Pj ∈ Pi + 2C] ≤ µ(2C)

xd
=

2dµ(C)

xd
.

Now by Linearity of Expectation,

E[X] ≤ n2

2
· 2

dµ(C)

xd

and there exists an X such that X ≤ E[X]. Removing one copy from each intersecting pair
leaves

n−X ≥ n− n22d−1x−dµ(C)
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pairwise disjoint copies. Letting n = 2−dxd/µ(C) maximizes this expression giving

2−(d+1)xd/µ(C)

pairwise disjoint copies.These copies may not all lie inside of B(x), but they all lie inside of
B(x+ 2w), where w = maxc∈C |c|.
Thus,

f(x+ 2w) ≥ 2−(d+1)xd/µ(C),

meaning that

δ(C) ≥ lim
x→∞

µ(C)f(x+ 2x)

(x+ 2w)−d
≥ 2−(d+1)

□

6. Hypergraphs

Definition 6.1 (Hypergraph). A hypergraph G = (V,E) is a graph such that edges can join
any number of vertices, whereas edges in graphs can only join two vertices.

Definition 6.2 (Property B). A hypergraph H = (V,E) has property B, also known as 2-
colorable, if there is a 2-coloring of V such that no edge is monochromatic. Let m(n) denote
the minimum number of edges in an n−uniform hypergraph that does not have property B.

Lower bounds: m(n) ≥
• 2n−1 (Erdős 1963)

• Ω(2nn
1
3 ) (Beck 1978)

• Ω(2n
√

n/ lnn) (Radhakrishnan and Srinivasan 2000)

Let’s present a proof by Cherkashin and Kozik (2015). To prove this theorem, we must first
define a conflicting pair.

Definition 6.3. For a n−uniform hypergraph (all hyperedges have size n), if σ is an ordering
of V (H) and e, f ∈ E(H), then (e, f) is a conflicting pair under σ if the last vertex of e is
the first vertex of f .

Lemma 6.4. If there exists an ordering σ of V (H) with no conflicting pairs, then H is
2-colorable.

Proof. Color a vertex red if it is the last vertex of an edge under σ, and blue otherwise. Then
there are no monochromatic blue edges because the last coloring is always red, and there are
no monochromatic red edges because there are no conflicting pairs. □

Theorem 6.5. If there exists p ∈ [0, 1] with

k(1− p)n + k2p < 1,

then m(n) > 2n−1k.

Proof. Let H be a hypergraph with |E(H)| = 2n−1k with probability p that satisfy the
condition. Now to create a random ordering of V (H), ∀v ∈ V (H), let xv ∈ [0, 1] be chosen
independently and uniformly (note that xv are all distinct with probability 1, which creates
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the ordering of V (H)). Now let us split [0, 1] into 3 different intervals to check for conflicting
pairs:

L =

[
0,

1− p

2

]
,M =

(
1− p

2
,
1 + p

2

)
, R =

[
1 + p

2
, 1

]
.

Then for e ∈ E(H),

Pr[e ∈ L] = Pr[e ∈ R] =

(
1− p

2

)n

.

Thus, ∑
e∈E(H)

Pr[e ∈ L or e ∈ R] = 2n−1k · 2 ·
(
1− p

2

)n

= k(1− p)n.

which is the probability that no edge is entirely in the left or entirely in the right. Now, the
only way to get a conflicting pair is such that the intersection of e ∩ f = v is in the middle,
and the rest of e is before v, and the rest of f is after v.

∀e, f ∈ E(H) with e ∩ f = v, let

Ae,f = v ∈ M and (e, f) is conflicting.

Pr[Ae,f ] = pxn−1
v (1− xv)

n−1 ≤ p

(
1

4

)n−1

.

Thus, ∑
e,f∈E(H)

Pr[Ae,f ] ≤ (2n−1k)2p

(
1

4

)n−1

= k2p.

Hence,

Pr[∃ conflicting pair] ≤ k(1− p)n + k2p < 1.

□

Corollary 6.6. m(n) = Ω(2n
√

n/ lnn)

Proof. Once again, by bounding (1 − p) ≤ e−p, we minimize ke−pn + k2p. Taking the

derivative, we get −kne−pn + k2, which is 0 at p = ln(n/k)
n

. Substituting gives

k2

1 + ln(n/k)
,

and this expression is less than 1 when k = O(
√

n/ lnn). □

7. Second Moment

Definition 7.1 (k-th moment). The k−th moment of a random variable X is E[Xk].

Definition 7.2 (Variance). The variance of a random variable X is

Var[X] = E[(X − E[X])2],

and the square root of the variance is called the standard deviation. It is standard notation
to let µ denote the expectation and σ denote the standard deviation.
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Theorem 7.3 (Markov’s Inequality (for first moment of random variables)). If X ≥ 0 is a
random variable, then ∀a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Proof.

E[X] =
∑
i

iPr[X = i]

≥
∑
i≥a

iPr[X = i]

≥ aPr[X ≥ a].

□

The second moment involves using the following inequality:

Theorem 7.4 (Chebyshev’s Inequality). For all λ > 0,

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

Proof. Since (X − µ)2 ≥ 0, by Markov’s

Pr[|X − µ| ≥ λσ] = Pr[(X − µ)2 ≥ λ2σ2]

≤ E[(X − µ)2]

λ2σ2

=
σ2

λ2σ2

=
1

λ2

□

Essentially, Chebyshev’s states that the probability decreases quadratically in the number
of standard deviations, but when X is the sum of nearly independent random variables,
exponentially decreasing bounds are obtainable.

Definition 7.5 (Covariance). The covariance of two random variables X and Y is

Cov[X, Y ] = E[XY ]− E[X]E[Y ].

If X and Y are independent, then Cov[X, Y ] = 0.

Proposition 7.6. If X = X1 + . . .+Xn,

Var[X] =
n∑

i=1

Var[Xi] +
∑
i ̸=j

Cov[Xi, Xj].

If Xi are indicator random variables with probability pi, then

Var[Xi] = pi(1− pi) ≤ pi = E[Xi],

and thus
Var[X] ≤ E[X] +

∑
i ̸=j

Cov[Xi, Xj].
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Now let’s jump into some examples in number theory. In 1920, Hardy and Ramanujan proved
that “almost all” numbers n have “very close to” ln lnn prime factors. More concretely, they
proved the following:

Theorem 7.7 (Hardy and Ramanujan (1920)). Let ω(n) → ∞ arbitrariliy slowly. Then the
number of x ∈ [n] such that

|v(x)− ln lnn| > ω(n)
√
ln lnn

is o(n), where v(n) denotes the number of primes dividing n (without multiplicity).

Proof. Let x be randomly chosen from [n]. For p prime, let Xp be the following indicator
variable:

Xp =

{
1 if p | x
0 otherwise

.

Let M = n1/10 and X =
∑

p≤M Xp. As x has at most 10 prime factors that are greater than
M ,

v(x)− 10 ≤ X(x) ≤ v(x).

Note that

E[Xp] =
⌊n/p⌋
n

=
1

p
+O(1/n).

By Linearity of Expectation,

E[X] =
∑
p≤M

(
1

p
+O

(
1

n

))
= ln lnn+O(1).

As for the variance,

Var[X] =
∑
p≤M

Var[Xp] +
∑
p̸=q

Cov[Xp, Xq].

Note that

Var[Xp] =
1

p

(
1− 1

p

)
+O

(
1

n

)
.

Thus, ∑
p≤M

Var[Xp] =

(∑
p≤M

1

p

)
+O(1) = ln lnn+O(1).

As for covariance, when p ̸= q,

XpXq = 1 ⇐⇒ p|x and q|x ⇐⇒ pq|x.
Thus,

Cov[Xp, Xq] = E[XpXq]− E[Xp]E[Xq]

=
⌊n/pq⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

= O

(
± 1

n

)
.

And so, ∑
p ̸=q

Cov[Xp, Xq] = M2O

(
± 1

n

)
= O(±n−8/10) = o(1).
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Thus,

Var[X] = ln lnn+O(1).

By Chebyshev’s Inequality,

Pr[|X − ln lnn| > λ
√
ln lnn] <

1

λ2
+ o(1).

□

Something interesting to note is that if X ≥ 0 and E[X] → 0, then X = 0 almost always
(essentially with probability 1). However, if E[X] → ∞, it is not always the case that X > 0,
which is extremely unintuitive. Consider the following:

X =

{
n2 with probability 1/n

0 otherwise
.

However, if the variance is small enough, we can conclude that X > 0 almost always.

Theorem 7.8.

Pr[X = 0] ≤ Var[X]

E[X]2
.

Proof. Setting λ = µ
σ
in Chebyshev’s Inequality, we get

Pr[X = 0] ≤ Pr[|X − µ| ≥ λσ] ≤ 1

λ2
=

σ2

µ2
.

□

Corollary 7.9. If Var[X] = o(E[X]2), then X > 0 almost always.

Even better,

Corollary 7.10. If Var[X] = o(E[X]2), then X ∼ E[X] almost always.

Essentially, the idea of the second moment method is applying variances and covariances
to often times show that X is nonnegative almost always or even prove that it’s very close
to what we expect almost always.

8. Local Lemma

Most of our methods have only showed that an outcome happens with high probability but
doesn’t cover the entire probability space. Now what if we wanted to actually show that an
outcome happens with a low positive probability? One common event in which this occurs is
the intersection of independent events. For example, consider A1, . . . , An independent events
with Pr[Ai] = p > 0. Then,

Pr

[
n⋂

i=1

Ai

]
= pn > 0.

To see if this still works if Ai are mostly independent, let’s formalize being “mostly inde-
pendent”.
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Definition 8.1 (Mutual Independence). An event A in a probability space is mutually
independent of a set B of other events if for each S ⊆ B,

Pr

[
A|
⋂
Bi∈S

Bi

]
= Pr[A].

Note that an event may be pairwise independent to each event in B but not mutually
independent. Now the Lovász Local Lemma shows that if a set of undesirable events that
are mostly mutually independent and happen with low probability, then with positive prob-
ability none of them happen.

There are two versions of the Local Lemma:

(1) Symmetric version - probabilities and dependencies are uniformly bounded
(2) General version- probabilities and dependencies may vary

Lemma 8.2 (Lovász Local Lemma (Symmetric)). Let A = {A1, . . . , An} be a set of events
in a probability space. If ∀i ∈ [n]:

• ∃Di ⊂ A with |Di| ≤ d such that Ai is mutually independent of A \Di

• Pr[Ai] ≤ p

and ep(d+ 1) ≤ 1, then

Pr

[
n⋂

i=1

Ai

]
> 0.

Proof. If d = 0, the events are independent and our result immediately follows.

Now when d ≥ 1, ∀i ∈ [n], let

xi =
1

d+ 1
.

∀d ≥ 1, (
1− 1

d+ 1

)d

≥ 1

e

Thus

xi

∏
Aj∈Di

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d

≥ 1

e(d+ 1)
≥ p ≥ Pr[Ai].

By the general version,

Pr

[
n⋂

i=1

Ai

]
≥
(
1− 1

d+ 1

)n

> 0.

□

Lemma 8.3 (Lovász Local Lemma (General)). Let A = {A1, . . . , An} be a set of events in
a probability space. If ∀i ∈ [n]:

• ∃Di ⊂ A such that Ai is mutually independent of A \Di

• xi ∈ [0, 1) such that

Pr[Ai] ≤ xi

∏
Aj∈Di

(1− xj)
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and ep(d+ 1) ≤ 1, then

Pr

[
n⋂

i=1

Ai

]
≥

n∏
i=1

(1− xi) > 0.

Claim 8.4. For T ⊆ [n], let

Not(T ) =
⋂
j∈T

Aj.

∀i ∈ [n] and S ⊆ [n] \ i,
Pr[Ai|Not(S)] ≤ xi.

Proof. Let’s do induction on |S|.

|S| = 0 holds true since

Pr[Ai] ≤ xi

∏
Aj∈Di

(1− xj) ≤ xi.

Now for S ̸= ∅, let
S1 = {j ∈ S : Aj ∈ Di}, S2 = S \ S1.

Then,

Pr[Ai|Not(S)] =
Pr[Ai ∩ Not(S1)|Not(S2)]

Pr[Not(S1)|Not(S2)]

by conditional probability. Note that

Pr[Ai ∩ Not(S1)|Not(S2)] ≤ Pr[Ai|Not(S2)],

and since Ai is mutually independent of S2,

Pr[Ai|Not(S2)] = Pr[Ai] ≤ xi

∏
Aj∈Di

(1− xj).

Now suppose S1 = {j1, . . . , jr}. Then

Pr [Not (S1) | Not (S2)] =
r∏

k=1

Pr
[
Ajk | Not ({jℓ : ℓ < k} ∪ S2)

]
=

r∏
k=1

(1− Pr [Ajk | Not ({jℓ : ℓ < k} ∪ S2)])

≥
r∏

k=1

(1− xjk) ≥
∏

Aj∈Di

(1− xj)

,

where we used induction with |{jℓ : ℓ < k} ∪ S2| < |S|. Thus,

Pr[Ai|Not(S)] ≤
xi

∏
Aj∈Di

(1− xj)∏
Aj∈Di

(1− xj)
= xi

□

Now to prove the general lemma:
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Proof.

Pr

[
n⋂

i=1

Ai

]
=

n∏
i=1

Pr
[
Ai | Not({j : j < i})

]
=

n∏
i=1

(1− Pr [Ai | Not({j : j < i})])

By the claim,

Pr [Ai | Not({j : j < i})] ≤ xi.

And thus,

Pr

[
n⋂

i=1

Ai

]
≥

n∏
i=1

(1− xi) > 0.

□

Now let’s look again at a problem regarding hypergraphs. Recall that a hypergraph
H has Property B (2-colorable) if there exists a 2-coloring of V (H) such that no edge is
monochromatic.

Theorem 8.5. Let H be a hypergraph. If ∀e ∈ E(H), e has size at least k and intersects at
most d other edges, and

e(d+ 1) ≤ 2k−1,

then H has Property B.

Proof. Consider a random 2-coloring of V (H). ∀f ∈ E(H), letAf = event f is monochromatic.
Note that

Pr[Af ] =
2

2|f |
≤ 21−k,

which we will define to be p in our local lemma.

Now let Df = {f ′ ∈ E(H) : f ′ ∩ f ̸= ∅}. By assumption, |Df | ≤ d, and yet Af is mu-
tually independent of

⋃
eAe \Df . By the Local Lemma, since ep(d + 1) ≤ 1, with positive

probability none of the events Af hold.

Thus, there exists a 2-coloring of H with no monochromatic edge. □

Lastly, let’s do one final lower bound for the Ramsey Numbers.

Theorem 8.6 (Even Better Lower Bound for Diagonal Ramsey Numbers). If e
(
k
2

)(
n−2
k−2

)
21−(

k
2) <

1, then R(k, k) > n.

Proof. Consider a random 2-coloring of E (Kn). ∀S ∈
(
V (Kn)

k

)
, let AS be the event S is

monochromatic. Note that

Pr[As] = 21−(
k
2),

and let this be the p in our local lemma. Now let DS =
{
T ∈

(
V (Kn)

k

)
: |S ∩ T | ≥ 2

}
.

Note that |DS| <
(
k
2

)(
n−2
k−2

)
, which we will let be d, and yet AS is mutually independent of

UTAT\DS. By the Lovász Local Lemma, since ep(d+1) ≤ 1, with positive probability none
of the events AS hold.
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Some more calculations actually gives:

R(k, k) >

√
2

e
(1 + o(1))k2k/2,

which is a factor of two in terms of improvement over the basic lower bound. This will be
our final altercation with the Ramsey Numbers. □

9. Conclusion

The essence of the probabilistic method is quite simple: the use of probability to un-
conventionally prove the existence of objects non-constructively. The coolest part about the
probabilistic method is actually highlighted through the Ramsey numbers: as we apply more
and more methods, we can further better our bound more and more!
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