Lucas-Lehmer, Miller-Rabin, and AKS Primality Test

Inho Ryu

Euler Circle

July 17, 2023

 \leftarrow Inho Ryu [Lucas-Lehmer, Miller-Rabin, and AKS Primality Test](#page-18-0)

化重新润滑

SIL

 299

∍

- A primality test is an algorithm which determines whether an input number is prime.
	- **•** Trial division
- Cryptography Generating keys
- GIMPS: Great Internet Mersenne Prime Search
	- A collaborative project of people who use software on their PCs in order to find Mersenne primes
	- Fermat probable prime test, Lucas-Lehmer test

in a market man

There are two algorithms for the modular exponentiation problem: the naive algorithm and the repeated squaring algorithm. The repeated squaring algorithm goes as follows:

- **1** Start with b and multiply it by itself ("squaring it") (mod m)
- 2 Square the new result (mod m)
- **3** etc. until power is equal or larger than original
- ⁴ Combine together some of these results, multiplying them together (mod m)

There are some steps we can take to make this easier, such as in $b^k \pmod{m}$ converting k to binary for the final step (see example).

K 何 ▶ K ヨ ▶ K ヨ ▶ ...

 \equiv

Example

Say we wish to know the value 3^{200} mod 50.

$$
3^1 = 3 \mod 50 \rightarrow 3 \mod 50
$$

$$
3^2 = 9 \mod 50 \to 9 \mod 50
$$

$$
3^4 = 81 \mod 50 \to 31 \mod 50
$$

$$
3^8 = 961 \mod 50 \to 11 \mod 50
$$

$$
3^{16} = 121 \mod 50 \rightarrow 21 \mod 50
$$

$$
3^{32} = 441 \mod 50 \rightarrow 41 \mod 50
$$

$$
3^{64} = 1681 \mod 50 \rightarrow 31 \mod 50
$$

$$
3^{128} = 961 \mod 50 \rightarrow 11 \mod 50
$$

 9.3^{256} , but exponent is larger than initial, so halt.

Rewrite 200 in binary as 11001000. So, $200 = 128 + 64 + 8$. So 200 mod 50 $=3^{128+64+8}$ mod 50 $=3^{128}3^{64}3^{8}$ mod 50, and replace to get $(11)(31)(11)$ mod $50 = 3751$ mod $50 = 1$ mod 50. A . . 3 . . 3 .

Mersenne Primes

Definition (Mersenne Number)

 $M_n = 2^n - 1$ where $n \in \mathbb{Z}^+$ and $n \geq 2$

- A Mersenne prime is a prime Mersenne number.
- There are only 51 Mersenne primes known
- Close relation to perfect numbers (Euclid-Euler Theorem)
	- **1** $2^p 1$ is prime, then $2^{p-1}(2^p 1)$ is a perfect number.
	- 2 All even perfect numbers are the product of a power of two and Mersenne prime

Inho Ryu [Lucas-Lehmer, Miller-Rabin, and AKS Primality Test](#page-0-0)

何 ト ィヨ ト ィヨ ト

Define a sequence $\left\{s_i\right\}$ for all $i\geq 0$ by

$$
s_i = \begin{cases} 4 & \text{if } i = 0; \\ s_{i-1}^2 - 2 & \text{otherwise.} \end{cases}
$$
 (0.1)

 M_p is prime if and only if

$$
s_{p-2} \equiv 0 \mod M_p \tag{0.2}
$$

 299

э

化重变 化重

$$
M_7 = 2^7 - 1 = 127
$$
\n\n- **6** $s_0 = 4 \pmod{127}$
\n- **7** $s_1 = (4^2 - 2) \pmod{127} = 14 \pmod{127}$
\n- **8** $s_2 = (14^2 - 2) \pmod{127} = 67 \pmod{127}$
\n- **9** $s_3 = (67^2 - 2) \pmod{127} = 42 \pmod{127}$
\n- **9** $s_4 = (42^2 - 2) \pmod{127} = 111 \pmod{127}$
\n- **9** $s_5 = (111^2 - 2) \pmod{127} = 0 \pmod{127}$
\n

Therefore, 127 is prime.

メロトメ 御 トメ 君 トメ 君 ト

目

- Lucas-Lehmer residue calculated with these alternative starting values will still be zero if M_p is a Mersenne prime
- \bullet The terms of the sequence will be different and if M_p is not prime then the Lucas-Lehmer residue will be different from when calculated with $s_0 = 4$
- Universal starting values, as in they are valid for all (or nearly all) ρ , are 4, 10, and (2 $\,$ mod $\,M_{\rho}) (3 \,$ mod $\,M_{\rho})^{-1}$, which is usually denoted by 2/3 for short

何 ト ィヨ ト ィヨ ト

э

Given an integer $n \geq 5$, this algorithm outputs either true or false. If it outputs true, then n is probably prime, and if it outputs false, then n is definitely composite.

- \bullet Compute the unique integers m and k such that m is odd and $n-1=2^k \cdot m$.
- **2** Choose a random integer a with $1 < a < n$.
- **3** Set $b = a^m \pmod{n}$. If $b \equiv \pm 1 \pmod{n}$ output true and terminate.
- \bullet If $b^{2^r}\equiv -1\pmod n$ for any r with $1\leq r\leq k-1,$ output true and terminate. Otherwise output false.

イ押 トイヨ トイヨ トー

 \equiv

$n = 11$

- \bullet Compute the unique integers m and k such that m is odd and $n-1=2^k \cdot m$.
	- We set $n = 11$, $k = 1$, and $m = 5$. The values for k and m are the only ones possible. $11-1=2^1\cdot 5$
- **2** Choose a random integer a with $1 < a < n$.
	- **O** Set $a = 6$, as it falls under $1 < a < 11$.
- **3** Set $b = a^m$ mod *n*. If $b \equiv \pm 1$ mod *n* output true and terminate.
	- **0** $b = 6^5$ mod 11. $b \equiv -1$ mod 11. Therefore, 11 is probably prime and terminate the process.

 \mathcal{L} and \mathcal{L} is a set of \mathcal{L} in the \mathcal{L}

- No composite number is a strong pseudoprime to all bases at the same time
- One way is to try all possible bases, which would be deterministic, but this is inefficient and the Miller test would be a better variant for this task
- Another solution is to pick a base at random as is established in the Miller-Rabin test.
	- \bullet When *n* is composite, most bases are witnesses
	- We can reduce the chance of a false positive by testing more base
		- If n is a pseudoprime to some base, then it seems more likely to be a pseudoprime to another base.

 $\langle \overline{m} \rangle$ and \overline{m} and \overline{m} and \overline{m}

Acurracy

- Probability that a composite number is declared to be probably prime
- The more bases a that are tried, the better the accuracy of the test
- \bullet At most 1/4 of the bases a are strong liars for n.
	- If n is composite, then running the Miller-Rabin test k times would result in n being declared probably prime with a probability at most 4^{-k}
- 4^{-k} is the worst case scenario, so for larger values of n , the probability for a composite number to be declared probably prime is often significantly smaller than 4^{-k}
	- For most numbers *n*, the probability is bounded by 8^{-k} , as the probability gets extremely impossible as we consider larger values of n
- This improved error rate should not be relied on to verify primes, as there could be a carefully chosen pseudoprime in order to defeat the primality test $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

Important because it can:

- **1** Verify the primality of any general number given
- ² Have the maximum running time be bounded by a polynomial over the number of digits in the target number
- ³ Deterministically distinguish whether the number is prime or composite
- ⁴ Not conditional on any subsidiary unproven hypothesis

A . . 3 . . 3 .

Suppose n is a natural number, and a an integer coprime to n . The number n is prime if and only if the relation

$$
(x + a)^n = x^n + a \quad \text{in } (\mathbb{Z}/n\mathbb{Z})[x] \tag{0.3}
$$

holds

医阿里氏阿里氏

 QQ

э

Basic Idea (Continued)

Suppose that $n = p$ is a prime. Observe that $\binom{p}{i}$ $\binom{p}{i} = p!/(i!(p-i)!)$ is a multiple of p for all $1 \le i \le p-1$. Therefore, using the binomial theorem, in $(\mathbb{Z}/p\mathbb{Z})[x]$, we have

$$
(x + a)^p = x^p + \sum_{i=1}^{p-1} {p \choose i} x^{p-i} a^i + a^p = x^p + a^p = x^p + a \quad (0.4)
$$

where the last relation holds because $a^p \equiv a \! \pmod{p}$ for all $a \in \mathbb{Z}$ by Fermat.

If *n* is not prime, then there is some $1 \le i \le n-1$ with $\binom{n}{i}$ $\binom{n}{i}$ not being a multiple of n. Therefore in this case the binomial theorem shows that the coefficients of x^{n-1} (or $\mathsf{x}^i)$ on both sides of the identity of the lemma do not match mod n .

A & Y E & Y E &

- \bullet Check that *n* is not a perfect power
- $\textcolor{black}{\bullet}$ Check that $\textcolor{black}{n}$ has no prime factor smaller than $100(\log \textcolor{black}{n})^5$
- \bullet Find the smallest integer r such that the order of n mod r is $\geq 9(\log n)^2$
- **4** Check the key identity:

$$
(x + a)^n \equiv x^n + a \mod (n, x^r - 1) \tag{0.5}
$$

for various values of $a \in \mathbb{Z}$. But it is enough to check for all $1\leq \textit{a}\leq \textit{r}\leq 100(\log \textit{n})^{5}$

$n = 3, a = 1$ $(x-1)^3 - (x^3 - 1) = (x^3 - 3x^2 + 3x - 1) - (x^3 - 1) = -3x^2 + 3x$ All the coefficients are divisible by 3, so 3 is prime.

伺 ▶ イヨ ▶ イヨ ▶

 2990

э

- Lucas-Lehmer Test Mersenne Numbers
- Miller-Rabin Test Probalistic test
- **AKS** Test Deterministic test for all numbers

E

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 QQ

Thanks for listening

メロトメ 伊 トメ ミトメ 毛

 $2Q$

≣ -b