Lucas-Lehmer, Miller-Rabin, and AKS Primality Test

Inho Ryu

Euler Circle

July 17, 2023

Inho Ryu Lucas-Lehmer, Miller-Rabin, and AKS Primality Test

→ ∃ → < ∃</p>

- A primality test is an algorithm which determines whether an input number is prime.
 - Trial division
- Cryptography Generating keys
- GIMPS: Great Internet Mersenne Prime Search
 - A collaborative project of people who use software on their PCs in order to find Mersenne primes
 - Fermat probable prime test, Lucas-Lehmer test

There are two algorithms for the modular exponentiation problem: the naive algorithm and the repeated squaring algorithm. The repeated squaring algorithm goes as follows:

- Start with b and multiply it by itself ("squaring it") (mod m)
- **2** Square the new result $(\mod m)$
- etc. until power is equal or larger than original
- Combine together some of these results, multiplying them together (mod m)

There are some steps we can take to make this easier, such as in $b^k \pmod{m}$ converting k to binary for the final step (see example).

< 回 > < 回 > < 回 >

Example

Say we wish to know the value $3^{200} \mod 50$.

$${f 0}$$
 $3^1=3$ mod 50 $ightarrow$ 3 mod 50

2
$$3^2 = 9 \mod 50 \rightarrow 9 \mod 50$$

③
$$3^4 = 81 \mod 50 \rightarrow 31 \mod 50$$

9
$$3^8 = 961 \mod 50 \rightarrow 11 \mod 50$$

9
$$3^{16} = 121 \mod 50 \rightarrow 21 \mod 50$$

$$3^{32} = 441 \mod{50} \rightarrow 41 \mod{50}$$

$$\bigcirc 3^{64} = 1681 \mod 50 o 31 \mod 50$$

3
$$3^{128} = 961 \mod 50 \rightarrow 11 \mod 50$$

() 3^{256} , but exponent is larger than initial, so halt.

Rewrite 200 in binary as 11001000. So, 200 = 128 + 64 + 8. So $3^{200} \mod 50 = 3^{128+64+8} \mod 50 = 3^{128}3^{64}3^8 \mod 50$, and replace to get $(11)(31)(11) \mod 50 = 3751 \mod 50 = 1 \mod 50$.

Mersenne Primes

Definition (Mersenne Number)

 $M_n = 2^n - 1$ where $n \in \mathbb{Z}^+$ and $n \ge 2$

- A Mersenne prime is a prime Mersenne number.
- There are only 51 Mersenne primes known
- Close relation to perfect numbers (Euclid-Euler Theorem)
 - **1** $2^{p}-1$ is prime, then $2^{p-1}(2^{p}-1)$ is a perfect number.
 - All even perfect numbers are the product of a power of two and Mersenne prime

Rank +	Number	Discovered +	Digits +	Form ¢
1	2 ⁸²⁵⁸⁹⁹³³ - 1	2018-12-07	24,862,048	Mersenne
2	2 ⁷⁷²³²⁹¹⁷ - 1	2017-12-26	23,249,425	Mersenne
3	2 ⁷⁴²⁰⁷²⁸¹ - 1	2016-01-07	22,338,618	Mersenne
4	2 ⁵⁷⁸⁸⁵¹⁶¹ - 1	2013-01-25	17,425,170	Mersenne
5	2 ⁴³¹¹²⁶⁰⁹ - 1	2008-08-23	12,978,189	Mersenne
6	2 ⁴²⁶⁴³⁸⁰¹ - 1	2009-06-04	12,837,064	Mersenne
7	$\Phi_3(-465859^{1048576})$	2023-05-31	11,887,192	Cyclotomic polynomial
8	2 ³⁷¹⁵⁶⁶⁶⁷ - 1	2008-09-06	11,185,272	Mersenne
9	2 ³²⁵⁸²⁶⁵⁷ - 1	2006-09-04	9,808,358	Mersenne
10	10223 × 2 ³¹¹⁷²¹⁶⁵ + 1	2016-10-31	9,383,761	Proth

Lucas-Lehmer, Miller-Rabin, and AKS Primality Test

伺 ト イヨト イヨト

Define a sequence $\{s_i\}$ for all $i \ge 0$ by

$$s_i = \begin{cases} 4 & \text{if } i = 0; \\ s_{i-1}^2 - 2 & \text{otherwise.} \end{cases}$$
 (0.1)

 M_p is prime if and only if

$$s_{p-2} \equiv 0 \mod M_p \tag{0.2}$$

★ ∃ ► < ∃ ►</p>

$$M_7 = 2^7 - 1 = 127$$

$$s_0 = 4 \pmod{127}.$$

$$s_1 = (4^2 - 2) \pmod{127} = 14 \pmod{127}$$

$$s_2 = (14^2 - 2) \pmod{127} = 67 \pmod{127}$$

$$s_3 = (67^2 - 2) \pmod{127} = 42 \pmod{127}$$

$$s_4 = (42^2 - 2) \pmod{127} = 111 \pmod{127}$$

$$s_5 = (111^2 - 2) \pmod{127} = 0 \pmod{127}$$

Therefore, 127 is prime.

- Lucas-Lehmer residue calculated with these alternative starting values will still be zero if M_p is a Mersenne prime
- The terms of the sequence will be different and if M_p is not prime then the Lucas-Lehmer residue will be different from when calculated with $s_0 = 4$
- Universal starting values, as in they are valid for all (or nearly all) p, are 4, 10, and (2 mod M_p)(3 mod M_p)⁻¹, which is usually denoted by 2/3 for short

伺下 イヨト イヨト

Given an integer $n \ge 5$, this algorithm outputs either true or false. If it outputs true, then n is probably prime, and if it outputs false, then n is definitely composite.

- Compute the unique integers *m* and *k* such that m is odd and *n*−1 = 2^k · *m*.
- 2 Choose a random integer a with 1 < a < n.
- Set $b = a^m \pmod{n}$. If $b \equiv \pm 1 \pmod{n}$ output true and terminate.
- If $b^{2^r} \equiv -1 \pmod{n}$ for any r with $1 \leq r \leq k 1$, output true and terminate. Otherwise output false.

n = 11

- Compute the unique integers *m* and *k* such that m is odd and $n-1=2^k \cdot m$.
 - We set n = 11, k = 1, and m = 5. The values for k and m are the only ones possible. $11 1 = 2^1 \cdot 5$
- 2 Choose a random integer *a* with 1 < a < n.
 - Set a = 6, as it falls under 1 < a < 11.
- Set $b = a^m \mod n$. If $b \equiv \pm 1 \mod n$ output true and terminate.
 - $b = 6^5 \mod 11$. $b \equiv -1 \mod 11$. Therefore, 11 is probably prime and terminate the process.

伺下 イヨト イヨト

- No composite number is a strong pseudoprime to all bases at the same time
- One way is to try all possible bases, which would be deterministic, but this is inefficient and the Miller test would be a better variant for this task
- Another solution is to pick a base at random as is established in the Miller-Rabin test.
 - When *n* is composite, most bases are witnesses
 - We can reduce the chance of a false positive by testing more base
 - If n is a pseudoprime to some base, then it seems more likely to be a pseudoprime to another base.

伺 ト イヨト イヨト

Acurracy

- Probability that a composite number is declared to be probably prime
- The more bases *a* that are tried, the better the accuracy of the test
- At most 1/4 of the bases *a* are strong liars for *n*.
 - If n is composite, then running the Miller-Rabin test k times would result in n being declared probably prime with a probability at most 4^{-k}
- 4^{-k} is the worst case scenario, so for larger values of *n*, the probability for a composite number to be declared probably prime is often significantly smaller than 4^{-k}
 - For most numbers *n*, the probability is bounded by 8^{-k}, as the probability gets extremely impossible as we consider larger values of *n*
- This improved error rate should not be relied on to verify primes, as there could be a carefully chosen pseudoprime in order to defeat the primality test

Important because it can:

- Verify the primality of any general number given
- Have the maximum running time be bounded by a polynomial over the number of digits in the target number
- Oeterministically distinguish whether the number is prime or composite
- Ont conditional on any subsidiary unproven hypothesis

• • = • • = •

Suppose n is a natural number, and a an integer coprime to n. The number n is prime if and only if the relation

$$(x+a)^n = x^n + a \quad in \ (\mathbb{Z}/n\mathbb{Z})[x] \tag{0.3}$$

holds

★ ∃ ► < ∃ ►</p>

Basic Idea (Continued)

Suppose that n = p is a prime. Observe that $\binom{p}{i} = p!/(i!(p-i)!)$ is a multiple of p for all $1 \le i \le p-1$. Therefore, using the binomial theorem, in $(\mathbb{Z}/p\mathbb{Z})[x]$, we have

$$(x+a)^{p} = x^{p} + \sum_{i=1}^{p-1} \binom{p}{i} x^{p-i} a^{i} + a^{p} = x^{p} + a^{p} = x^{p} + a \quad (0.4)$$

where the last relation holds because $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$ by Fermat.

If *n* is not prime, then there is some $1 \le i \le n-1$ with $\binom{n}{i}$ not being a multiple of *n*. Therefore in this case the binomial theorem shows that the coefficients of x^{n-1} (or x^i) on both sides of the identity of the lemma do not match mod *n*.

伺下 イヨト イヨト

- Check that n is not a perfect power
- ② Check that *n* has no prime factor smaller than $100(\log n)^5$
- Find the smallest integer r such that the order of n mod r is $\geq 9(\log n)^2$
- Oneck the key identity:

$$(x+a)^n \equiv x^n + a \mod (n, x^r - 1) \tag{0.5}$$

for various values of $a \in \mathbb{Z}$. But it is enough to check for all $1 \le a \le r \le 100 (\log n)^5$

n = 3, a = 1 $(x - 1)^3 - (x^3 - 1) = (x^3 - 3x^2 + 3x - 1) - (x^3 - 1) = -3x^2 + 3x$ All the coefficients are divisible by 3, so 3 is prime.

• • = • • = •

- Lucas-Lehmer Test Mersenne Numbers
- Miller-Rabin Test Probalistic test
- AKS Test Deterministic test for all numbers

• • = • • = •

Thanks for listening

<ロ> <四> <四> <日</p>