
THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST

INHO RYU

Contents

1. Introduction 2
Acknowledgements 3
2. Background 4
2.1. Modular Arithmetic 4
2.2. Time Complexity 7
3. Lucas-Lehmer Test 9
3.1. Mersenne Primes 9
3.2. The Test 10
3.3. Pseudocode 10
3.4. Alternative Starting Values 10
3.5. Sign of the Penultimate Term 11
3.6. Time Complexity 11
3.7. Examples 11
3.8. Proof 12
4. Miller-Rabin Test 12
4.1. Euler’s Criterion and Root Bound 13
4.2. The Test 13
4.3. Choices of Bases 13
4.4. Proof 13
4.5. Examples 14
4.6. Pseudocode 14
4.7. Complexity 15
4.8. Accuracy 15
5. AKS Test 15
5.1. The Basic Idea Behind AKS 15
5.2. The Algorithm 16
5.3. Proofs 16
5.4. Running Time 18
5.5. Examples 19

Date: July 17, 2023.
1

2 INHO RYU

References 19

Abstract. In this paper, we explored three different primality tests: Lucas-Lehmer, Miller-
Rabin, and AKS. First we briefly talked of their histories and applications. Then we talked
of modular arithmetic and its properties, and we also talked of the repeated squaring algo-
rithm. Then we then explored the tests themselves, which involved looking at each test’s
algorithm, proof, time complexities, pseudocode, the different variants of the primality tests,
and examples.

1. Introduction

Prime numbers and, as such, primality tests, play a pivotal role in various areas of math-
ematics, computer science, and cryptography. The three primality tests covered are the
Lucas-Lehmer, Miller-Rabin, and AKS primality test. These three primality tests are very
different in nature, as the Lucas-Lehmer only tests Mersenne numbers, the Miller-Rabin can
only tell if a number is probably prime, and AKS can deterministically test all numbers.

The Lucas-Lehmer test was originally developed by Édouard Lucas in 1876 and was then
improved by Derrick Henry Lehmer in the 1930s. The Lucas-Lehmer test can test only
Mersenne numbers, which are numbers of the form Mn = 2n − 1 where n ∈ Z+ and n ≥ 2.
The test is comprised of a very simple algorithm which can be executed rapidly. The test
goes as follows.

Theorem 1.1. Define a sequence
{
si
}
for all i ≥ 0 by

si =

{
4 if i = 0;

s2i−1 − 2 otherwise.

Mp is prime if and only if

sp−2 ≡ 0 (mod Mp)

If Mp is prime, then we call it a Mersenne prime. Mersenne primes are quite significant
in mathematics, as there are currently only 51 known Mersenne primes, and yet the 6
largest known prime numbers are all Mersenne primes. The search for the next largest
prime number, and so subsequently Mersenne primes, have sparked the creation of the
Great Internet Mersenne Prime Search (GIMPS), a collaborative project of people who use
software on their PCs in order to find Mersenne primes. Anyone from around the world with
a powerful enough PC is able to contribute their computing power in search of Mersenne
primes.

The Lucas-Lehmer test has been instrumental in GIMPS because of its speed and exclu-
sivity to Mersenne numbers, although GIMPS did switch to a Fermat probable prime test
in 2018 due to computer hardware errors that may occur with the Lucas-Lehmer test. Now
they only use the Lucas-Lehmer test for probable primes generated by the Fermat probable
prime test as a double-check method.

The Miller-Rabin test was discovered by Gary L. Miller in 1976, first as a deterministic
test, which was called the Miller test. The Miller test was significant in mathematics as it
was the first to be a fully deterministic test which runs in polynomial time over all inputs,
but the one major caveat was that it relied on the unproven generalized Riemann hypothesis.

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 3

Michael O. Rabin then modified the Miller test into an unconditional probabilistic algo-
rithm in 1980. In other words, Rabin’s modification of the Miller test does not confirm
whether a number is prime, but rather, only confirms whether a number is not prime. The
Miller-Rabin test consists of four steps.

Theorem 1.2. Given an integer n ≥ 5, this algorithm outputs either true or false. If it
outputs true, then n is probably prime, and if it outputs false, then n is definitely composite.

(1) Compute the unique integers m and k such that m is odd and n− 1 = 2k ·m.
(2) Choose a random integer a with 1 < a < n.
(3) Set b = am (mod n). If b ≡ ±1 (mod n) output true and terminate.
(4) If b2

r ≡ −1 (mod n) for any r with 1 ≤ r ≤ k − 1, output true and terminate.
Otherwise output false.

The simple nature and speed of the test makes it highly applicable, although as mentioned
before, a Fermat probable prime test is used for GIMPS. A common followup test to the
Miller-Rabin test is the Lucas-Lehmer test.

The AKS test is a deterministic primality-proving algorithm created and published by
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena on August 6, 2002.

The discovery of AKS is important because of 4 main reasons: its ability to verify the
primality of any general number (unlike the Lucas-Lehmer test), the maximum running time
of the algorithm can be bounded by a polynomial over the number of digits in the target
number, the algorithm is guaranteed to distinguish deterministically whether the target
number is prime or composite (unlike the Miller-Rabin test), and the correctness of AKS is
not conditional on any subsidiary unproven hypothesis (unlike the Miller test).

While the theoretical importance of AKS is immense, the practical use of AKS is very
small as other algorithms or primality tests are far superior in terms of performance and
verification of primality, and the time benefits of AKS are only relevant for extremely large
numbers, to the point where it’s not practical in use.

The basic idea of the AKS test is as follows.

Theorem 1.3. Suppose n is a natural number, and a an integer coprime to n. The number
n is prime if and only if the relation

(x+ a)n = xn + a in (Z/nZ)[x]

holds

In other words, if in (x + a)n − (xn + a), all of the coefficients are multiples of n, then n
is prime.

Section 2 will cover the main definitions and some necessary background information
needed for the paper.

Section 3, 4, and 5 will cover the Lucas-Lehmer, Miller-Rabin, and AKS test, respectively.

Acknowledgements

I would like to thank Ryan Catullo and Simon Rubinstein-Salzedo for helpful conversations
and insights on writing this paper.

4 INHO RYU

2. Background

There are some terms that are important to know when covering the tests.
A perfect number is a positive integer that is equal to the sum of its positive divisors,

excluding the number itself. There are no known odd perfect numbers.
Computational complexity of an algorithm is the amount of resources required to run it.

Computational complexity of a problem is the complexity of the best algorithms that allow
solving the problem.

In the Lucas-Lehmer test, the Lucas-Lehmer Residue is the remainder after the modulo
function for each iteration of the algorithm is called the Lucas-Lehmer residue.

In the Miller-Rabin test, if n is composite and is said to be a strong probable prime to
base a, it is called a strong pseudoprime. In the Miller-Rabin test, if we use base a and n is
a pseudoprime, a is called a strong liar. By contrast, if n is declared definitely composite to
base a, then a is called a witness for the ”compositeness” of n.

2.1. Modular Arithmetic. Modular arithmetic is used heavily in all the primality tests
covered. Modular arithmetic is a system of arithmetic for integers, where numbers ”wrap
around” after reaching a certain value, called the modulus.

Time as seen on a 12-hour clock is one example, where the day is split into 12-hour
periods. If it were 9:00 now, then after 5 hours it would be 2:00, not 14:00, as the clock
”wraps around” every 12 hours. Because the hour number starts over when it reaches 12,
this is arithmetic modulo 12. It would be said that 14 is congruent to 2 modulo 12 for the
above example.

2.1.1. Congruence. Given an integer n > 1, called a modulus, two integers a and b are said
to be congruent modulo n if n is a divisor of their difference. This is also shown as if there
is an integer k such that a− b = kn.

Congruence modulo n is a congruence relation, meaning that it is an equivalence relation
that one could do the operations of addition, subtraction, and multiplication. Congruence
modulo n is denoted as:

a ≡ b (mod n).

The parentheses means that (mod n) applies to the entire equation, and not just to the
right hand side (in this case b).

What the statement a ≡ b (mod n) asserts is that a and b have the same remainder when
divided by n. That is,

a = pn+ r,

b = qn+ r,

where 0 ≤ r < n is the common remainder. Subtracting these two expressions, we can
find the relation relation:

(2.1) a− b = kn,

by setting k = p− q.
It is important the difference between this notation and the one without parenthesis, as

without parenthesis it would refer to the modulo operation, which would be denoted as:

a ≡ b mod n.

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 5

This from denotes the unique integer a such that 0 ≤ a ≤ n and a ≡ b (mod n), or in
other words, b is the remainder of a when divided by n. The congruence relation can be
rewritten as:

a = kn+ b,

explicitly showing its relationship with Euclidean division. Notice how this equation is
equivalent to 2.1.

2.1.2. Fermat’s Little Theorem. One of the advanced properties of modular arithmetic is
Fermat’s little theorem. Fermat’s little theorem is the basis of the Fermat primality test,
the main primality test used for GIMPS. Fermat’s Little Theorem goes as follows.

Lemma 2.1. If p is a prime number, then for any integer a, the number of ap − a is an
integer multiple p.

In the notation of modular arithmetic, this is expressed as

ap ≡ a((mod p)).

Also note that if a is not divisible by p (a is a coprime to p), then Fermat’s little theorem
is equivalent to saying that ap−1−1 is an integer multiple of p, or in the notation of modular
arithmetic is equivalent to

ap−1 ≡ 1((mod p)).

Proof. Assume that a is positive and not divisible by p. If we write down the sequence of
numbers

(2.2) a, 2a, 3a, . . . , (p− 1)a

and reduce each one by modulo p, the resulting sequence turns out to be

(2.3) 1, 2, 3, . . . , p− 1.

If we multiply together the numbers in each sequence, then the results must be identical
modulo p:

a× 2a× 3a× · · · × (p− 1)a ≡ 1× 2× 3× · · · × (p− 1) (mod p).

If we collect the a terms, we get

ap−1(p− 1)! ≡ (p− 1)! (mod p).

Cancelling out (p− 1)! from both sides, we get

ap−1 ≡ 1 (mod p)

■

There are two steps in this proof that needs justification: why the elements in 2.2 can be
reduced into the rearrangement of 2.3, and why it is valid to cancel out terms in modular
arithmetic.

To address the first point, let’s do an example.

6 INHO RYU

Example. If a = 3 and p = 7, then the sequence is

3, 6, 9, 12, 15, 18.

Reducing modulo 7 gives
3, 6, 2, 5, 1, 4,

which can be rearranged as
1, 2, 3, 4, 5, 6.

Multiplying them together gives

3× 6× 9× 12× 15× 16 ≡ 3× 6× 2× 5× 1× 4 ≡ 1× 2× 3× 4× 5× 6 (mod 7)

and that is

36(1× 2× 3× 4× 5× 6) ≡ (1× 2× 3× 4× 5× 6) (mod 7).

Cancelling out 1× 2× 3× 4× 5× 6 gives

36 ≡ 1 (mod 7),

which is Fermat’s litte theorem for the case a = 3 and p = 7.

Now to address the cancellation, in what I will call the cancellation law. What we’re trying
to prove here is that if u,w, and y are integers, and u is not divisible by prime number p,
and if

(2.4) ux ≡ uy (mod p),

then we may cancel u to get

(2.5) x ≡ y (mod p).

Our use of the cancellation law in the proof was valid as the numbers 1, 2, . . . , p− 1 are not
divisible by p, as they are smaller than p.

To prove the cancellation law, we can use Euclid’s lemma, which generally states that if
a prime p divides a product ab (where a and b are integers), then p must divide a or b. 2.4
simply means that p divides ux − uy = u(x − y). Since p is a prime which does not divide
u, Euclid’s lemma tells us that it must divide x− y instead, or in other words, 2.5 holds.

It is important to see that the conditions under when you can use cancellation law are
quite strict, and that is why Fermat’s little theorem needs p to be prime. This can be seen
as for example 2 × 2 ≡ 2 × 5 (mod 6), but 2 ̸≡ 5 (mod 6). However, there is a generalized
version of the cancellation law. It goes as follows: if u, x, y, and z are integers, if u and z are
relatively prime, and if

ux ≡ uy (mod z),

then we may cancel u to obtain
x ≡ y (mod z).

This follows from a generalization of Euclid’s lemma.
Finally, we must explain why

a, 2a, 3a, . . . , (p− 1)a,

when reduced modulo p, becomes a rearrangment of the sequence

1, 2, 3, . . . , p− 1.

To start, none of the terms a, 2a, 3a, . . . , (p − 1)a can be congruent to 0 modulo p, since
if k is one of the numbers 1, 2, 3, . . . , p − 1, then k is relatively prime with p, and so is a,

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 7

so Euclid’s lemma tells use that ka shares no factor with p. Therefore, we at least know
that the numbers a, 2a, 3a, . . . , (p− 1)a, when reduced modulo p, must be found among the
numbers 1, 2, 3, . . . , p− 1.

We can also see that the numbers a, 2a, 3a, . . . , (p−1)a must all be distinct after reducing
them modulo p since if

ka ≡ ma (mod p),

where k and m are one of 1, 2, 3, . . . , p − 1, then the cancellation law tells us that k ≡
m (mod p).

Since both k and m are in between 1 and p− 1, they must be equal. Therefore, the terms
a, 2a, 3a, . . . , (p− 1)a when reduced modulo p must be distinct.

Fermat’s little theorem is important for the Miller-Rabin test as the Miller-Rabin test uses
the following extension of Fermat’s little theorem:

Lemma 2.2. If p is an odd prime and p−1 = 2sd with s > 0 and d odd > 0, then for every a
coprime p, either ad ≡ 1 (mod p) or there exists r such that 0 ≤ r < s and a2

rd ≡ −1 (mod p)

This will be expanded upon in 4

2.2. Time Complexity. Time complexity is the computational complexity that describes
the amount of computer time it takes to run an algorithm. Time complexity is typically
estimated by counting the amount of elementary operations performed by the algorithm,
assuming that each elementary operation takes a fixed amount of time to perform. The
amount of time taken and the number of elementary operations performed by the algorithm
are taken to be related by a constant factor, or big O notation.

Since the running time of the algorithm may vary among different inputs of the same size,
it is common to consider the worst-case time complexity, or the maximum amount of time
required for inputs of a given size. A less common method is the average-case complexity,
which is the average of the time taken on inputs of a given size, which is possible as there
are a finite number of possible inputs of a given size. In both cases, the time complexity is
generally expressed as a function of the size of the input. Since this function is generally
difficult to compute exactly, and the running time for small inputs is usually not important,
one commonly focuses on the behavior of the complexity when the input size increases, or
in other words, the asymptotic behavior of the complexity. Therefore, the time complexity
is commonly expressed using big O notation, such as O(n), O(n log n), O(na), O(2n), etc.
where n is the size in units of bits needed to represent the input.

Algorithmic complexities are classified according to the type of function appearing in the
big O notation. For example, an algorithm with time complexity O(n) is a linear time
algorithm and an algorithm with time complexity O(nα) for some constant α > 1 is a
polynomial time algorithm, to name a few.

2.2.1. Repeated Squaring. An algorithm for a computational problem is a computational
method, a procedure, that takes in the inputs and spits out an output that obeys the
mathematical relation defined in the computational problem.

There are two algorithms for the modular exponentiation problem, one we can call the
naive algorithm and one we call the repeated squaring algorithm. The naive algorithm simply
starts with b and multiplies by b over and over, calculating the result (mod m) each time.
After k − 1 multiplications, the result is bk (mod m).

8 INHO RYU

The repeated squaring algorithm consists of two parts. In the first part, the algorithm
starts with b, then multiplies it by itself (”squaring” it) mod m, then squares the result
mod m, and then squares that mod m, and so on until the power is greater than or equal
to the original power. In the second part, the algorithm combines together some of these
results, multiplying them together mod m. In order to make the algorithm more precise,
we need the notion of binary expansion.

We ordinarily write numbers in base 10 (decimal) notation. The rightmost digit is in the
ones place, the second-to-rightmost digit is in the tens place, the third-to-rightmost digit is
in the hundreds place, and so on. Thus 765 represents 7 times 102 plus 6 times 101 plus 5
times 100.

Another system for writing numbers is base 2 (binary), where the rightmost digit is in the
ones place, the second-to-rightmost digit is in the twos place, the third-to-rightmost digit
is in the fours place, the fourth-to-rightmost digit is in the eights place, and so on. For
example, 100111 represents 1 times 25 plus 0 times 24 plus 0 times 23 plus 1 times 22 plus 1
times 21 plus 1 times 20, which adds up to be 39 in decimal notation. The digits in binary
notation are called bits (short for binary digits). By convention, the leftmost bit must be a
1 (just as we don’t normally write the number 47 as 047).

Back to the repeated-squaring algorithm. To calculate bk (mod m), we write k in binary.
The position of the leftmost bit tells us how many squarings need to take place in the first
part of the algorithm. For example, if the leftmost bit is in the 211s place, then we need to
calculate b2

0
, b2

1
, b2

2
, b2

3
, . . . , b2

11
. Since the first number is just b, we need 11 squarings.

The 1’s in the binary representation of k tell us which powers of b that we have calculated
we need to combine to get the final result.

Say the exponent k takes L bits to represent. Then the number of multiplications for the
first part of the algorithm is L− 1. In the second part of the algorithm, we need to multiply
together some of the L results we obtained in the first part. Since we need to multiply
together at most L values, we need at most L− 1 multiplications in the second part of the
algorithm.

The number of bits needed to represent a positive integer k is 1 + ⌊log2 k⌋ (the base-2
logarithm of k). For example, log2 2184 = 11.092757 · · · , so the rounded-down value of the
logarithm is 11. Thus this formula predicts that the number of bits needed to represent 2184
is 12. For most purposes, it is good enough to neglect the ”1+” and estimate the number of
bits by log2 k.

Similarly, the number of decimal digits needed to represent a number, say m, is 1 plus
⌊log1 0k⌋, the rounded down value of the base-10 logarithm. For example, log1 0765 =
2.8836614 · · · , so the rounded-down value is 2. Thus, this formula predicts that the number
of decimal digits to represent 765 is 3.

It is easy to convert between the base-10 log of a number and its base-2 log using the
following formula.

log2 x ≈ 3.3 log10 x

3.3 is the base-2 logarithm of 10.

Example. Say we wish to know the value 3200 mod 50.

(1) 31 = 3 mod 50 → 3 mod 50
(2) 32 = 9 mod 50 → 9 mod 50
(3) 34 = 81 mod 50 → 31 mod 50
(4) 38 = 961 mod 50 → 11 mod 50

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 9

(5) 316 = 121 mod 50 → 21 mod 50
(6) 332 = 441 mod 50 → 41 mod 50
(7) 364 = 1681 mod 50 → 31 mod 50
(8) 3128 = 961 mod 50 → 11 mod 50
(9) 3256, but exponent is larger than initial, so halt.

We can rewrite 200 in binary as 11001000. In other words (or not words), 200 = 128+64+8.
By looking at where the 1’s are in the binary, we can see that 3200 mod 50 = 3128+64+8

mod 50 = 312836438 mod 50, and if we replace the factors with what they are equal to
mod 50, we get (11)(31)(11) mod 50 = 3751 mod 50 = 1 mod 50.

2.2.2. Wilson’s Theorem. This section will talk about Wilson’s test. While not a main
primality test to be talked about, it is included as to show how fast the Lucas-Lehmer,
Miller-Rabin, and AKS test compared to Wilson’s theorem.

Wilson’s theorem goes as follows.

Lemma 2.3. A natural number n > 1 is a prime number if and only if the product of all
the positive integers less that n is one less than a multiple of n. In the notation of modular
arithmetic the factorial (n− 1)! satisfies

(n− 1)! ≡ −1((mod n))

exactly when n is a prime number. In other words, any number n is a prime number if
and only if (n− 1)! + 1 is divisible by n.

Proof. If n is composite, it is divisible by some prime number q, where 2 ≤ q ≤ n−2. Because
q divides n, let n− qk for some integer k. Suppose for the sake of contradiction that (n− 1)!
were congruent to −1 (mod n) where n is composite. Then (n − 1)! would be congruent
to −1 (mod q) as (n − 1)! ≡ −1 (mod n) implies that (n − 1)! = nm − 1 = (qk)m − 1 =
q(km) − 1 for some integer m which shows (n − 1)! being congruent to −1 (mod q). But
(n− 1)! ≡ 0 (mod q) byt the fact that q is a term in (n− 1)! making (n− 1)! a multiple of
q. A contradiction is now reached. ■

Wilson’s theorem used as a primality test is useless because computing (n − 1)! modulo
n for large n is computationally complex, and many much faster primality tests are known,
even including trial division.

While if used to determine the priamltiy of the successors of large factorials, it is a fast
and effective method, but that is not what we are looking for here.

3. Lucas-Lehmer Test

The Lucas-Lehmer test is a primality test exclusively for Mersenne numbers. Mersenne
numbers are numbers of the form Mn = 2n− 1 where n ∈ Z+ and n ≥ 2. The Lucas-Lehmer
test is the main test used in GIMPS because of its speed compared to other similar primality
tests and also for its exclusiveness for Mersenne numbers.

3.1. Mersenne Primes. There are a few additional things to note about Mersenne primes.
Mersenne primes were named after Marin Mersenne, who studied them in the early 17th
century. They were since studied thoroughly due to their close connection with perfect
numbers as seen in the Euclid-Euler theorem (see theorem 3.2).

There are also some additional theorems about Mersenne numbers/primes that are notable.

10 INHO RYU

Lemma 3.1. If n is prime, then 2n − 1 is also prime.

Proof. Suppose that p is composite, therefore p can be written as p = ab with a and b > 1.
Then 2p − 1 = 2ab − 1 = (2a)b − 1 = (2a − 1)((2a)b−1 + (2a)b−1 + (2a)b−2 + . . . + 2a + 1 so
2p − 1 is composite. By contraposition, if 2p − 1 is prime, then p is prime. ■

Therefore, an equivalent definition of Mersenne primes would be Mp = 2p − 1 for some
prime p.

Many questions about Mersenne primes remain unsolved. One such question is whether
the set of Mersenne primes is finite or infinite. The Lenstra-Pomerance-Wagstaff conjecture
asserts that there are infinite many Mersenne primes and even predicts their order of growth,
although the predictions do seem inaccurate. Another unsolved question that is pondered
about is whether there are infinitely many Mersenne numbers with prime exponents that are
composite.

Mersenne primes, as mentioned before, also have a close connection with perfect numbers.
In the 4th century BC, Euclid proved the following:

Theorem 3.2. If 2p − 1 is prime, then 2p−1(2p − 1) is a perfect number.

In the 18th century, Leonhard Euler proved that all even perfect numbers have this form.
This is known as the Euclid-Euler theorem. Thus it is shown that all even perfect numbers
are the product of a power of two and a Mersenne prime.

3.2. The Test. For this paper I will set 4 as s0 (the starting value), although the possibility
of different starting values will be covered in 3.4.

The Lucas-Lehmer test works as follows. Let Mp = 2p−1 be the Mersenne number to test
with p an odd prime. The primality of p can be efficiently checked with a simple algorithm
like trial division since p is exponentially smaller than Mp. Define a sequence

{
si
}
for all

i ≥ 0 by

si =

{
4 if i = 0;

s2i−2 − 2 otherwise.

Mp is prime if and only if

sp−2 ≡ 0 mod Mp

3.3. Pseudocode. The algorithm can be written in pseudocode as follows.

Lucas-Lehmer(p)

var s = 4

var M = 2^p-1

repeat p - 2 times:

s = ((s x s) - 2) mod M

if s == 0 return PRIME else return COMPOSITE

3.4. Alternative Starting Values. Starting values s0 other than 4 are possible, and the
Lucas-Lehmer residue calculated with these alternative starting values will still be zero if Mp

is a Mersenne prime. However, the terms of the sequence will be different and if Mp is not
prime then the Lucas-Lehmer residue will be different from when calculated with s0 = 4.

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 11

Some examples of universal starting values, as in they are valid for all (or nearly all) p,
are 4, 10, and (2 (mod Mp))(3 (mod Mp))

−1, which is usually denoted by 2/3 for short. 2/3
equals (2p + 1)/3, which is the Wagstaff number with exponent p.

3.5. Sign of the Penultimate Term. The sign of penultimate term is important to know
in case there may be a pattern of signs in the penultimate terms, and although currently
there does not seem to be a set sequence.

If sp−2 = 0 (mod Mp) then the penultimate is sp−3 = ±2(p+1)/2 (mod Mp). The sign of
this penultimate term is called the Lehmer symbol ϵ(s0, p).
In 2000 S.Y. Gebre-Egziabher proved that for the starting value 2/3 and for p ̸= 5 the

sign is:

ϵ(
2

3
, p) = (−1)p−1/2

He also proved that the Lehmer symbols for starting values 4 and 10 when p is not 2 or 5
are related by:

ϵ(10, p) = ϵ(4, p)× (−1)(p+1)(p+3)/8

So ϵ(4, p)× ϵ(10, p) = 1 iff p = 5 or 7 (mod 8) and p ̸= 2, 5.

3.6. Time Complexity. In the algorithm for the Lucas-Lehmer test, there are two opera-
tions during each iteration: the multiplication of s× s and the (mod M) operation.
The (mod M) operation can be made efficient on basic computers by observing the

following.

k ≡ (k (mod 2n)) + ⌊k/2n⌋((mod 2n − 1)).

3.7. Examples.

Example. Suppose we want to know whether Mersenne number M7 = 27 − 1 = 127 is prime
or composite. The test goes as follows.

(1) s0 = 4 (mod 127).
(2) s1 = (42 − 2) (mod 127) = 14 (mod 127)
(3) s2 = (142 − 2) (mod 127) = 67 (mod 127)
(4) s3 = (672 − 2) (mod 127) = 42 (mod 127)
(5) s4 = (422 − 2) (mod 127) = 111 (mod 127)
(6) s5 = (1112 − 2) (mod 127) = 0 (mod 127)

Therefore, 127 is prime.

Example. Now let’s suppose we want to know whether Mersenne number M4 = 24 − 1 = 15
is prime or composite. The test goes as follows.

(1) s0 = 4 (mod 15).
(2) s1 = (42 − 2) (mod 15) = 14 (mod 15)
(3) s2 = (142 − 2) (mod 15) = 14 (mod 15)
(4) s2 = (142 − 2) (mod 15) = 14 (mod 15)
(5) ...

As shown, the algorithm is put into a loop and therefore 0/Mod15 will never occur, meaning
15 is composite.

12 INHO RYU

3.8. Proof. We will prove the Lucas-Lehmer test by assuming a Mersenne prime is com-
posite, and prove that there’s a contradiction.

Let ω = 2 +
√
3 and ω = 2−

√
3.

Note that ωω = (2 +
√
3)(2−

√
3) = 22 −

√
3
2
= 4− 3 = 1

Lemma 3.3. Sm = ω2m−1 + ω2m−1

This is found by induction. So S2
m−1 = (ω2m−2

+ ω2m−2
)2 = ω2m−1

+ ω2m−1
+ 2(ωω)2

m−2
=

ω2m−1 +ω2m−1 +2 = Sm +2. So Sm = S2
m−1 − 2. It also follow that if Mp divides Sp−1, then

ω2p−2
+ω2p−2 ≡ 0 (mod p). Explicit;y, we write ω2p−2

+ω2p−2
= RMp for R ∈ Z. Multiplying

this identity by ω2p−2
, we get ω2p−2

= RMpω
2p−2 − 1. Now squaring, ω2p = (RMpω

2p−2 − 1)2.
Here is where we assume that Mp is composite, as well as choose a prime divisor q with
q2 ≤ Mp. Note that we don’t want q = 2.

Lemma 3.4. Let X be a set with a binary operation which is associative and has an identity.
Then the set X∗ of invertible elements in X forms a group.

To prove this, we want to notice 1 ∈ X∗, so X∗ is a non-empty set. Now, we want to show
that X∗ is closed under the binary operation. Consider the invertible elements x1 and x2

with inverses x−1
1 and x−1

2 . Thus we see that x1x2 has the inverse x−1
1 x−1

2 .

Lemma 3.5. If G is a finite group then the order of an element is at most the order of the
group. If x ∈ G and xr = 1 then the order of x divides r.

The order of a group is the number of elements in that group and the order of a ω is
the smallest positive integer r such that ωr = 1. So, if ωr = 1, then the period of ω|r. To
prove this, consider a group that has 3 elements a, b, and 1. If a ̸= aa ̸= aaa ̸= aaaa we
have already 4 different elements in the group which is a contradiction since the order of the
group is 3. this the order of a ≤ 3.

Proof. Now we can start the proof. Let Zq denote the set of integers modulo q, and X denote

the set a+ b
√
3|a, b ∈ Zq. We define two binary operations onX, addition and multiplication,

in the traditional manner. For multiplication, we wan to choose representatives in Z[
√
3] of

our elements of X and compute the product. So (a1 + b1
√
3)(a2 + b2

√
3) = (a1a2 + 3b1b2) +

(a1b2 + a2b1)
√
3. Now we want to reduce to coefficients modulo q. We see that we have a

commutative group in the case of addition and an associative and commutative group int he
case of multiplication with the identity 1.

Let X∗ denote the group of invertible elements of X with respect to multiplication. From
3.4 we can see that this is a group. In addition, from 3.5 we can see that the order of any
element X∗ is at most q2 − 1, since X∗ contains at least one non-invertible element, namely
0.

Now let’s consider ω = 2 +
√
3 as an element of X. Since q divides Mp, we see that

RMpω
2p−2

, when viewed as an element of X, is 0. From before ω2p−1
= RMpω

2p−2 − 1 = −1
and ω2p = (RMpω

2p−2 − 1)2 = (−1)2 = 1. So, ω ∈ X∗ and has order 2p. By 3.5, the
order of ω|2p, but cannot be less that 2p. So, using 3.5 we get that 2p ≤ q2 − 1. However,
q2 − 1 ≤ Mp − 1 = 2p − 2, thus we have reached a contradiction. ■

4. Miller-Rabin Test

The Miller-Rabin test is a probabilistic primality test, as in when given an integer n ≥ 5,
the algorithm outputs whether n is probably prime (true) or whether n is definitely not prime

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 13

(false). Historically, the Miller-Rabin test was significant in the search for a polynomial-time
deterministic primality test. It is widely used as it is one of the simplest and fastest tests
known. The Miller-Rabin test saves countless amounts of computing time and power as it
narrows down the list of possible primes, and works extremely hand-in-hand with other fast
primality tests such as the Lucas-Lehmer (for Mersenne numbers only) and AKS.

4.1. Euler’s Criterion and Root Bound. While not important to know for performing
the Miller-Rabin test, these theorems are important for the proof of the Miller-Rabin test.

4.1.1. Euler’s Criterion. Let p be an odd prime and a and integer not divisible by p. Using
primitive roots, Euler managed to show that (a

p
) is congruent to ap−1/2 modulo p.

Proposition 4.1. We have (a
p
) = 1 if and only if

(4.1) ap−1/2 ≡ 1 (mod p)

4.1.2. Root Bound. This proposition shows that a polynomial of degree d over a field, such
as Z/pZ, can have at most d roots.

Proposition 4.2. Let f ∈ k[x] be a nonzero polynomial over a field k. Then there are at
most deg(f) elements a ∈ k such that f(a) = 0.

4.2. The Test. Given an integer n ≥ 5, this algorithm outputs either true or false. If it
outputs true, then n is probably prime, and if it outputs false, then n is definitely composite.

(1) Compute the unique integers m and k such that m is odd and n− 1 = 2k ·m.
(2) Choose a random integer a with 1 < a < n.
(3) Set b = am (mod n). If b ≡ ±1 (mod n) output true and terminate.
(4) If b2

r ≡ −1 (mod n) for any r with 1 ≤ r ≤ k − 1, output true and terminate.
Otherwise output false.

This version of the test involves choosing the base a at random. A deterministic ver-
sion of this would involve trying all possible bases, but that would result in an inefficient
deterministic algorithm, where another test such as the Miller test would be more efficient.

4.3. Choices of Bases. No composite number is a strong pseudoprime to all bases at the
same time (put thing for this), but there is no known simple way of finding a witness. One
way is to try all possible bases, which would be deterministic, but this is inefficient and the
Miller test would be a better variant for this task.

Another solution is to pick a base at random as is established in the Miller-Rabin test.
This version yields a fast probabilistic test, as when n is composite, most bases are witnesses,
meaning the test will detect n as composite with a high probability. We can reduce the chance
of a false positive by testing more bases. There seems to be diminishing returns in trying
many bases, because if n is a pseudoprime to some base, then it seems more likely to be a
pseudoprime to another base.

4.4. Proof.

Proof. We will prove that the algorithm is correct, but we will not cover the accuracy of the
test (see Accuracy). We must prove that if the algorithm pronounces an integer n composite,
then n really is composite. So suppose n is prime, yet the algorithm outputs that n composite.
Then am ̸≡ ±1 (mod n), and for all r with 1 ≤ r ≤ k − 1 we have a2

k−1 ̸≡ −1 (mod n).

Since n is prime and 2k−1m = (n − 1)/2, 4.1.1 implies that a2
k−1m ≡ ±1 (mod n), so by

14 INHO RYU

our hypothesis a2
k−1m ≡ 1 (mod n). But then (a2

k−1m)2 ≡ 1 (mod n), so by 4.1.2, we have

a2
k−2m ≡ ±1 (mod n). Again, by our hypothesis, this implies a2

k−2m ≡ 1 (mod n). Repeating
this argument inductively, we see that am ≡ ±1 (mod n), which contradicts our hypothesis
on a. ■

4.5. Examples.

Example. Suppose we play dumb and wish to know whether 11 is prime or composite. If we
go through the steps, it goes as shown.

(1) Compute the unique integers m and k such that m is odd and n− 1 = 2k ·m.
(a) We set n = 11, k = 1, and m = 5. The values for k and m are the only ones

possible. 11− 1 = 21 · 5
(2) Choose a random integer a with 1 < a < 11.

(a) Set a = 6, as it falls under 1 < a < 11.
(3) Set b = am (mod n). If b ≡ ±1 (mod n) output true and terminate.

(a) b = 65 (mod 11). b ≡ −1 (mod 11). Therefore, 11 is probably prime and
terminate the process.

Example. Now let’s again play dumb and wish to know whether 15 is prime or composite.

(1) Compute the unique integers m and k such that m is odd and n− 1 = 2k ·m.
(a) We set n = 15, k = 1, and m = 7. The values for k and m are the only ones

possible. 15− 1 = 21 · 7
(2) Choose a random integer a with 1 < a < n.

(a) Set a = 4, as it falls under 1 < a < 15.
(3) Set b = am (mod n). If b ≡ ±1 (mod n) output true and terminate.

(a) b = 47 (mod 15). b ≡ 4 (mod 15). We move onto the next step.
(4) If b2

r ≡ −1 (mod n) for any r with 1 ≤ r ≤ k − 1, output true and terminate.
Otherwise output false.
(a) We pick r with 1 ≤ r ≤ 1− 1. But then r must be with 1 ≤ r ≤ 0, which means

r does not exist, and therefore the program outputs false and 15 is definitely
composite.

4.6. Pseudocode. The algorithm can be written in pseudocode as follows. The parameter
k determines the accuracy of the test. The greater the number of iterations of the test, the
more accurate the result (see 4.8).

let s>0 and d odd > 0 such that n - 1 = (2^s)d

repeat k times:

a <- random(2, n - 2)

x <- a^d mod n

repeat s times:

y <- x^2 mod n

if y = 1 and x != 1 and x != n - 1 then

return "composite"

x <- y

if y != 1 then

return "composite"

return "probably prime"

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 15

4.7. Complexity. Using repeated squaring, the running time of this algorithm isO(k log 3n),
where n is the number tested for primality, and k is the number of rounds performed; thus
this is an efficient, polynomial-time algorithm. FFT-based multiplication (Harvey-Hoeven
algorithm) can decrease the running time to O(k log2 n log log n = Õ(k log2 n).

4.8. Accuracy. The error made by the Miller-Rabin test is measured by the probability
that a composite number is declared to be probably prime. The more bases a that are tried,
the better the accuracy of the test. Shown in (insert the thing), at most 1/4 of the bases a
are strong liars for n. So if n is composite, then running the Miller-Rabin test k times would
result in n being declared probably prime with a probability at most 4−k.
Now while 4−k is the worst case scenario, for larger values of n, the probability for a

composite number to be declared probably prime is often significantly smaller than 4−k.
For most numbers n, the probability is bounded by 8−k, as the probability gets extremely
impossible as we consider larger values of n.

However, this improved error rate should not be relied on to verify primes, as there could
be a carefully chosen pseudoprime in order to defeat the primality test.

5. AKS Test

The AKS test was quite revolutionary in mathematics as the first primality-proving algo-
rithm to be able to verify the primality of any general number, have the maximum running
time be bounded by a polynomial over the number of digits in the target number, determin-
istically distinguish whether the number is prime or composite, and is not conditional on
any subsidiary unproven hypothesis.

5.1. The Basic Idea Behind AKS. The basic idea behind AKS is the following.

Lemma 5.1. Suppose n is a natural number, and a an integer coprime to n. The number
n is prime if and only if the relation

(5.1) (x+ a)n = xn + a in (Z/nZ)[x]
holds

Proof. Suppose first that n = p is a prime. Observe that
(
p
i

)
= p!/(i!(p− i)!) is a multiple of

p for all 1 ≤ i ≤ p− 1. Therefore, using the binomial theorem, in (Z/pZ)[x], we have

(5.2) (x+ a)p = xp +

p−1∑
i=1

(
p

i

)
xp−iai + ap = xp + ap = xp + a

where the last relation holds because ap ≡ a (mod p) for all a ∈ Z by Fermat. This proves
one direction of the lemma.

Conversely, if n is not prime, then there is some 1 ≤ i ≤ n − 1 with
(
n
i

)
not being a

multiple of n. Therefore in this case the binomial theorem shows that the coefficients of
xn−1 (or xi) on both sides of the identity of the lemma do not match mod n. ■

5.1 can be used as a test to check whether n is prime. But this is not a very useful
test because in order to check whether (x + a)n = xn + a in Z/nZ[x] we must compare n
coefficients, and this will take at least n operations to do. The key idea behind the AKS test
is instead to check whether (x+ a)n ≡ xn+ a mod I, where I is the ideal (xr − 1)(Z/nZ[x],
for a suitable value of r and some (not too many) values of a. Congruence modulo I means

16 INHO RYU

that we are checking polynomials treating coefficients modn, and treating any multiples of
(xr − 1) as zero - this helps because using repeated squaring we’ll have to check only on the
order of r log n coefficients, and if r is like a power of logn we would be able to do this in
polynomial time.

5.2. The Algorithm. The AKS test can be boiled down into 4 steps.

(1) First we check that n is not a perfect power. One can rapidly do this, because if
n = mk for some k ≥ 2, then we must have k ≤ log2 n. So there are not many choices
for k, and for each choice k, we can compute quickly whether n is a k-th power or
not. If n is a k-th power for some k ≥ 2, we stop and output that n is composite.

(2) Second, let us check and make sure that n has no prime factor smaller than 100(log n)5.
Since there are only 100(log n)5 divisions to check, this too is rapid. If we do find a
small prime factor, we can stop and declare n to be composite.

(3) Find the smallest integer r such that the order of n (mod r) is ≥ 9(log n)2. It is
crucial that there is a small value of r with this property, and this is guaranteed by
the following lemma.

Lemma 5.2. There exists r ≤ 100(log n)5 such that the order of n (mod r) is at
least 9(log n)2.

(4) This involves checking the following key identity

(x+ a)n ≡ xn + a mod (n, xr − 1),

for various values of a ∈ Z. This identity means that (x + a)n (which is in Z[x])
differs from xn+ a by an element in the ideal (n, xr − 1) of Z[x] — or in other words,
the difference (x + a)n − xn − a can be expressed as nf(x) + (xr − 1)g(x) where f
and g are in Z[x]. This is the most important point of the AKS algorithm:

Lemma 5.3. Let n ≥ 106 be given, with n not a perfect power. Let r be natural
number such that all prime factors of n are larger than r, and such that the order of
n mod r is at least 9(log n)2. Then the key identity (5.1) holds for all 1 ≤ a ≤ r if
and only if n is a prime number.

Thus, in the final step, it is enough to check for all 1 ≤ a ≤ r ≤ 100(log n)5 and if n
satisfies all these identities we can declare if to be prime. In Theorem 5.3, note that if n is
prime then (x+ a)n ≡ xn + a mod n for all natural numbers a, so that (5.1) holds for all a
and all r in this case. The interesting bit is the converse, that if the key identity holds for
sufficiently many cases, then n must be prime.

5.3. Proofs.

5.3.1. Proof of Lemma 5.2. Suppose instead that all r ≤ R = 2⌈49(log n)5⌉+1 are such that
the order of n mod r is at most K = ⌊9(log n)2⌋. This means that each r ≤ R divides some
nk − 1 with k ≤ K. Therefore,

(5.3) (lem of all 1 ≤ r ≤ R) divides
K∏
k=1

(nk − 1).

We shall obtain a contradiction by establishing an upper bound for the right side of 5.3,
and a lower bound for the left side — the goal will be to have the lower bound larger than

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 17

the upper bound, which would be impossible as a larger number cannot divide a smaller one.
So the right side of 5.3 is

≤
K∏
k=1

nk = exp

(
K(K + 1)

2
log n

)
≤ exp(45(log n)5).

As for the left side, using the following four equations,

log dN =

, with d2M+1 denoting the lcm of the numbers up to 2M + 1,

d2M+1

Therefore the left side of 5.3 is

(5.4) ≥ 449(logn)
5

.

Since 4 ≥ e, this lower bound is in conflict with our upper bound, and completes our
proof.

5.3.2. Proof of Lemma 5.3. The key to proving 5.3 is that 5.1 for different values of a can
be used to generate many other similar relations. If there is a composite n satisfying 5.1
for many values of a, then eventually we will obtain so many relations that in a suitable
field we’ll be able to cook up a polynomial with more roots than its degree, thus getting a
contradiction.

Lemma 5.4. Suppose n, r, and a are such that

(5.5) (x+ a)n ≡ xn + a mod n, xr − 1).

Let p be some prime factor of n. Then the relation

(5.6) (x+ a)m ≡ xm + a mod p, xr − 1

holds for all m of the form nipj with i and j being non-negative integers.

By assumption the relation 5.3 holds for m = n. By the binomial theorem, as in 5.1, the
relation 5.3 also holds for m = p− (x+ a)o ≡ xp+ ap ≡ xp+ a mod p. To prove our lemma,
we establish that if 5.3 holds for m = k and m = ℓ then it also holds for m = kℓ.
Indeed

(5.7) (x+ a)kℓ((x+ a)k)ℓ ≡ (xk + a)ℓ mod p, xr − 1,

upon using 5.3 for m = k. Now 5.3 with m = ℓ (and replacing x by y)

(5.8) (y + a)ℓ ≡ yℓ + a mod p, yr − 1,

and if we take y = xk it follows that

(5.9) (xk + a)ℓ ≡ xkℓ + a mod p, xkr − 1.

Since xr − 1 divides xkr − 1, we conclude that (xk + a)ℓ ≡ xkℓ + a mod p, xr − 1, which
completes our proof of Lemma 5.4.

18 INHO RYU

Onto our main proof, suppose n ≥ 106 is not a perfect power. Suppose that n is not
divisible by any prime at most r, and that the order of n mod r is ≥ 9(log n)2. Suppose
that 5.1 holds for all 1 ≥ a ≥ r. We must now show that n is a prime. Suppose it is not, and
let p be a prime factor of n such that the order of p mod r is > 1 — such a prime p exists
because if all prime factors of n were ≡ 1 mod r, then n mod r itself would have order 1.
Suppose p mod r has order k — thus r|(pk − 1) (and r ∤ (pj − 1) for any j < k), and

k > 1 by our choice for p. We will work in a finite field Fq with q = pk elements. Let β be a

generator of F×
q , and take α = β(pk−1)/r. Thus α is an element F×

q whose order is exactly r,
and in particular

(5.10) ar = 1.

Consider the relations (5.1) and (5.3) from Lemma 5.4. Put

5.4. Running Time. So we can use Lemma 5.1 as a test to check whether n is prime. But,
this is not a very useful test because in order to check whether (x + a)n ≡ xn + a (mod I),
we must compare n coefficients, and this will take at least n operations to do. The key idea
behind the AKS test is instead to check whether

(5.11) (x+ a)n ≡ xn + a (mod I),

where I is the ideal (xr − 1)(Z/nZ)[x] for a suitable value of r and some, but not too
many, values of a. Congruence modulo I means that we are checking polynomials treating
coefficients mod n, and treating any multiples of (xr − 1) as zero. This helps because using
repeated squaring we’ll have to check only on the order of r log n coefficients, and if r is like
a power of log n, we would be able to do this in polynomial time, which is the desired time.

This will involve analyzing how the AKS test fits the polynomial time, but nothing of
optimizing it. Also, we won’t keep track of constants and we will omit terms like (log n)e.
Running times for the basic operations of arithmetic, such as adding and subtracting k bit
numbers, takes on the order of k steps, and multiplying/dividing a k bit number and an ℓ
bit number takes on the order of kℓ steps. Now let’s move on to show how the AKS test is
a polynomial time algorithm.

(1) Given k ≥ 2 and n, the time it takes to compute n to the k-th power with ℓ bits takes
no more than ℓ2k3 steps, since this is just multiplying a number to itself many times
without the use of repeated squaring. To check if n is a k-th power, we should start
working out the binary expansion of n1/k. The k-th root will have about (log2 n)/k
bits, and to figure out each bit we will have to take the k-th power of some number
and check if it is larger than n or not. Each k-th power takes about log n3 steps,
and doing this for each 2 ≤ k ≤ log2 n, we can check if n is a perfect power in about
(log n)4 steps.

(2) Here we need to divide n by numbers up to about (log n)5. Each division takes about
(log n)(log log n) steps. The log log n comes from the number of bits in a number of
size (log n)5. So in total this step takes (log n)6 log log n operations, which may be
bounded by (log n)7 for simplicity.

(3) For each r going up to 100(log n)5, we must compute the order of n (mod r), which
we want to be large. Given r, we simply compute n1, n2, ·, nk all (mod r), with
K = 9(log n)2. We can begin by reducing n (mod r), which takes about (log n)(log r)
operations, and then the computations of the powers nj (mod r) will all takeK(log r)3

THE LUCAS-LEHMER, MILLER-RABIN, AND AKS PRIMALITY TEST 19

operations, which is at most some constant times (log n)3. Doing this for each r in
our range, we can complete Step 3 and find a suitable r in at most (log n)8 operations.

(4) Here we must verify the key identity (5.1) for r values of a. For each a, by re-
peated squaring we must perform on the order of log n multiplications of polynomials
(mod n, xr−1). Each such multiplication involves computing r coefficients, and each
coefficient involves about r multiplications of numbers of size at most n. Therefore,
each polynomial multiplication takes about r2(log n)2 steps at most. So for each
a, our identity may be checked in about r2(log n)3 steps. And finally, ranging over
all a ≤ r, we can complete Step 4 of the algorithm in r3(log n)3, which is at most
(log n18. Thus the AKS test is a polynomial time algorithm.

Now in addition to this, it is important to note that there have been, since the discovery
of the AKS test, new variants which greatly imporved the speed of the algorithm. After
(include several theorems or similar if necessary, prob not) the new upper bound complexity
was Õ(log (n)7.5). There was also a proposal of a variant which would run in Õ(log (n)3)
by Agrawal, Kayal, and Saxena, which was then suggested to be false by Pomerance and
Lenstra.

5.5. Examples. Let’s suppose we wish to know whether 3 is prime or not. Then the test
goes as follows.

Example. We set n = 3 and a = 1, as 1 is a coprime to 3.
(x− 1)3 − (x3 − 1) = (x3 − 3x2 + 3x− 1)− (x3 − 1) = −3x2 + 3x
All the coefficients are divisible by 3, so 3 is prime.

As a simple visualization, if we set a = 1 for all values n (as 1 is coprime to all numbers),
then we can simply look at Pascal’s Triangle and see if the values are all multiples of the
row number, excluding the 1’s.

References

[Ivo16] James Ivory. Demonstration of a theorem respecting prime numbers, volume 1, page 6–8. Palapa
Press, 2016.

[Leh27] Derrick Henry Lehmer. Tests for primality by the converse of Fermat’s theorem. Project euclid,
1927.

[Sou23] Kannan Soundararajan. Finite Fields, with applications to combinatorics. American Mathematical
Society, 2023.

[Ste09] William Stein. Elementary Number Theory: Primes, Congruences, and Secrets. Springer, 2009.
[Wol96] George Woltman, 1996.

20 INHO RYU

[Leh27] [Sou23, Chapter 7] [Ste09, Chapter 2] [Ivo16] [Wol96]

	1. Introduction
	Acknowledgements
	2. Background
	2.1. Modular Arithmetic
	2.2. Time Complexity

	3. Lucas-Lehmer Test
	3.1. Mersenne Primes
	3.2. The Test
	3.3. Pseudocode
	3.4. Alternative Starting Values
	3.5. Sign of the Penultimate Term
	3.6. Time Complexity
	3.7. Examples
	3.8. Proof

	4. Miller-Rabin Test
	4.1. Euler's Criterion and Root Bound
	4.2. The Test
	4.3. Choices of Bases
	4.4. Proof
	4.5. Examples
	4.6. Pseudocode
	4.7. Complexity
	4.8. Accuracy

	5. AKS Test
	5.1. The Basic Idea Behind AKS
	5.2. The Algorithm
	5.3. Proofs
	5.4. Running Time
	5.5. Examples

	References

