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Abstract. The purpose of this paper is the provide an exposition of the Wilson’s Oddness
Theorem and make it easier for a non-expert to understand. This paper also provides a
few exceptions to the theorem. It discusses a background in game theory, the history of
game theory, the theorem itself, and Professor John C. Harsanyi’s (University of California,
Berkeley) proof to the theorem.

1. Introduction

Robert Wilson [Wil71] first displayed that apart from certain rare cases, in any finite
game, the number of equilibrium cases are finite and odd. In simple, this is the Wilson’s
Oddness Theorem.

However, in this expository paper, we will be looking at John C. Harasanyi’s proof to
Wilson’s Oddness Theorem [Har73]. This proof will be highlighted in sections 3, 4, 5, 6, 7,
8, and 9.

Let’s look at some history of game theory in general and Wilson’s Oddness Theorem in
particular.

Discussions by Mathematicians on games began much before the modern Mathematical
game theory. Cardano’s Liber de ludo aleae (Book on Games of Chance), written about 1564
but published posthumously in 1663, articulated some of the field’s fundamental notions.
Several papers were published in this unofficial field until 1928.

In 1928, John von Neumann published his paper On the Theory of Games of Strategy. Von
Neumann’s original proof used Brouwer’s fixed-point theorem on continuous mappings into
compact convex sets, which became a standard method in game theory and mathematical
economics.

This 1944 Theory of Games and Economic Behavior was the culmination of Von Neu-
mann’s work in game theory. The strategy for discovering mutually consistent solutions for
two-person zero-sum games is described in this seminal paper. Following work concentrated
mostly on cooperative game theory, which analyses optimum tactics for groups of persons un-
der the assumption that they may enforce agreements among themselves concerning correct
methods.

In 1950, the first mathematical discussion of the prisoner’s dilemma appeared, and an
experiment was undertaken by notable mathematicians Merrill M. Flood and Melvin Dresher,
as part of the RAND Corporation’s investigations into game theory.

Around the same time, John Nash devised the Nash equilibrium, a criteria for recip-
rocal consistency of players’ tactics that is applicable to a broader range of games than
the von Neumann and Morgenstern criterion. Nash demonstrated that every finite n-player,
non-zero-sum (rather than only two-player zero-sum) non-cooperative game has a Nash equi-
librium with mixed strategies.
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Reinhard Selten proposed his solution notion of subgame perfect equilibria in 1965, which
modified the Nash equilibrium further. He would later incorporate trembling hand perfection
as well.

In 1971, Robert Wilson proved Wilson’s Oddness Theorem about the number of nash
equilibria. In 1973, John C. Harasanyi devised a new proof to Wilson’s Oddness Theorem,
which we are looking at in this paper. In 1994, Nash, Selten and Harasanyi became nobel
laureates in Economics.

Next came evolutionry game theory by Thomas Schelling and Robert Aumann who were
both awarded nobel prizes for their contributions.

This is a brief history of the evolution of game theory.
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2. Background

We will start off by providing a background game theory, in order to give context to inex-
perienced readers. If you feel you are confident in game theory, you may want to skip this
section.

Game theory is the study of mathematical models of strategic interactions between rational
agents . It has uses in computer science, logic, systems science, and all branches of social
science. Economic theory also makes considerable use of game theory principles. In simpler
words, game theory is the study and analysis of game situations.

We will now define some important terms in game theory and other terms for this pa-
per. An article on Non-Cooperative Games [Nas51] by John F. Nash presented by Andrew
Hutchings is definitely something the reader should consider going through for more depth.
It will allow the reader to understand the following paper with more ease. It also provides
some other theorems and proofs which the author finds quite interesting.

Definition 2.1. A finite n−person game is a set of n players, each with an associated finite
set of pure strategies.

Definition 2.2. A utility function Ui maps from the set of all n-tuples of pure strategies to
the reals.

The utility function essentially gives the payoff of the strategy of the player in the game
situation.

Definition 2.3. A mixed strategy of player i is a convex combination of pure strategies.
Mixed strategies have a simple geometric representation as points on a simplex.

A mixed strategy is the probability distribution one uses to randomly choose among avail-
able actions in order to avoid being predictable and thus achieve the maximum payoff.

http://www.eecs.harvard.edu/cs286r/courses/spring02/papers/nash-cornell.pdf
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Additional explanation: Let x1, x2, · · · , xn, xn+1 be n + 1 points in Rn. Then the convex
set spanned by these (n + 1) points is called an n-simplex in Rn. For example, a 0-simplex
is a point, a 1-simplex is a line, a 2-simplex can be a triangle, and a 3-simplex can be a
tetrahedron. If you do not understand this information, I recommend checking out a book
on algaebric topology since the proof will require some of it.

Note: The aim of game theory is usually to analyse a situation in order to understand
the best possible strategy to maximize payoff or Ui.

Definition 2.4. Equilibrium Point: A n−tuple S is an equilibrium point if and only if for
every i:

Ui(s) = max
allr′is

[Ui(S; ri)]

which by linearity of pi gives us:

max
α

[Ui(S; πiα)] = max
allr′is

[Ui(S; ri)]

.
Define piα(S) = pi(S; πiα).
Then we have S is an equilibrium point if:

Ui(S) = max
α

Uiα(S)

.

In Definition 2.4, i indicates a player, α indicates a pure strategy of a player, ri indicates
a mixed strategy of i and πia indicates i’s αth pure strategy.

3. Defining Key Terms

First we look at pure strategies,
The k − th pure strategy of player i(i = 1, . . . , n) will be called aki and the set of all the

player’s Ki pure strategies will be called Ai. Let

(3.1) K =
n∏

i=1

Ki

We shall assume that the K possible n− tuples of pure strategies are numbered consecu-
tively as a1, . . . , am, . . . , ak. Let

(3.2) am = (ak11 , . . . , akii , . . . , a
kn
n ).

Thus it follows that

(3.3) am(i) = (akii ),

denotes the pure strategy used by player i in the strategy n-tuple am. The set of all K
pure strategy n-tuples will be called A. Thus, A = A1 ∗ · · · ∗ An.

Now we look at mixed strategies,
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Any mixed strategy n-tuple of a given player i(1, . . . , n) can be identified with a probability
vector pi as

(3.4) pi = (p1i , . . . , p
k
i , . . . , p

Ki
i )

wherein p1i is the probability that this mixed strategy assigns to the player’s pure strategy
a1i . (Definition 2.3 of a mixed strategy is relevant in this case).

As mentioned in Definition 2.3, since mixed strategies can be represented as points on
a simplex; The set Pi of all mixed strategies available to i is a simplex consisting of all
Ki-vectors, satisfying the conditions:

(3.5) pki ≥ 0 for k = 1, . . . , Ki,

and

(3.6)

Ki∑
k=1

pki = 1.

The set P = P1 ∗ · · · ∗ Pn of all n-tuples p = (pi, · · · , pn) of mixed strategies forms a com-
pact and complex polyhedron. We will call this the strategy space of game Γ. We shall write
p = (pi, pi), wherein we write pi = (pi, . . . , pi−1, pi+1, . . . , pn) is the strategy (n − 1)-tuple
representing the mixed strategies of (n− 1) players other than the player i.

Assigning Pure Strategies to Mixed Strategies,
For any strategy n-tuple p = (p1, . . . , pn) the carrier of C(p) will be defined as the union

of carrier of its component strategies as:

(3.7) C(p) =
n⋃

i=1

C(pi).

Additional Explanation: The carrier of pi is the set C(pi) of all pure strategies a
k
i to which

the mixed strategy pi assigns positive probabilities pki > 0. If this carrier contains only one
pure strategy aki , then aki = pi. However, if C(pi) contains all Ki pure strategies of player i,
then pi will be called a complete mixed strategy. And lastly, if pi doesn’t have only one or
all pure strategies, it will be called an incomplete mixed strategy.
Now we will assume that the ith component of the pure strategy n-tuple am is am(i) = aki

and that a given mixed strategy pi of player i assigns the mixed strategy pki to the pure
strategy aki .

From this we can write

(3.8) qmi (pi) = pki .

Now, with the help of equations 3.7 and 3.8, if pi = aki is a pure strategy, then

(3.9) qmi (a
k
i ) = 1 when am(i) = aki ,
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(3.10) qmi (a
k
i ) = 0 when am(i) ̸= aki .

This is again quite logical, since if it is a pure and only strategy, the probability of assign-
ing to it will be 1. And the probability of assigning to it when am(i) ̸= aki will be 0 because
am(i) won’t be equal to the ith component of the pure strategy. In simpler terms, we will be
trying to assign to something that doesn’t exist.

When the n players use pure strategy n-tuple am, then player i(i = 1, 2, . . . , n− 1, n) will
receive the payoff (as per the utility function in Definition 2.2)

(3.11) Ui(a
m) = um

i ,

whereas it’s a little more complicated for the using the mixed strategy n-tuple p(p1, . . . , pn).
His payoff with it will be

(3.12) Ui(p) =
K∑

m=1

[Πn
i=1q

m
i (pi)]u

m
i

which utilises the payoff for the pure strategy

Let ζ = ζ(n;K1, . . . , Kn) be the set of all n-person games in which players 1, . . . , n have
exactly K1, . . . , Kn pure strategies, respectively. Thus, ζ is the set of all games of a given
size. Each specific game Γ in the set of all games ζ can be characterised by the (nK)-vector

(3.13) u = (u1
1, . . . , u

K1
1 ; . . . ;u1

i ; . . . , u
Ki
i ; . . . ;u1

n; . . . , u
Kn
n )

whose components um
i = Ui(a

m) are the payoff to various players i for the different pure
strategies combinations am. We can identify each game Γ with its vector u = u(Γ) of possible
payoffs of pure-strategy combinations, and can regard the set of all games ζ as an (nK)-
dimensional Euclidean space ζ = u.

Important Preliminary to Wilson’s Oddness Theorem Proof
Let x(ζ) be the set of all games Γ in ζ for which a given mathematical statement x is

false. This proof for Wilson’s Oddness Theorem relies on saying that statement x is true
for almost all games, if, for every possible set ζ of games of a particular size, this set x(ζ)
is a closed set of measure zero within the relevant set ζ, regarded as an nK - dimensional
Euclidean Space. The closure requirement is cited from [Deb70]

4. Logarithmic games

Harasanyi’s paper [Har73] uses an innovative method of depicting logarithmic games in
the following way.

Let Λ be an n-person ’non cooperative game’, where the n players have the same simplex
P1, . . . , Pn they have in game Γ as strategy spaces, but where the payoff function Li of each
player i(i = 1, . . . , n) is of the form
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(4.1) Li(p) = Li(pi) =

Ki∑
k=1

log pi

Since the payoff function Li are logarithmic functions , this game Γ - as well as the games
Γ ∗ (t) to be defined below - are best regarded as being infinite games in which the pure
strategy of every player i consists in choosing a specific point pi from the simplex Pi, which
makes pi a pure strategy and not mixed. But, for convenience, Harasanyi goes on calling
any given strategy pi a (complete or incomplete) mixed strategy. This terminology will not
give rise to any confusion because, in analyzing these infinite games, we shall never consider
mixed strategies having the nature of probability mixtures of two or more pi.

Thus, Λ is a “degenerate”.

Note: A “degenerate” game is a game wherein each players payoff Li depends only on
his own strategy pi and not on other player’s strategies pj, for j ̸= i

We define a one-parameter family of games A ∗ (t), with 0 ≤ t ≤ 1. In any particular game
Λ ∗ (t) with a specific value of the parameter t, the payoff function of player i(i = 1, . . . , n)
is

(4.2) L ∗ (p, t) = (1− t)Ui(p) + tLi(pi).

Λ ∗ (0) = Γ, whereas Λ ∗ (1) = Λ. All games Λ ∗ (t) with 0 < t ≤ 1 will be called logarith-
mic games. Γ will be called the original game and Λ will be called the pure logarithmic game.

What we have shown in this section, is how Harasanyi classifies logarithmic games very
intelligently.

5. Conditions

There exists a best reply strategy pi of a player i to a strategy combination pi, used by
the other (n− 1) players in the game A ∗ (t) if

(5.1) L ∗ (pi, pi, t) ≥ L ∗ (p′i, pi, t) for all p′i ∈ Pi.

Referring to Definition 2.4 [Nas51], we can also classify an equilibrium point if every
component pi of p is the best corresponding reply to a strategy by the (n− 1) players.

Definition 5.1. Strong equilibrium point: If all n components of pi of p satisfy with the
strong equality sign > for all p′i ̸= pi.

Note: p is a strong equilibrium point if every player’s equilibrium strategy pi is his only
best reply to the other players’ strategy combination pi.

Definition 5.2. Weak equilibrium point: If the equilibrium point is not strong, then it is
weak.

Definition 5.3. Quasi Strong Equilibrium Point: p is quasi strong if no player i has has
pure-strategy best replies to pi other than the pure strategies belonging to carrier C(pi) of
his equilibrium point pi.
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Definition 5.4. Extra Weak Equilibrium Point: An equilibrium point that is not even
quasi-strong is called extra-weak.

We can classify games such that Γ will be a quasi strong game if all equilibrium points
are quasi strong. However, it will be extra weak if one or more are extra weak.

In the original game Γ = A ∗ (0), a best reply pi to any given strategy combination pi may
be a pure strategy or may be a mixed strategy. (It can be a mixed strategy only if all pure
strategies aki in its carrier C(pi) are themselves best replies to pi.)
However, if we look at the logarithmic game Λ ∗ (t) with t > 0 , only a complete mixed

strategy can be the best reply. This is because from equations (3.12), (4.1) and (4.2) any
player i will obtain a negative payoff if they use a pure strategy or an incomplete mixed
strategy.

In the original game Γ, in general, the mathematical conditions characterizing an equilib-
rium point p = (p1, . . . , pn) will be partly equations and partly inequalities. The equations
of the equilibrium point of Γ will be of the form:

(5.2) Ui(a
k
i , pi) = Ui(a

′k
i , pi) if a

k
i , a

′k
i ∈ C(pi);

whereas the inequalities will be:

(5.3) Ui(a
k
i , pi) ≥ Ui(a

′k
i , pi) if a

k
i ∈ C(pi), while a′ki /∈ C(pi).

The case where all n equilibrium strategies are pure strategies will the inequalities (5.3)
will be characterised. The case where all all n equilibrium strategies are complete mixed
strategies will characterise the equation (5.2).

An equilibrium point p in the finite game Γ will be quasi strong if and only if, for every
player i, and for every strategy aki in C(pi) and for every strategy ak

′
i not in this carrier,

inequality (5.3) is followed with a strong equality sign.

In contrast, every equilibrium point p in the logarithmic A ∗ (t) with t > 0 is always
characterised by these equations.

(5.4)
∂L ∗i (p, t)

∂pki ∑
i p

k
i =1

= 0, for , k = 1, . . . , Ki − 1, and, for, i = 1, . . . , n.

Additional Explanation: The partial derivative has been taken to maximise the payoff
function L∗i with respect to vector pi

Each partial derivative in (5.4) must be equated at the equilibrium point p itself. Since
each function L∗i is strictly concave in pi, the second-order conditions are always satisfied,
so that the eqs. (5.4) are both necessary and sufficient conditions for maximization. The
function L∗i can also be written as:

(5.5) L ∗i (p, t) = (1− t)

Ki∑
k

= 1pkiUi(a
k
i , pi) +

Ki∑
k

= 1logpki .
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Using the fact:

(5.6) p1i = 1−
Ki∑
k

= 2pki ,

We can write (5.4) in the form:

(5.7) (1− t)[Ui(a
k
i , pi)− Ui(a

1
i , pi)] +

t

pki
− t

p1i
= 0,

or, equivalently in the form

(5.8)
(1− t)p1i p

k
i [Ui(a

k
i , pi)− Ui, (a

1
i , pi)] + t(p1i − pki ) = 0, for, i = 1, . . . , n; and, for, k = 2, . . . , Ki.

Additional Explanation: Going from equation 5.7 to equation 5.8 essentially requires taking
t out common and multiplying the whole equation by p1i p

k
i .

The number of equations of form (5.8) can be written as:

(5.9) K∗ =
n∑

i=1

(Ki − 1) =
n∑

i=1

Ki − n.

Looking at n equations of the form (3.6) we have all together:

(5.10) K ∗ ∗ = K ∗+n =
n∑

i=1

Ki

number of independent equations for characterising each equilibrium point p, which is the
same number of the variables pki determined by these equations.

6. Algebraic Curves

Definition 6.1. An algebraic curve over a field K is an equation f(X, Y ) = 0, where
f(X, Y ) is a polynomial in X and Y with coefficients in K. A nonsingular algebraic curve
is an algebraic curve over K which has no singular points over K. A point on an algebraic
curve is simply a solution of the equation of the curve. A K-rational point is a point (X, Y )
on the curve, where X and Y are in the field K.

In view of (3.12), all equations of the form (5.8) are algebraic equations in the variables
pki and parameter t.

All equations of form (3.6) are likewise algebraic. Let S be the set of all K ∗ ∗+1-vectors
(t, p) satisfying the K ∗ ∗ equations of form (3.6) and (5.8).

Note: S will be typically a one-dimensional algebraic variety, i.e., an algebraic curve. (In
degenerate cases, however, S may also contain zero-dimensional subsets, i.e., isolated points,
and/or subsets of more than one dimension, i.e., algebraic surfaces of various dimensionality.)

Now, we define T as the set of all vectors (t, p) that satisfy not only the K ∗ ∗ equations
of form (3.6) and (5.8) but also the K ∗ ∗ inequalities of form (3.5).

Note: T is simply that part of the algebraic variety S which lies within the compact and
convex cylinder (polyhedron) R = P ∗ I, where I = [0, 1] is the closed unit interval.
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Since T is the locus of all solutions (t, p) to the simultaneous equations and inequalities
(3.5), (3.6), and (5.8), T will be called the solution graph for the latter.

Important for upcoming sections: For any point (t, p), t will be called its first coordinate.
Within the cylinder R, the strategy space P of any specific game A ∗ (t) is represented by
the set Rt of all points (t, p) in R.
For any game A∗(t), let Et be the set of all points (t, p) in Rt such that p is an equilibrium

point of A ∗ (t). Finally, let T t be the intersection of Rt with the solution graph T .

Lemma 6.2. For all t with 0 < t ≤ 1, Et = T t. In contrast, for t = 0, in general, we have
only E0 ⊆ T 0.

Proof. For all t with 0 < t ≤ 1, conditions (3.5), (3.6), and (5.8) are sufficient and necessary
conditions for any given point p to be an equilibrium point of game A ∗ (t). However, for
t = 0, it is easy to see that all equilibrium points p of the game A ∗ (0) = Γ satisfy all these
conditions but, in general, so will strategy combinations that are not equilibrium points of
Γ. For example, all these conditions will be satisfied by any pure-strategy n-tuple p = am,
whether it is an equilibrium point of game Γ or not.

7. Topological Properties of Solution Graph T

Consider the mapping µ : t −→ T t. The Jacobian of this mapping, as evaluated at any
given point (p, t) of T t, can be written as:

(7.1) J(t, p) =
∂(F 1

1 , . . . , F
k
i , . . . , F

Kn
n )

∂(p11, . . . , p
k
i , . . . , p

Kn
n )

for i = 1, . . . , n;
and for each i, k = 1, . . . , Ki.

Here:

(7.2) F 1
i (t, p) =

n∑
i=1

pki − 1, i = 1, . . . , n;

whereas,

(7.3) F k
i (t, p) = (1− t)p1i p

k
i [Ui(a

k
i , pi)− Ui(a

1
i , pi)] + t(p1i − pki )

i = 1, . . . , n;
and for each i, k = 2, . . . , Ki.

For points of the form (t, p) = (0, p) in set T 0 the functions F k
i (k ̸= 1), the following

simpler form of (7.3) arises:

(7.4) F k
i (0, p) = p1i p

k
i [Ui(a

k
i , pi)],

for i = 1, . . . , n;
and, for each i, k = 2, . . . , Ki.
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Definition 7.1. An equilibrium point of game Γ will be called regular if J(0, p) ̸= 0; and
will be called irregular if J(0, p) = 0.

Definition 7.2. A given game Γ will be regular if all of its equilibrium points are regular,
and will be irregular if one or more of its equilibrium points are irregular.

Now we will state two lemmas based on well known facts in algebraic geometry.

Lemma 7.3. Let (x0, x∗) be an arc of an algebraic curve S in a v-dimensional Euclidean
space Xv, connecting two points x0 = (x0

1, . . . , x
0
v) and x∗ = x∗

1, . . . , x
∗
v ̸= x0. Then, this arc

(x0, x∗) can be uniquely continued analytically beyond point x∗ (and beyond point x0).

Proof. If x∗ is not a singular point, then the possibility of analytic continuation follows from
the Implicit Function Theorem. On the other hand, if x∗ is a singular point, then this
possibility follows from PUISEUX’s Theorem [Kun97] Theorem 14. By this theorem, if x∗ is
a point of some branch S∗ of a given algebraic curve S, then, whether x∗ is a singular point
or not, in some neighborhood N(x∗) of x∗, the coordinates xi of any point x = (x1, . . . , xv)
of this branch S∗ can be represented by v convergent power series πi(y) in an auxiliary
parameter y, so that we can write xi = πi(y) for a suitably chosen value of y(i = 1, . . . , v).
Moreover, we can select the v functions n, in such a way that x∗ itself will correspond to
y = 0 (so that x∗

i = πi(0), for i = 1, . . . , v), and in such a way that all other points x of the
arc (x0, x∗) will correspond to negative values of y. Then, by assigning positive values to
y, we can analytically continue the arc (x0, x∗) beyond x∗. Even though we can choose the
v functions πi in many different ways, all choices will yield the same curve as the analytic
continuation of (x0, x∗).

Corollary 7.4. Let S be an algebraic curve, and x be an arbitrary point. Then, the number
of arcs belonging to S and originating from x is always even (possibly zero). These arcs
always uniquely partition themselves into pairs, so that the two arcs belonging to the same
pair are analytic continuations of each other, and are not analytic continuations of any other
arc originating from x.

Lemma 7.5. Let (x0, x∗) be an arc of an algebraic curve S. Suppose that (x0x∗) lies wholly
within a given compact and convex set R with a nonempty interior, and that x0 is a boundary
point of R whereas x∗ is an interior point of R. Then, by analytically continuing (x0, x∗) far
enough beyond x∗, we shall once more eventually reach a boundary point x00 of R.

Proof. We define S∗ as the algebraic curve if we extend x∗ to a boundary point x00 of R.
For each coordinate xi, let

(7.5) mi = inf
x∈S∗

xi and mi = sup
x∈S∗

xi.

Since S∗ is not an isolated point, at least for one coordinate xi, its variation on S∗,∆i =
mi−mi, must be positive. On the other hand, since S∗ is an arc of an algebraic curve, it can
be divided up into a finite number of segments α1, . . . , αµ, . . . , αM , such that, as we move
away from x0 along any given segment αµ, this coordinate xi is either strictly increasing or
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is strictly decreasing. Let us assume that, starting from x0 and moving along S∗, we reach
these segments in the order they have been listed. Now, first suppose that, along the last
segment αM , xi increases. Then, since R is a compact set, xi must reach a local maximum
at some point x00 of αM . Obviously, this point x00 can only be the endpoint of αM furthest
away from x0. Moreover, it can only be a boundary maximum point for xi because, if it
were an interior maximum point, then αM could not be the last segment of S∗. Therefore,
this point x00 must be a boundary point of R. By the same token, if xi decreases along αM ,
then the endpoint x00 of αM must be a local boundary minimum point for xi and, therefore,
it must be boundary point of R. Thus, in either case, S∗ will eventually reach a boundary
point x00 of R.

Let P̄ be the boundary of the strategy space P . Thus, P̄ is the set of all strategy n-tuples
p = (p1, . . . , pn) having at least one pure or incompletely mixed strategy pi as a component.
Let I0 = (0, 1) be the open unit interval. Let B be the set B = P̄ ∗I0. Clearly, the boundary
hypersurface R̄ of cylinder R is made up of the three disjoint sets P 0, B, and P 1.

Lemma 7.6. Let T̄ be the intersection of the solution graph T and of the boundary hyper-
surface R̄ of cylinder R. Let (t, p) be any nonisolated point of T̄ . Then, either (t, p) = (1, p̃),
where p̃ is the unique equilibrium point of the pure logarithmic game Λ∗(1); or (t, p) = (0, p∗),
where p∗ is an equilibrium point of the original game Λ∗(0) = Γ

Proof. For any t with 0 < t ≦ 1, the vector p characterizing any given point (t, p) of T̄
must be an equilibrium point of the game Λ∗(t), because (t, p) is a point of the solution
graph T . Therefore, (t, p) cannot belong to set B, since the logarithmic games Λ∗(t) with
0 < t ≦ 1 have no equilibrium point using a pure or an incompletely mixed strategy pi as
equilibrium strategy. Hence, if t > 0, then (t, p) can only be a point belonging to set P 1,
which is possible only if (t, p) = (1, p̃). On the other hand, if t = 0, then (t, p) = (0, p)
is a point belonging to set P 0. As (t, p) is a nonisolated point of T , it is a limit point
of some convergent point sequence (t1, p1) , . . . , (tj, pj) , . . ., where each pj is an equilibrium
point in game Λ∗ (tj), with tj > 0. Consequently, p itself is an equilibrium point in game
Λ∗(0) = Γ, because the correspondence µ∗ : t → Et is upper semi-continuous (where Et is
the set mentioned in Lemma 1). This completes the proof.

Lemma 7.7. The point (t, p) = (1, p), corresponding to the unique equilibrium point p̃ of
the pure logarithmic game Λ∗(1) = Λ is always a nonsingular point of the graph T , and is
the endpoint of exactly one branch β(p̃) of T .

Proof. As is easy to verify, J(1, p̃) ̸= 0. Consequently, (1, p̃) is nonsingular and, by the
Implicit Function Theorem, it lies on exactly one branch α(p̃) of T .



12 HRIDANK GARODIA

Lemma 7.8. Let Γ be a regular and quasi-strong game. Then, any point (t, p) = (0, p)
corresponding to an equilibrium point p of game Λ∗(0) = Γ is always a nonsingular point of
the graph T , and is the endpoint of exactly one branch β(p) of T .

Proof. Since Γ is regular, we have J(0, p) ̸= 0. Hence, if p is an interior point of the strategy
space P , then the present lemma can be established by the same reasoning as was used in
the proof of Lemma 5. However, if p is a boundary point of P , then this reasoning shows
only that (0, p) lies on exactly one branch β(p) of the algebraic variety S. In order to prove
the lemma, we have to show also that β(p) belongs to the graph T , i.e., that it lies within
cylinder R. In other words, we have to show that β(p) goes from (0, p) towards the interior
of R, which is equivalent to showing that, for any zero component pki = 0 of the vector p,
the total derivative dpki /dt is positive at the point (0, p). Now, by differentiating eq. (5.8)
with respect to t, and then setting t = pki = 0, we obtain

(7.6) p1i
[
Ui

(
aki , p̄i

)
− Ui

(
a1i , p̄i

)]
+ p1i = 0.

Since the numbering of player i ’s pure strategies is arbitrary, without loss of generality we
can assume that

(7.7) p1i > 0

On the other hand, since p1i > 0 and pki = 0, we have p1i ∈ C (pi) but p
k
i /∈ C (pi). Since p

is a quasi-strong equilibrium point, condition (18) must be satisfied by a strong inequality
sign if we set ak

′
i = a1i . Therefore,

(7.8) Ui

(
aki , p̄i

)
− Ui

(
a1i , p̄i

)
< 0.

But (7.6), (7.7), and (7.8) together imply that dpki /dt > 0, as desired.

In what follows, when we say that two points are ”connected”, we shall mean that they
are connected by some branch α of the solution graph T .

Theorem 7.9. Let Γ be a regular and quasi-strong finite game. Then, the number of equi-
librium points in Γ is finite. Moreover, there exists exactly one distinguished equilibrium
point p∗ in Γ such that the corresponding point (0, p∗) is connected with the point (1, p̃),
associated with the unique equilibrium point p̃ of the pure logarithmic game Λ∗(1) = Λ. All
other equilibrium points of Γ form pairs, such that the two equilibrium points belonging to
the same pair are connected with each other and with no other equilibrium point. Therefore,
the number of equilibrium points in Γ is odd.

Proof. By Lemma 6, every equilibrium point p of Γ lies on some branch β(p) of T . But T ,
being the intersection of an algebraic variety S and of a compact and convex set R, can have
only a finite number of branches. Moreover, on any given branch β, there can be at most
two equilibrium points, corresponding to the two endpoints of β. Therefore, the number of
equilibrium points in Γ is finite.
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By Lemma 5 , there exists a unique branch α(p) of T , originating from the point (1, p̃). By
Lemmas 1 and 2, this branch α(p̃) must lead to a boundary point x00 of R. As J(1, p̃) ̸= 0, we
must have x00 ̸= (1, p̃), because otherwise T would have two local branches originating from
(1, p̃), contrary to the Implicit Function Theorem. Consequently, by Lemma 4, x00 = (0, p∗),
where p∗ is an equilibrium point - called the distinguished equilibrium point - of game Γ.

Finally, let p ̸= p∗ be any equilibrium point of Γ, other than the distinguished equilibrium
point p∗. By Lemma 6 , there exists a unique branch β(p) of T , originating from the point
(0, p). By an argument similar to the one used in the last paragraph, it can be shown that
β(p) must lead to another boundary point x00 of R, with x00 = (0, p′), where p′ ̸= p and
̸= p∗ is another equilibrium point of Γ. Hence, all equilibrium points of Γ, other than the
distinguished equilibrium point p̃, are pairwise connected. But this means that the number
of these latter equilibrium points is even, which makes the total number of equilibrium points
in Γ odd.

Note: The proof of Theorem (7.9) shows that, for any game Λ∗(t) with 0 ≦ t ≦ 1, the set
Qt of all equilibrium points in Λ∗(t) is nonempty. This is so because branch α(p̃) of graph
T connects the two points (1, p̃) and (0, p∗). Therefore, α(p̃) intersects every set Rt with
0 ≦ t ≦ 1 at some point (t, pt). As is easy to verify, the strategy n-tuple pt defining this
point must be an equilibrium point of game Λ∗(t).

8. Finite Games Being Quasi Strong

Within a given set I = I (n;K1, . . . , Kn) of games of a particular size, let F (C∗) be the
set of all games Γ that have at least one equilibrium point p with a specified set C∗ = C(p)
as its carrier. There are only a finite number of different sets F (C∗) in I because, for all
games Γ in I , the number of possible carrier sets C∗ is finite. This is so because any set C∗

is a subset of the finite set

(8.1) A∗ =
n⋃

i=1

Ai

consisting of the set of all K∗∗ pure strategies aki for the n players in each game Γ, where

(8.2) K∗∗ =
n∑

i=1

Ki

(Of course, two sets F (C∗) corresponding to different carrier sets C∗ will in general overlap.)
We can now state the following theorem.

Theorem 8.1. Almost all finite games are quasi-strong.

Proof. Let F (C∗) be the set of all games Γ in I that have at least one extra-weak equi-
librium point p with the set C∗ = C(p) as its carrier. Obviously, F (C∗)CF (C∗). Let
F (C∗) = F (C∗) − F (C∗). Thus, all games Γ in F (C∗) have the property that they
contain one or more equilibrium points p with the set C∗ = C(p) as their carrier set, and all
these equilibrium points p are quasi-strong.
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All games Γ in a given set F (C∗) are characterized by the fact that their defining vector
u = u(Γ) satisfies a finite number of algebraic equations and algebraic weak inequalities, of
forms (5.2) and (5.3), in which the functions Ui are defined by (3.12). Thus, if we regard
the set I as an (nK)-dimensional Euclidean space I = {u}, then each set F (C∗) will
correspond to a subset of I , bounded by pieces of a finite number of algebraic hypersurfaces.
In view of (3.12) and (5.3), these bounding hypersurfaces are multilinear, i.e., they are
hyperboloids. Within each set F (C∗), all games Γ belonging to F (C∗) are characterized
by the fact that their defining vectors u = u(Γ) satisfy all the inequalities of form (5.3)
used in defining this set F (C∗), with a strong inequality sign >. In contrast, all games Γ
belonging to F (C∗) have a defining vector u = u(Γ) satisfying one or more of these weak
inequalities with an equality sign =. Therefore, all games in F (C∗) correspond to interior
points u of F (C∗), whereas all games in F (C∗) correspond to boundary points of F (C∗).
Hence, as a subset of the (nK)-dimensional Euclidean space I ,F (C∗) consists of pieces
of a finite number of hyperboloids of at most (nK − 1) dimensions. Consequently, each set
F (C∗) is a set of measure zero in I . Let F∗ be the set of all extra-weak games in I .F
is the union of all sets F (C∗), corresponding to various possible carrier sets C∗. Thus, F∗
is a union of a finite number of sets of measure zero in I . Therefore, F∗ itself is also a set
of measure zero in I .

Next, we shall show that F
∗
is a closed set. Let Γ1,Γ2, . . . be a sequence of extra-weak

games in I , with the defining vectors u1 = u (Γ1) , u2 = u (Γ2) , . . .. Suppose that the
sequence u1, u2, . . . converges to a given vector u0. Let Γ0 be the game corresponding to this
vector u0 = u (Γ0). We have to show that Γ0 is likewise an extra-weak game.

Since the games Γj(j = 1, 2, . . .) are extra-weak, each vector uj satisfies one or more
inequalities of form (5.3), with an equality sign. Yet, there are only a finite number of
inequalities of this form. Therefore, at least one of these inequalities - let us call it inequality
(5.3)∗ - will be satisfied by infinitely many vectors uj, with an equality sign. As the sequence
of these latter vectors, being a subsequence of the original sequence {uj}, converges to u0, this
vector u0 itself will also satisfy (5.3)* with an equality sign, which makes the corresponding
game Γ0 extra-weak, as desired. This completes the proof of Theorem 2 .

Let p be an equilibrium point in game Γ belonging to set I , with the carrier C∗ = C(p) =⋃
iC (pi). Thus Γ ∈ F (C∗). Suppose the carriers C (p1) , . . . , C (pn) of the equilibrium

strategies p1, . . . , pn consist of exactly γ1, . . . , γn pure strategies, respectively. In studying
games Γ in set F (C∗), we shall adopt the following notational convention, which, of course,
involves no loss of generality:

(1) The pure strategies aki of each player i(i = 1, . . . , n) have been renumbered in such
a way that the carrier C (pi) of his equilibrium strategy pi now contains his first γi
pure strategies a1i , . . . , a

γi
i .

We can fully characterize each equilibrium strategy pi by the (γi − 1) probability numbers
p2i , p

3
i , . . . , p

γi
i , since we have
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(8.3) p1i = 1−
γi∑
j=2

pji

and

(8.4) pki = 0, for k = γi + 1, . . . , Ki.

Let πi be the probability vector

(8.5) πi =
(
p2i , . . . , p

γi
i

)
, for i = 1, . . . , n.

Thus, πi is a subvector of the probability vector pi. Let Πi(i = 1, . . . , n) be the set of all
(γi − 1)-vectors satisfying the two conditions

(8.6) pki > 0, k = 2, . . . , γi

and

(8.7)

yi∑
j=2

< 1

Let π be the composite vector

(8.8) π = (π1, . . . , πn) .

Thus, π is a vector consisting of γ∗ probability numbers pki , where

(8.9) Γ∗ =
n∑

i=1

(γi − 1) =
n∑

i=1

γi − n

Clearly, π is a subvector of the probability vector p. Let Π be the set of all γ∗-vectors π
whose subvectors π1, . . . , πn satisfy conditions (8.6) and (8.7). Clearly, Π = Π1 × · · · × Πn.
We now define

(8.10) m∗(1, k) = k − 1, for k = 2, . . . , γ1

and

(8.11)

m∗(i, k) =
i−1∑
j=1

(γj − 1) + (k − 1)

=
i−1∑
j=1

γj − i+ k, for i = 2, . . . , n; k = 2, . . . , γi.

In addition to the previous notational convention, we now introduce the following further
notational convention, which again involves no loss of generality:

(1) The pure-strategy n-tuples am of the game have been re-numbered in such a way
that the first γ∗ pure-strategy n-tuples a1, . . . , aγ

∗
will now have the following form.

For any m with 1 ≦ m ≦ γ∗, let i and k be the unique pair of numbers satisfying
m∗(i, k) = m.
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Then

(8.12) am =
(
a11, . . . , a

1
i−1, a

k
i , a

1
i+1, . . . , a

1
m

)
Thus, we can write

(8.13) um
i = um∗(i,k) = Ui

(
a11, . . . , a

1
i−1, a

k
i , a

1
i+1, . . . , a

1
n

)
, for i = 1, . . . , n; k = 2, . . . , γi.

Let u∗ be the vector formed of those γ∗ components um
i of vector u which can be written

in form (8.13). Let u∗∗ be the vector formed of the remaining (nK − γ∗) components of u.
Hence

(8.14) u = (u∗, u∗∗)

The set of all possible vectors u∗ is a γ∗-dimensional Euclidean space, to be denoted as
I ∗ = {u∗}; whereas the set of all possible vectors u∗∗ is an (nK − γ∗) dimensional Euclidean
space, to be denoted as I ∗∗ = {u∗∗}. Clearly, I ∗ × I ∗∗ = I .
Since p is an equilibrium point in game Γ, it must satisfy condition (5.2). This condition

can also be written as

(8.15) p1i p
k
i

[
Ui

(
aki , p̄i

)
− Ui

(
a1i , p̄i

)]
= 0, for i = 1, . . . , n; k = 2, . . . , γi.

Since p1i and pki > 0, (49) is equivalent to (5.2). In view of (3.12), this condition can also be
written as

(8.16)

um∗
=

∑
m̸=m∗

m∈M

[
qmi

(
aki
)∏

j ̸=i q
m
j (p̄j)

]
um
i∏

j ̸=i q
m∗
j (pj)

−
∑
m∈M

[
qmi (a1i )

∏
j ̸=i q

m
j (p̄j)

]
um
i∏

j ̸=i q
m∗
j (pj)

, for i = 1, . . . , n; k = 2, . . . , γi

Here M = {1, 2, . . . , K} and m∗ = m∗(i, k). It is permissible to write eq. (5.2) [or (8.15)]
in form (8.16) because, by (8.12), we have qm

∗
j (pj) = p1j for all j ̸= i, and p1j > 0 since

a1j ∈ C (pj).

Note that each quantity um∗
i for a specific value of m∗ = m∗(i, k) occurs, with a nonzero

coefficient, only in one equation of form (8.16) (where it occurs on the left-hand side). This
is so because, by (3.10) and (8.12), for any k′ ̸= k, we have qm

∗
i

(
ak

′
i

)
= 0. Therefore, if we

know the γ∗ components pki of vector π, and know the (nK − γ∗) components um
i of vector

u∗∗, then we can compute each one of the γ∗ components um∗
i of vector u∗ separately, from

the relevant equation of form (8.16). Consequently, the γ∗ equations of form (8.16) define
a mapping ρ : (π, u∗∗) → u∗ from set Π × I ∗∗ to set I ∗. This mapping ρ is continously
differentiable because, by (8.6), for each point π in Π we have pki > 0 for k = 2, . . . , γi; so
that the denominators on the right-hand side of (8.16) never vanish within Π.

We can use this mapping ρ to define another mapping ρ∗ : (π, u∗∗) → (u∗, u∗∗) = u, where
u∗ = ρ (π, u∗∗). This mapping ρ∗ is from set Π × I ∗ to set I ∗ × I ∗∗∗ = I ; and it is
continuously differentiable since ρ is.

9. Almost All Finite Games are regular: The final Stretch

Theorem 9.1. Almost all finite games are regular.
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Proof. Instead of using the γ∗ equations of form (8.16), we can also use the equivalent γ∗

equations of form (8.15), in order to define the mappings ρ and ρ∗. But if we do so, then the
Jacobian of mapping ρ∗ can be written as

J∗ (π, u∗∗) =
∂
(
F 2
i , . . . , F

k
i , . . . , F

γn
n

)
∂
(
p2i , . . . , p

k
i , . . . , p

γn
n

) , i = 1, . . . , n; and, for each k = 2, . . . , γn,

where the F k
i ’s are the functions F k

i = F k
i (0, p) defined by (7.4). This means that J∗ (π, u∗∗)

is a subdeterminant of the Jacobian determinant J(0, p) defined by (7.1, (7.2), and (7.4); it
is that particular subdeterminant that we obtain if, for each player i, we cross out the rows
and the columns corresponding to k = 1, and to k = γi +1, . . . , Ki. It is easy to verify that,
owing to the special form of the functions F 1

i (i = 1, . . . , n) as defined by (7.2), and owing
to the fact that pγi+1

i = · · · = pKi
i = 0, this crossing out of these rows and columns does not

change the value of the original determinant J(0, p). Hence, J∗ (π, u∗∗) = J(0, p) if π is the
subvector of p defined by (8.5) and (8.8).

Let E (C∗) be the set of all games Γ in I having at least one irregular equilibrium point
p with set C∗ = C(p) as its carrier set. Equivalently, E (C∗) can also be defined as the set of
all vectors u = ρ∗ (π, u∗∗) corresponding to those points (π, u∗∗) in set (Π× I ∗∗) at which
the Jacobian J∗ (π, u∗∗) = J(0, p) vanishes. By SARD’s Theorem [HZ17], this set E (C∗) is
a set of measure zero in the (nK) dimensional Euclidean space I .

Let E ∗ be the set of all games Γ in I having at least one irregular equilibrium point p,
regardless of what its carrier C∗ = C(p) is. Thus, E ∗ is simply the set of all irregular games
in I .E ∗ is the union of a finite number of sets E (C∗), corresponding to different carrier sets
C∗. Since each set E (C∗) is a set of measure zero in I , their union E ∗ will also have this
property.

Next, we shall show that E ∗ is a closed set. Let Γ1,Γ2, . . . be a sequence of irregular games,
with the defining vectors u1 = u (Γ1) , u2 = u (Γ2) , . . .. Suppose that the sequence u1, u2, . . .
converges to a given vector u0. Let Γ0 be the game corresponding to u0 = u (Γ0). We have
to show that Γ0 is likewise an irregular game.
Let p1, p2, . . . be a sequence of strategy n-tuples, such that pj(j = 1, 2, . . .) is an irregular

equilibrium point in game Γj. All these points pj lie in the compact set P . Consequently,
the sequence {pj} must contain a convergent subsequence. Suppose the latter consists of the
points pj1 , pj2 , . . ., and that it converges to some point p0 in P . Then:

(1) This point p0 will be an equilibrium point of game Λ0 This is so because the set Q(Λ)
of all equilibrium points in any given game is an upper semi-continuous set function
of the defining vectors u = u(Λ) of Λ, i.e., of the payoffs um

i of Λ
(2) This point p0 will be an irregular equilibrium point of game Lambda This is so

because J(0, pj1) = J(0, pj2) = · · · = 0 since pj1, pi2, . . . are irregular equilibrium
points. Consequently, J(0, p0 = 0 since p0 is the limit of the sequence pj1, pj2, . . . and
since J(0, p) is a continuous function of p.

Consequently, p0 is an irregular equilibrium point in Λ0 and, therefore, Λ0 itself is an
irregular game, as desired. This completes the proof of Theorem 3.

Theorem 9.2. In almost all finite games, the number of equilibrium points is finite and odd.
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Proof. From Theorems (7.9), (8.1) and (9.1), this theorem is directly implied.

That concludes the proof for Wilson’s Oddness Theorem.

10. Some exceptional games

If you’ve made it this far in this paper, you are clearly interested in the Wilson’s Oddness
Theorem and Game Theory in general.

This section will have some of the interesting exceptions for Wilson’s Oddness Theorem.
The theorem itself is a really interesting result. It helps us understand the nature of the
number of equilibria being odd and finite in almost all situations.

Let’s define almost all in simpler words.

Imagine you have a dartboard represented in a graph as the unit disk.
If you throw a dart that lands on the dartboard, what’s the probability it lands in a

particular region?
If you pick the region of the entire disk, then the dart is surely to land in the region so the

probability is 1. If you pick a region that is a disk of radius 1/4, then that region comprises
1/8 of the total area, and hence the probability will be 1/8.

To return to Wilson’s Oddness Theorem (Theorem 9.2 in this paper), the theorem states
that finite games that have an even number of solutions or an infinite number is a set that
has measure zero. If you think about the set of finite games as the dartboard, then the games
that have an even or infinite number of solutions are like the collection of single points (tech-
nical point: a line in a dartboard also has measure zero). Games with an even number of
Nash equilibria certainly exist, and the set can even be a collection of an infinite number of
items. However, these games are a set of measure zero relative to the entire set of games.

An example of this exception is:
Consider the following game, player x and player y get 1 a piece if they play (Up, Left)

and they get nothing otherwise.

Figure 1. Possible Outcomes (Source: Mind Your Decisions)
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As shown in blue, Left-Up is one equilibrium point and Right-Down is one equilibrium
point. That gives 2 (an even number) of equilibrium points!

In fact, in the Up-Left box, if we change 1 to any positive real number, there will always
exist 2 equilibrium points.

There possibly exists an infinite number of these exceptions but they are so few compared
to the other games that they are called a close set of measure 0.

11. Further reading

An interesting article [BF21] that can be checked out which applies Wilson’s Oddness The-
orem is ‘Oddness of the number of Nash Equilibria: the case of polynomial payoff function’
by Philippe Bich and Julien Fixary.
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