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Abstract

The Metropolis Algorithm and its more general counterpart, the Metropolis Hastings
Algorithm, are useful in modeling complicated distributions. These algorithms are based
on Markov Chains, stochastic models describing the probability between transitioning from
various states where the probability of each transition depends only on the previous state.
This paper first goes over the key properties of such Markov Chains to provide the reader
with enough background knowledge to understand the algorithm part of the paper. Then
the paper goes over the Metropolis and Metropolis algorithms and covers the impact of many
factors within the simulation which play a crucial role in its efficiency to model the desired
target distribution.
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1. Introduction

In the constantly expanding realm of statistical modeling, the ability to accurately and
efficiently simulate complex probability distributions is very challenging. This challenge has
inspired the creation of many algorithms to help model these complex distributions. One of
these algorithms developed was the Metropolis Algorithm, created by Nicholas Metropolis
in 1953. The algorithm was first used in the paper Equation of State Calculations by Fast
Computing Machines. [2] The paper deals with the problem of simulating configurations of
a model particle system represented by two dimensional rigid spheres and then calculating
the properties of interest (such as energy or density) of these configurations. Rather than
choosing configurations of the rigid sphere model randomly, then weighing them with the
Boltzmann factor exp(−E/kT ), where E is the energy, T is the temperature, and k is the
Boltzmann’s constant, configurations were chosen with a probability given by the Boltzmann
factor and then weighed evenly. This change made the sampling method focus more on the
low-energy configurations, which resulted in improved convergence. The earliest version of
the Metropolis Algorithm was used to choose configurations with the probability given by
the Boltzmann factor. It went as following: 1.) each candidate configuration is generated
by a symmetric proposal distribution based on the previous configuration; 2.) If the energy
of the new configuration is lower than the energy of the previous configuration, the move
is always accepted. Otherwise, the move is accepted with the probability given by the
Boltzmann factor. If the move is rejected, the previous configuration will be counted again
as the current configuration. 17 years after the Metropolis Algorithm was first used, W.K.
Hastings extended the algorithm to a more general case, as the prior Metropolis Algorithm
assumed a symmetric proposal distribution. This more general version of the algorithm,
the Metropolis Hastings Algorithm, also works with asymmetric proposal distributions. The
underlying foundation of both the Metropolis and the Metropolis Hastings Algorithm are
based purely on Markov Chains. A Markov Chain is a mathematical model which describes
the transitions between its various states in a stochastic manner. The key defining property
of a Markov Chain is that its probability of transitioning from one state to another depends
only on the previous state. This property is often described as “memoryless” as the transition
between states is independent to all previous states except the one state that precedes the
future state. The Metropolis Algorithm is a Markov Chain Monte Carlo (MCMC) method.
It constructs a Markov Chain with a stationary distribution (we will go more on about what
this is later) equal to the desired target distribution. This allows the Metropolis Algorithm
to be very useful in modeling complicated target distributions accurately and efficiently.
But there are many factors such as step size, the starting value of your simulation, burn
in periods, etc. which you will have to know how to control in order to have an efficient
simulation.

Here is quick walk through of the topics covered by this paper. We first start with key
definitions and properties regarding Markov Chains, including the Markov Property, tran-
sition matrices, stationary distributions, irreducibly, periodicity, the Fundamental Theorem
of Markov Chains and many more topics related to Markov Chains. Then we move on to
the Metropolis and Metropolis-Hastings algorithm section of the paper. Here, you will read
about how and why these algorithms work, the importance of controlling key factors such
as step size, burn in periods and the starting value of the algorithm, a simple hill climb
algorithm to find maximal vertices, and effective sample size (ESS).
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2. Markov Chains

Definition 2.1: Markov Chain. A Markov Chain is a mathematical model that details
the stochastic transitions between various elements or states of a set X. The probability of
these transitions between various states only depend on the current state.

Figure 1. A simple weather system represented as a Markov Chain.

Definition 2.2: Markov Property. Suppose we have a set of states S = (sn+1, sn, . . . , s0).
All Markov chains follow the Markov Property, described as:

For any n ≥ 1,

P (Xn+1 = sn+1|Xn = sn, . . . , X0 = s0) = P (Xn+1 = sn+1|Xn = sn) = P (sn+1, sn).

In other words the probability of entering any future state sn+1 depends only on the cur-
rent state sn and none of the previous states “visited”.

Definition 2.3: Transition Matrix. A transition matrix is a stochastic matrix whose
(i, j) entry represents the probability of transitioning from si to sj. This probability is de-
noted as pij or P (i, j) and is called a transition probability.

Definition 2.4: First Passage Time Probabilities. We define the first-time passage
probabilities by

p
(n)
ij = P (Xn = j;Xk ̸= j, 0 < k < n− 1|X0 = i); i, j ∈ Z.

We can denote the expected return time of this distribution as

µij =
∞∑
n=1

np
(n)
ij .

Theorem 2.5: Chapman Kolmogorov Equation

pnij =
∑
k∈Z

p
(m)
ik p

(n−m)
kj , for all m ∈ N ∪ 0 (2.1)
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Proof. [3] By law of total probability:

p
(n)
ij = P (Xn = j|X0 = i) =

∑
k∈Z

P (Xn = j,Xm = k|X0 = i)

=
∑
k∈Z

P (Xn = j|Xm = k,X0 = i)P (Xm = k|X0 = i).

Now, by the Markovian property:

=
∑
k∈Z

P (Xn = j|Xm = k)P (Xm = k|X0 = i) =
∑
k∈Z

p
(r)
ik p

(m−r)
kj .

The Chapaman-Kolmogrov equation allows us to denote our t-step transition probabilities
as a matrix of t-step transistion probabilities:

P n = p
(m)
ij .

Definition 2.6: Stationary Distribution Part 1. Consider an initial probability distri-
bution ϕi s.t ϕi = P (X0 = i), i ∈ Z. Also,

∑
i∈Z

ϕi = 1.

Distribution πj is defined to be stationary if it satisfies:

πj =
∑
i∈Z

ϕipij. (2.2)

Example 2.7: Simple Weather System. Consider a weather system with only two pos-
sible states: sunny and rainy. Every day the weather can change based on certain transition
probabilities. On a sunny day there is a probability p that it is rainy the next day, and on
a rainy day there is a probability q that it is sunny the next day.

Figure 2. Example 2.7’s weather system represented by a Markov Chain.

Let X = s, r, and let (X0, X1, . . .) be the sequence of weather states on Sunday, Monday,
. . . . The rules of the weather system indicate that if we set

P =

(
P (s, s) P (s, r)
P (r, s) P (r, r)

)
=

(
1− p p
q 1− q

)
,

then (X0, X1, . . .) is a Markov chain with transition matrix P . Notice that the top row of
the transition matrix is the conditional probability distribution of Xt+1 given that Xt = s.
Likewise, the bottom row is the conditional probability distribution of Xt+1 given that Xt

= r.
Assume the weather is sunny on Sunday. On Monday, the weather has probability p

changing to rainy and probability 1− p staying sunny. In conditional probability terms:

P (X1 = r|X0 = s) = 1− p, P (X1 = s|X0 = s) = p. (2.3)
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On Tuesday, considering the two possibilities for X1:

P (X2 = s|X0 = s) = (1− p)(1− p) + pq (2.4)

and
P (X2 = r|X0 = s) = (1− p)p+ p(1− q). (2.5)

Writing equations like (2.4) and (2.5) would be very inefficient for days further along in
the future. Fortunately for us there is a much more efficient way to store our distribution
information, being in a row vector:

µt := (P (Xt = s|X0 = s), P (Xt = r|X0 = s)).

Since the weather started of as sunny on Sunday, we can now write this as µ0 = (1, 0),
while (2.3) can be written as µ1 = µ0P .
To reach the distribution of the next day, you must multiply the current distribution by

P . We now get
µt = µt−1P for all t ≥ 1.

Further more, for any initial distribution µ0, after t days in the weather system we can
say

µt = µ0P
t for all t ≥ 0.

But how does this distribution µt behave long term?

Definition 2.8: Stationary Distribution Part Two. A stationary distribution is a row
vector that represents the long term probabilities of being in each state of a Markov chain.
This row vector is non-negative, sums up to 1 and is not changed by the operation of a
transition matrix P on it. Thus, it satisfies

πP = π. (2.6)

Here, π is a left eigenvector of the transition matrix P with an eigenvalue of 1. We can
now find the stationary distribution of Markov chains using this equation. But by using
linear algebra we can tell that such an equation either has a unique solution or infinitely
many solutions. Since we want a unique stationary distribution, we will have to verify if the
Markov chain meets certain conditions. So what are these properties a Markov chain must
have to have a unique stationary distribution?

3. Properties of Markov Chains.

Definition 3.1: Recurrence and Transience. We say that a state i is recurrent if
∞∑
n=1

fn
ij = 1.

In other words, a state is recurrent if whenever we leave that state, the probability of
returning to that same state in the future is 1.

We say the state is transient if
∞∑
n=1

fn
ij < 1.

In other words, a state is transient if whenever we leave that state, there is a possibility
of never returning to that same state.
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A recurrent state i is positive-recurrent if µii < ∞ and is null-recurrent if µii = ∞ .

Definition 3.2: Irreducibility of Markov Chains. A Markov chain is irreducible if
for every pair of states i, j there is a n s.t. pni,j > 0. In other words, for a Markov chain to
be irreducible every state has to be interconnected, and there has to be no isolated state(s)
that cannot be reached from each other.

Figure 3. Some examples of irreducible and reducible Markov Chains

Definition 3.3: Periods and Periodicity of states. The period of some state si ∈ X
is h(si) = gcd(t ∈ Z+|pnsi,si > 0). In other words, from si, the Markov chain can return back
to si in periods of d(si).

This value of d(si) is used to determine periodicity. si is periodic if d(si) > 1 and is
aperiodic if d(si) = 1. We can relate this to Markov chains too; A Markov chain is periodic
if every state is periodic. Otherwise it is aperiodic.

But checking that the gcd of the times that a chain returns back to its original state can
be inefficient, considering the fact that you would have to do it for every state in the chain
until you find a t = 1. Fortunately, given an irreducible Markov chain if there is at least one
self-transition P (si, si) in the chain, then the chain is aperiodic. Also, a chain is aperiodic if
and only if there exists a positive integer n such that all entries in the transition matrix P n

are strictly positive.

Theorem 3.4: Fundamental Theorem Of Markov Chains. The Fundamental Theo-
rem of Markov Chains is that for any irreducible, aperiodic, and positive-recurrent Markov
Chain there exists a unique stationary distribution {πj, j ∈ Z} s.t ∀i ∈ Z.
Proof. [3] Since our Markov Chain is irreducible, aperiodic and positive-recurrent, we know

that ∀i ∈ Z, πj = limn→∞ pnij > 0. Likewise as πj is a probability distribution
∞∑
n=1

fn
ij < 1. We

know that ∀m
m∑
i=0

pmij ≤
∞∑
i=0

pmij ≤ 1.

Now taking the limit:

lim
m→∞

m∑
i=0

pmij =
∞∑
i=0

πj = 1.
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This means that for any M
M∑
i=0

πj ≤ 1.

Now lets use the Chapman-Kolmogorov equation (Theorem 2.5). :

p
(m+1)
ij =

∞∑
i=0

pmik pkj ≥
M∑
i=0

pmik pkj

Now we take the limit as m → ∞. Remember though as m → ∞, M → ∞ too.

lim
m→∞

p
(m+1)
ij ≥ lim

m→∞

∞∑
i=0

pmik pkj

πj ≥
∞∑
i=0

πk pkj (3.1)

Notice inequality 3.1 looks very similar to equation 2.2. We must just now search for a
contradiction to prove the equality. Summing over this inequality we arrive at

∞∑
j=0

πj >
∞∑
j=0

∞∑
i=0

πk pkj.

Rewriting this inequality we get
∞∑
j=0

πj >
∞∑
i=0

πk

∞∑
j=0

pkj.

∞∑
j=0

pkj represents the sum of transition probabilities from state k to all possible states j

in our Markov Chain. Since our chain is irreducible, this means that this summation will be
equal to 1.

∞∑
j=0

πj >
∞∑
i=0

πk

Both of these summations are equal to 1, making this the contradiction of our original
inequality we are looking for. This means equality must hold in inequality 3.1.

πj =
∞∑
i=0

πk pkj

Thus we arrive at equation 2.2, meaning a unique stationary distribution does exist.

Example 3.5: Simple Weather System Continued. Continuing on with example 2.6,
let us now compute the stationary distribution for the weather system with our new found
knowledge. Before we can use Theorem 2.7, we must first see if the Markov chain representing
the weather system is irreducible and aperiodic.

Since the chain only consists of two states that are always connected to each other, the
weather system is irreducible. Since the chain is irreducible, we now just have to find at least
one self-transition in the chain to prove that the chain is also aperiodic. Both the sunny
and rainy states have transition probabilities of 1− p and 1− q to stay at the current state



MARKOV CHAINS AND THE METROPOLIS ALGORITHM 9

respectively, making there two possible self-transitions. Therefore, this condition is met and
thus the weather system is aperiodic too.

Since the weather system is irreducible and aperiodic we can now apply Theorem 3.3 to
find the unique stationary distribution π. To find π we must solve the equation πP = π.
After a little linear algebra you arrive at the results:

π(s) =
q

p+ q
, π(r) =

p

p+ q
.

Before we move on to the Metropolis Algorithms, we have to learn one more key property
of Markov chains.

Definition 3.6: Reversibility. A Markov chain is called reversible when its stationary
distribution π and transition matrix P satisfy

π(x)P (x, y) = π(y)P (y, x).

In simpler terms, a reversible Markov chain ”looks the same” regardless if we run it forward
or backwards in time. This property is used much more than just for mathematical curiosity,
as in future sampling algorithms involving Markov chains, reversibility is a crucial property
for Markov chains to have.

4. Metropolis Algorithm and the Hill Climb Algorithm

Introduction 4.1. Given some Markov chain with state space X and some arbitrary
stationary distribution, can the chain be modified so that the new chain has a stationary
distribution π? Fortunately for us the Metropolis algorithm accomplishes this.

Definition 4.2: Metropolis Algorithm. Suppose we have some Ψ that is a symmetric
transition matrix reversible with respect to the uniform distribution on X. We now will
modify transitions made according to Ψ to obtain a chain with stationary distribution π.
The new chain is formed through an algorithm of accepting and rejecting new states.

First, when the chain is at state x, a potential move to a new state is generated from the
proposal distribution Ψ(x, ·). Let this proposed new state be y. This move to y is accepted
with the probability a(x, y) and is rejected with the probability 1-a(x, y). If the move to y
is rejected the chain stays at its current state x. Rejecting moves to new states slows the
chain down, which intuitively seems to reduce its efficiency, but is still needed to reach the
specific stationary distribution π. We will discuss how to choose the acceptance ratio a(x,y)
soon, but below is the transition matrix P (x, y) for our new chain:

P (x, y) =

Ψ(x, y)a(x, y), if y ̸= x

1−
∑

z:z ̸=x

Ψ(x, z)a(x, z), if y = x.

Keep in mind that this transition matrix P (x, y) can also be written as the transition
kernel q(y|x). This transition kernel q has a stationary distribution π if

π(x)Ψ(x, y)a(x, y) = π(y)Ψ(y, x)a(y, x) (4.1)

for all x ̸= y. Since we know Ψ is symmetric, equation 4.1 only holds if

b(x, y) = b(y, x),
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where b(x, y) = π(x)a(x, y). Since the acceptance probability function a(x, y) is a probability,
it satisfies a(x, y) ≤ 1, the function b must satisfy these conditions:

b(x, y) ≤ π(x), b(x, y) = b(y, x) ≤ π(y).

A suitable choice for a(x, y) that satisfies the detailed balance condition is:

a(x, y) = min

(
1,

π(y)

π(x)

)
.

So our new state y has probability a(x, y) of being accepted, and probability 1 − a(x, y) of
being rejected.

Let’s quickly recap what we have learned about the Metropolis Algorithm before moving
on to its proof. The Metropolis Algorithm’s purpose is to construct a Markov chain with a
given stationary distribution π from a symmetric transition matrix Ψ that is reversible with
respect to the uniform distribution on X. This algorithm works as follows:

1. Start at some initial state x in the state space X.

2. Generate a candidate for the new state y using a symmetric proposal distribution.

3. Calculate the acceptance ratio a(x, y) = min
(
1, π(y)

π(x)

)
. Then accept the move to state

y with probability a(x, y) or stay at state x with the probability 1− a(x, y).

4. Continue this process for a sufficient number of iterations to ensure convergence to the
desired stationary distribution π.

Proof 4.3: Metropolis Algorithm Proof Of Convergence.
Lemma 1 If πiP (Xn+1 = j|Xn = i) = πjP (Xn+1 = i|Xn = j) for all i, j, (in other words

reversible), then π is a stationary distribution of P .

Proof of Lemma 1 If π satisfies the above condition then:∑
i

πipij =
∑
i

πjpji = πj

∑
i

pji = πj.

so π = πP , which makes π a stationary distribution by definition.
Now we just have to show that the Markov chain resulting from the Metropolis Algorithm

is reversible with respect to the desired target distribution π(x). Once we show this we will
have proved that π(x) is the stationary distribution to the Markov chain by Lemma 1.
Obviously πiP (Xn+1 = j|Xn = i) = πjP (Xn+1 = i|Xn = j) is met if i = j, so let us

only consider when i ̸= j. Also remember for the Metropolis Algorithm we assume that our
proposal distribution Q is symmetric, leaving our acceptance ratio as

πj

πi
.

P (Xn+1 = j|Xn = i) = qij min

(
1,

πj

πi

)
= min

(
qij,

πjqij
πi

)
Let us now multiply both sides by πi:

πiP (Xn+1 = j|Xn = i) = min (qijπi, qijπj) .
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Similarly we arrive at:

P (Xn+1 = i|Xn = j) = min (qjiπi, qjiπj) .

Since we are using the Metropolis Algorithm, we assume our proposal distribution Q is
symmetric, meaning qij = qji. Therefore the Markov Chain resulting from the algorithm is
reversible, meaning our target distribution π(x) is indeed the stationary distribution of the
chain.

Example 4.4: Simple Sampling Using Metropolis Algorithm. To further illustrate
the Metropolis algorithm, let us sample from the simple exponential distribution:

π(x) = exp(−x)(x ≥ 0).

Obviously there would be other much simpler ways to sample from this distribution, but we
are just using this example to illustrate the purpose of the Metropolis algorithm.

Our first step is to start at some initial x. Let’s say we start at x = 3. Now using a
symmetric proposal distribution of N(0, 1) we can obtain candidates for the proposed new
state y. Once you have generated a candidate you can use the probability ratio

a = min

(
1,

π(y)

π(x)

)
= min

(
1,

exp(−y)

exp(−x)

)
to decide whether to accept or reject this candidate state. We now generate a random number
u from a uniform distribution between 0 and 1. If u ≤ a we accept the candidate as the
next state. If u > a we reject the candidate as the next state and stay at our current state
x = 3. Now if we keep repeating this process of generating, accepting and rejecting samples
from our proposal model for a long enough time we should get an accurate sample of our
exponential distribution. Utilizing some code to iterate through the Metropolis algorithm
10,000 times, look at Figure 4 for the plot of the values visited by the algorithm.

Figure 4. [1] plot of the values visited by the algorithm
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Look at Figure 5 for the histogram of our values visited by the Metropolis algorithm.
After 10,000 iterations our sample of values generated by the Metropolis algorithm provides
a relatively close fit to the exponential distribution.

Figure 5. [1] histogram of the values visited by the Metropolis Algorithm

Remark 4.5. One of the key features of the Metropolis chain is that it only depends on

the ratios π(x)
π(y)

. Many times π(x) has the form h(x)
Z

, where the function h : X → [0,∞) is

known and Z =
∑
x∈X

h(x) is a normalizing constant. It is often times difficult to compute Z,

especially when X is large. But since the Metropolis chain only depends on the ratio h(x)
h(y)

,

you do not need to compute Z to simulate the sampling of the chain. Optimization chains
such as the one in Example 4.4 are examples of this type.

Definition 4.6 Hill Climb Algorithm. Let f be a a real-valued function defined on the
vertex set X of a graph. In many applications it is desirable to find a vertex x where f(x)
is maximal. But if the domain X is too large, then the search would be very inefficient.

The hill climb algorithm attempts to find the maximum values of f . Here is the process it
follows: when at state x, if there is at least one neighboring state y satisfying f(y) > f(x),
the algorithm will move to a neighboring state with the largest value of f . But what if the
algorithm is stuck at a local maxima of f?
The hill climb algorithm provides a solution to this: it randomizes the moves so that

instead of eventually always getting stuck at a local maxima, there is some probability that
the algorithm moves to lower states.

Let’s fix λ ≥ 1 and define

πλ(x) =
λf(x)

Z(λ)
,
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where Z(λ) =
∑
x∈X

λf(x) is the normalizing constant. Since πλ(x) is increasing in f(x), the

probability πλ(x) favors vertices x for which f(x) is large.

If f(y) < f(x), the Metropolis chain accepts a transition x → y with the probability
λ−[f(x)−f(y)]. As λ → ∞, the metropolis chain now resembles the optimal hill climb.

5. Metropolis Hastings Algorithm

Introduction 5.1. 4.2 ’s Metropolis Algorithm can only be used when the initial transition
matrix is symmetric. So naturally when the initial transition matrix is not symmetric a new
metropolis algorithm is needed.

Definition 5.2: Metropolis Hastings Algorithm. For an irreducible transition matrix
Ψ and some probability distribution π on X, the new Metropolis algorithm is executed as
following. When at state x, a new state y is generated from Ψ(x, ·). The chain then moves
to the new state y with probability

a(x, y) = min

(
1,

π(y)Ψ(y, x)

π(x)Ψ(x, y)

)
,

and remains at the state x with the complementary probability. The transition matrix P
for this chain is

P (x, y) =

Ψ(x, y)a(x, y), if y ̸= x

1−
∑

z:z ̸=x

Ψ(x, z)a(x, z), if y = x.

Proof 5.3: Metropolis Hastings Algorithm Proof. Last time when we showed why the
Metropolis Algorithm works, we had gotten to assume that our proposal distribution Q(y|x)
was symmetric. Now with the more general Metropolis Hastings Algorithm this condition is
not necessary.

In order to prove that the stationary distribution is our desired target distribution π(x)
we must prove the same Lemma 1 as last time. The only thing different in our proof will be
the acceptance ratio, as we cannot assume that qij = qji.

P (xn+1 = j|Xn = i) = qij min

(
1,

πjqji
πiqij

)
= min

(
qij,

πjqji
πi

)
Now multiplying both sides by πi, we arrive at

πiP (Xn+1 = j|Xn = i) = min (πiqij, πjqji) .

Similarly we arrive at:

πjP (xn+1 = i|Xn = j) = min (πiqij, πjqji) .

Since Lemma 1 is met, we can therefore conclude that the desired target distribution π(x)
is indeed the stationary distribution of the Markov Chain formed by the algorithm.
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6. Improving The Efficiency of Simulations

Definition 6.1: Step Size in Metropolis Algorithm. All though the Metropolis algo-
rithm is guaranteed to asymptotically converge to the target distribution, practically speak-
ing you will never have an infinite amount of time to run your sampler. Therefore we should
be only interested in maximizing the efficiency of our sampler in a finite sample. This is
where the step size of our transition kernel comes into play.

Remember the Metropolis algorithm starts off by sampling some θ0 from some arbitrary
proposal distribution π. Then, for each iteration t: we generate a candidate θ′t by sampling it
from our symmetric proposal kernel q such that q(θt|θt−1) = q(θ). Like in our last example,
most of the time this proposal kernel is a normal distribution centered at the previous value
and has some arbitrary step size σ: N(θt, σ).
Choosing this step size σ is crucial to having an efficient simulation. Remember this step

size is the standard deviation of the proposal model generating the candidate states. If σ
is low in value, there will be less variance between the states, and a high proportion of
candidates are accepted. But the downside of a low step size would mean it takes us a long
time to move through the posterior space. By contrast, if σ is large in value, there will
be more variance between the states. All though this would allow us to travel through the
posterior space more quickly, this would also result in us rejecting a higher proportion of
candidates, resulting in a relatively inefficient simulation. The goal is to get this σ somewhere
in the middle so that we propose values that tend to be accepted with reasonable frequency
and we can still move a relatively long distance in posterior space.

Let’s see the effects of different step sizes on the efficiency of a finite sample Metropolis
algorithm.

Example 6.2: Simulation with different step sizes. In our last example we used the
Metropolis algorithm to sample from a relatively simple 1D exponential function. Let’s level
things up a bit and use a more complicated target distribution in 2D space:

p(x, y) = exp
(
−x2 − y2

)
+ exp

(
−(x− 4)2 − (y − 4)2

)
.

Let us set the domain for our simulation to the square set by the four vertices of (-5,5); (-5,
10); (10,0) and (10,5). Figure 6 is the probability density distribution of our target.

Figure 6. Probability density distribution of our target distribution
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For our proposal distributions, let’s use normal models again:

x′ ∼ N (x, σ),

y′ ∼ N (y, σ).

Now using the help of python, let us run five simulations with different step sizes of
σ = 0.25, 0.5, 1, 2, 4 to see the impact step size has on the efficiency of the algorithm. We
will also be running 10,000 iterations for each simulation. Figures 7-11 are the resulting
probability density distributions of the values visited by the five different simulations.

Figure 7. Probability density distribution with step size of 0.25

With the step size only at 0.25, we can see that though the simulation got a pretty accurate
representation of one of the modes of the target distribution, it failed to discover the second
mode in total. This is not the ideal step size.

Figure 8. Probability density distribution with step size of 0.5

With the step size increased to 0.5, we can see that now the simulation has discovered
the general area of a second mode while maintaining an accurate representation of the first
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mode. This is still far from our ideal step size, though, as we barely have a notion of the
probability distribution of the second mode.

Figure 9. Probability density distribution with step size of 1

With the step size increased to 1, we can now see how close our probability distribution
of the values visited by the algorithm is compared to the actual target distribution. Though
there is more noise in one of the modes of our sampling distribution compared to the last
two simulations, we have a much more accurate distribution overall due to the quality of the
second mode. This may be the ideal step size for our simulation.

Figure 10. Probability density distribution with step size of 2

With the step size increased to 2, we can now see our sampling distribution has deteriorated
in accuracy. All though we still have a relatively accurate representation of our target
distribution, there is much more noise in both modes of our distribution compared to our
last simulation. This is not the ideal step size for our simulation.

With the step size all the way increased to 4, we can see now our sampling distribution
has deteriorated even more in accuracy. Now we only have a general notion of what our
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Figure 11. Probability density distribution with step size of 4

target distribution looks like, as there is even more sound in both modes. This is not the
ideal step size for our simulation.

As you can deduct from these five simulations, step size plays a crucial role to conducting
an efficient Metropolis algorithm. When our step size was too small we only had an accurate
representation of one of the modes of the target distribution; the algorithm did not have
enough iterations to accurately discover the other mode. In contrast when our step size was
too large, though we had a good notion of where the two modes were located at, there were
much more noise in both of the modes, reducing the accuracy of our sampling distribution.
But when we found a step size that ”was just right”, we found ourselves a relatively accurate
sampling distribution with only 10000 iterations.

Another thing to keep in mind for Metropolis algorithm simulations is that the step size
plays a less important role as the number of iterations of our simulation increases. This
makes sense intuitively, as hypothetically with an infinite amount of steps, no matter the
step size, the algorithm will have a fully accurate representation of the target distribution.
Take a look at Figures 12 through 16 for the new distributions of the various different step
sizes.

Even with a step size of 0.25, with the number of iterations increased all the way to
500,000, we can see that our simulation has successfully found the second mode of the target
distribution, and provides us with a relatively accurate sampling distribution.

We get another relatively accurate representation of our target distribution with the step
size of 0.5 and get a nearly perfect representation with the step size set at 1. But when the
step size is set at 2, we can now see a bit more noise in both of the modes. The distribution
still stays relatively accurate though. When the step size set at 4, we can see a noticeable
amount of noise in both of the modes, but the sampling distribution is still relatively accurate
compared to our target distribution.

Through this example, I hope you are now familiar with the effects of different step sizes
on a Metropolis algorithm and the relationship between the importance of a good step size
and the number of iterations you have to run the simulation.
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Figure 12. Probability density distribution with step size of 0.25 with
500,000 iterations

Figure 13. Probability density distribution with step size of 0.5 with
500,000 iterations

Remark 6.3: The Importance of a Good Starting Value. Many times in a Metrop-
olis algorithm the starting value of the simulation is often far away from where the target
distribution is actually concentrated at. Due to this, given a finite number of iterations in
the simulation, it would not be wrong to consider the initial bias caused by this set back.
To deal with this bias, a burn-in period is implemented, where the first N samples being
discarded, such that N is large enough that the chain has reached its stationary regime by
this time. Let’s see an example of this:
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Figure 14. Probability density distribution with step size of 1 with 500,000
iterations

Figure 15. Probability density distribution with step size of 2 with 500,000
iterations

Example 6.4: Burn-in Example. Let’s try to sample from a Gaussian distribution
centered at x = 3:

f(x) =
1

0.5
√
2π

exp

(
−1

2

(
x− 3

0.5

)2
)

For our first simulation, let us use a bad starting value of x = -2, where we know our target
distribution is not concentrated at. For our second simulation, let us use a good starting
value of x = 3, where we know our target distribution is concentrated at. Our step size and
the number of iterations for both simulations are kept constant.
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Figure 16. Probability density distribution with step size of 4 with 500,000
iterations

Figure 17. Sampling distributions with different starting points

As you can see from Figure 17, the simulation with a good starting point has a much more
accurate representation of the target distribution. Keep in mind though, for most simulations
done you will not know where your target distribution is concentrated at, making the burn-in
period crucial. Let’s see try to find a burn-in period for our bad starting point simulation.

In order to estimate a good burn-in period for our simulation, we must look at the time-
series of our simulations.

As you can see from Figure 18 and Figure 19 there is significant lag for the first several
iterations of the simulation when we started far from the true mean of the target distribution
compared to when we started closer to the true mean. We can already estimate a decent value
for our burn-in period size, but let us get a more accurate number using an Autocorrelation
plot.
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Figure 18. Time series for our bad starting point simulation

Figure 19. Time series for our good starting point simulation

Looking at our autocorrelation plots (Figure 20), the bad starting point simulation de-
creases in autocorrelation relatively slowly, meaning that the samples of the respective simu-
lations are correlalated with each other. This indicates that the chain is not mixing well. We
must now look for the point in the autocorrelation plot where the autocorrelation values be-
gin to stabilize or plateau. This may be a little tough due to our small number of iterations,
but x = 325 would not be a bad estimate for this value. Now if you rerun this algorithm
with the same starting point you know to discard the samples up to iteration number 325 in
order to minimize the bias of your simulation.

Definition 6.5: Effective Sample Size For Metropolis Algorithm Another approach
to determine the sample size required to run a Metropolis algorithm is to obtain the auto-
correlation values at different lags in order to calculate an effective sample size (ESS). This
ESS factors out the effect of autocorrelation, calculating the number of independent samples
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Figure 20. Autocorrelation plots with both simulations

that you have in your simulation. This is the formula for ESS:

ESS =
n

1 + 2
∑∞

k=1 ACF (k)

where ACF (k) is the autocorrelation value at lag k.
Since we can not calculate an infinite sum, it is typical to only calculate the sum up to

the point where ACF (k) is small enough, in many cases ACF (k) < 0.05. If you are using
the Metropolis algorithm to determine a statistic of a distribution that depends on the less
dense parts of the distribution, an ESS value of 10,000 is adequate. For a statistic that
depends on the more dense parts of the distribution, like a median, then the ESS of your
simulation can be much smaller.

Since the standard error of the mean for a random sample of size n is s√
n
, given s is the

standard deviation of the sample, we can simply replace n with the ESS to get the Markov
Chain Standard Error (MCSE):

MCSE =
s√
ESS

where s is the standard deviation of the sample produced by the Metropolis algorithm. The
MCSE will give an estimate of the accuracy of the estimated mean of the distribution that
is calculated using the Metropolis algorithm.

7. Further Questions

This paper goes over the basics of improving the efficiency of Metropolis Algorithm sim-
ulations. If you want to go more in depth into improving the efficiency of your simulations
it would be wise to look into the rates of convergence of your algorithms. Reading the
paper Exact Convergence Analysis of the Independent Metropolis-Hastings Algorithms by
Guanyang Wang would be a good place to start. You should also learn how to use Python’s
matplotlib to generate the autocorrelation plots, time series, etc, you will need to analyze the
efficiency of your simulations. I used matplotlib to generate the plots visualizing efficiency
in many of this paper’s examples.

Markov Chains and the Metropolis Algorithms have many potential applications. In
statistical physics and chemistry, Markov Chains and the Metropolis Algorithm are used to
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simulate the behavior of particles in various different physical systems, one being the Ising
model for ferromagnetism. In statistics, the Metroplis Hastings Algorithm is also used to
help approximate posterior distributions of parameters in Bayesian models. Markov Chains
are also used to simulate the spread of contagious diseases in the field of Epidemiology.
Markov Chains and the Metropolis Algorithms have more applications in many different
fields, such as machine learning, financial modelling and image processing.
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