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The Circle Method (Outline)

Construct a generating function that represents the problem.

From this generating function, find an integral representation
of the function.

Separate this integral into the integral over the major M and
minor m arcs,

G (k) =

∫ 1

0
integranddx =

∫
M
integranddx +

∫
m
integranddx

= main term + error term.

Evaluate the value of the integral over major arcs.

Bound the minor arc.

Gather information about the problem.
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Waring’s Problem

For k ∈ N with k ≥ 2, let G (k) denote the least integer s = s(k)
such that for all n ∈ N sufficiently large, there exist x1, ..., xs ∈ N
such that

n = xk1 + xk2 + · · ·+ xks ?



Getting started

Fix k , s ∈ N with k ≥ 2. For n ∈ N define

Rs,k(n) = #{x1, ..., xs ∈ N : n = xk1 + · · ·+ xks }.

Additionally, for α ∈ R, let e(α) = e2πiα . Then, for m ∈ Z we
have ∫ 1

0
e(αm)dα =

{
1, if m = 0,

0, otherwise.



An Integral Representation

Using that,∫ 1

0
e(α(xk1 + · · ·+ xks − n))dα =

{
1, if n = xk1 + · · ·+ xks ,

0, if n ̸= xk1 + · · ·+ xks .

Additionally, note that xi ≤ ⌊n1/k⌋. Let N = ⌊n1/k⌋, so
1 ≤ xi ≤ N.



A New Representation

With that, the problem can be represented as∑
1≤x1≤N

· · ·
∑

1≤xs≤N

∫ 1

0
e(α(xk1 + · · ·+ xks − n))dα = R(n).

=

∫ 1

0

∑
1≤x1≤N

· · ·
∑

1≤xs≤N

e(αxk1 ) · · · e(αxks )e(−αn)dα

=

∫ 1

0

 ∑
1≤x1≤N

e(αxk1 )

 · · ·

 ∑
1≤xs≤N

e(αxks )

 e(−αn)dα

=

∫ 1

0
f s(α)e(−αn)dα

where

f (α) =
N∑

x=1

e(αxk).
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Major and Minor Arcs

The idea is now to write

R(n) =

∫
M
f s(α)e(−αn)dα+

∫
m
f s(α)e(−αn)dα,

where M and m are disjoint and M ∪m is a unit interval.



Major Arcs

The goal is to show that∫
M
f s(α)e(−αn)dα ≫ ns/k−1.

The major arcs M(q, a) = {α ∈ R : |α− a/q| ≤ Nν−k} where
a, q ∈ N, 1 ≤ a ≤ q ≤ Nν , (a, q) = 1, and ν is a sufficiently small
positive number. Now,

M =
⋃

q≤Nν

q⋃
a=1

M(q, a).



Minor Arcs

The goal is to show that∫
m
f s(α)e(−αn)dα = o(ns/k−1).

The minor arcs m are
m = [0, 1)\M.



An important theorem

Theorem

Suppose that α ∈ R. Then for every real number X ≥ 1, there
exist a, q ∈ Z satisfying (a, q) = 1 and 1 ≤ q ≤ X such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qX
.



Proof of an important theorem

Consider first the ⌊X ⌋ numbers

{tα}, t = 1, .., ⌊X ⌋,

and the ⌊X ⌋+ 1 intervals

Ij =

[
j − 1

⌊X ⌋+ 1
,

j

⌊X ⌋+ 1

)
j = 1, ..., ⌊X ⌋+ 1.

If one of the ⌊X ⌋ numbers lies in I1 or I⌊X⌋+1 then the theorem
holds with q = t.



Proof of an important theorem (cont.)

Otherwise, by the pigeonhole principle one of the remaining
intervals must contain two of the ⌊X ⌋ numbers. This means there
exist integers t1, t2 satisfying 1 ≤ t1 < t2 ≤ ⌊X ⌋ and an integer
i = 2, .., ⌊X ⌋ such that {t1α} , {t2α} ∈ Ii such that

|{t2α} − {t1α}| ≤
1

⌊X ⌋+ 1
≤ 1

X
.

Then taking q = t2 − t1 and a = [t2α]− [t1α] completes it.



G (k)

(Hardy and Littlewood) G (k) ≤ (k − 2)2k−1 + 5.

(Hua) G (k) ≤ 2k + 1.

The bound has been improved many times.
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In Conclusion

Thank you.


