Hardy-Littlewood circle method

Grace Howard

July 2023

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Outline of Hardy-Littlewood circle method

Outline of Hardy-Littlewood circle method

• Waring's problem

- Outline of Hardy-Littlewood circle method
- Waring's problem
- Summary of application to Waring's problem

Construct a generating function that represents the problem.

- Construct a generating function that represents the problem.
- **•** From this generating function, find an integral representation of the function.

- Construct a generating function that represents the problem.
- **•** From this generating function, find an integral representation of the function.
- Separate this integral into the integral over the major \mathfrak{M} and minor m arcs,

$$
G(k) = \int_0^1 \text{integrand} dx = \int_{\mathfrak{M}} \text{integrand} dx + \int_{\mathfrak{m}} \text{integrand} dx
$$

 $=$ main term $+$ error term.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- Construct a generating function that represents the problem.
- **•** From this generating function, find an integral representation of the function.
- \bullet Separate this integral into the integral over the major ${\mathfrak M}$ and minor m arcs,

$$
G(k) = \int_0^1 \text{integrand} dx = \int_{\mathfrak{M}} \text{integrand} dx + \int_{\mathfrak{m}} \text{integrand} dx
$$

$$
= \text{main term} + \text{error term}.
$$

Evaluate the value of the integral over major arcs.

- Construct a generating function that represents the problem.
- **•** From this generating function, find an integral representation of the function.
- \bullet Separate this integral into the integral over the major ${\mathfrak M}$ and minor m arcs,

$$
G(k) = \int_0^1 \text{integrand} dx = \int_{\mathfrak{M}} \text{integrand} dx + \int_{\mathfrak{m}} \text{integrand} dx
$$

$$
= \text{main term} + \text{error term}.
$$

KORKARYKERKER POLO

- Evaluate the value of the integral over major arcs.
- Bound the minor arc.

- Construct a generating function that represents the problem.
- From this generating function, find an integral representation of the function.
- \bullet Separate this integral into the integral over the major ${\mathfrak M}$ and minor m arcs,

$$
G(k) = \int_0^1 \text{integrand} dx = \int_{\mathfrak{M}} \text{integrand} dx + \int_{\mathfrak{m}} \text{integrand} dx
$$

$$
= \text{main term} + \text{error term}.
$$

KORKARYKERKER POLO

- Evaluate the value of the integral over major arcs.
- Bound the minor arc.
- **•** Gather information about the problem.

For $k \in \mathbb{N}$ with $k \geq 2$, let $G(k)$ denote the least integer $s = s(k)$ such that for all $n \in \mathbb{N}$ sufficiently large, there exist $x_1, ..., x_s \in \mathbb{N}$ such that

$$
n = x_1^k + x_2^k + \cdots + x_s^k?
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Fix $k, s \in \mathbb{N}$ with $k \geq 2$. For $n \in \mathbb{N}$ define

$$
R_{s,k}(n) = \#\{x_1,...,x_s \in \mathbb{N} : n = x_1^k + \cdots + x_s^k\}.
$$

Additionally, for $\alpha\in\mathbb{R}$, let $\mathsf{e}(\alpha)=\mathsf{e}^{2\pi i\alpha}$. Then, for $m\in\mathbb{Z}$ we have

$$
\int_0^1 e(\alpha m) d\alpha = \begin{cases} 1, & \text{if } m = 0, \\ 0, & \text{otherwise.} \end{cases}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Using that,

$$
\int_0^1 e(\alpha(x_1^k + \cdots + x_s^k - n))d\alpha = \begin{cases} 1, & \text{if } n = x_1^k + \cdots + x_s^k, \\ 0, & \text{if } n \neq x_1^k + \cdots + x_s^k. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Additionally, note that $x_i \leq \lfloor n^{1/k} \rfloor$. Let $N = \lfloor n^{1/k} \rfloor$, so $1 \leq x_i \leq N$.

With that, the problem can be represented as

$$
\sum_{1\leq x_1\leq N}\cdots\sum_{1\leq x_s\leq N}\int_0^1e(\alpha(x_1^k+\cdots+x_s^k-n))d\alpha=R(n).
$$

With that, the problem can be represented as

$$
\sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} \int_0^1 e(\alpha(x_1^k + \cdots + x_s^k - n)) d\alpha = R(n).
$$

=
$$
\int_0^1 \sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} e(\alpha x_1^k) \cdots e(\alpha x_s^k) e(-\alpha n) d\alpha
$$

With that, the problem can be represented as

$$
\sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} \int_0^1 e(\alpha(x_1^k + \cdots + x_s^k - n)) d\alpha = R(n).
$$

=
$$
\int_0^1 \sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} e(\alpha x_1^k) \cdots e(\alpha x_s^k) e(-\alpha n) d\alpha
$$

=
$$
\int_0^1 \left(\sum_{1 \leq x_1 \leq N} e(\alpha x_1^k) \right) \cdots \left(\sum_{1 \leq x_s \leq N} e(\alpha x_s^k) \right) e(-\alpha n) d\alpha
$$

With that, the problem can be represented as

$$
\sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} \int_0^1 e(\alpha(x_1^k + \cdots + x_s^k - n)) d\alpha = R(n).
$$

=
$$
\int_0^1 \sum_{1 \leq x_1 \leq N} \cdots \sum_{1 \leq x_s \leq N} e(\alpha x_1^k) \cdots e(\alpha x_s^k) e(-\alpha n) d\alpha
$$

=
$$
\int_0^1 \left(\sum_{1 \leq x_1 \leq N} e(\alpha x_1^k) \right) \cdots \left(\sum_{1 \leq x_s \leq N} e(\alpha x_s^k) \right) e(-\alpha n) d\alpha
$$

=
$$
\int_0^1 f^s(\alpha) e(-\alpha n) d\alpha
$$

where

$$
f(\alpha) = \sum_{x=1}^N e(\alpha x^k).
$$

The idea is now to write

$$
R(n)=\int_{\mathfrak{M}}f^s(\alpha)e(-\alpha n)d\alpha+\int_{\mathfrak{m}}f^s(\alpha)e(-\alpha n)d\alpha,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

where M and m are disjoint and $M \cup m$ is a unit interval.

The goal is to show that

$$
\int_{\mathfrak{M}} f^s(\alpha) e(-\alpha n) d\alpha \gg n^{s/k-1}.
$$

The major arcs $\mathfrak{M}(q,a)=\{\alpha\in \mathbb{R}:|\alpha-a/q|\leq N^{\nu-k}\}$ where $a,q\in\mathbb{N},\ 1\leq a\leq q\leq N^{\nu}$, $(a,q)=1,$ and ν is a sufficiently small positive number. Now,

$$
\mathfrak{M}=\bigcup_{q\leq N^{\nu}}\bigcup_{a=1}^q\mathfrak{M}(q,a).
$$

KORKARYKERKER POLO

The goal is to show that

$$
\int_{\mathfrak{m}} f^{s}(\alpha) e(-\alpha n) d\alpha = o(n^{s/k-1}).
$$

The minor arcs m are

 $m = [0, 1) \setminus \mathfrak{M}.$

Kロトメ部トメミトメミト ミニのQC

An important theorem

Theorem

Suppose that $\alpha \in \mathbb{R}$. Then for every real number $X \geq 1$, there exist $a, q \in \mathbb{Z}$ satisfying $(a, q) = 1$ and $1 \leq q \leq X$ such that

$$
\left|\alpha-\frac{a}{q}\right|\leq \frac{1}{q^X}.
$$

KORKARYKERKER POLO

Consider first the $[X]$ numbers

{ $t\alpha$ }, $t = 1, ..., |X|$,

and the $|X| + 1$ intervals

$$
l_j = \left[\frac{j-1}{\lfloor X \rfloor + 1}, \frac{j}{\lfloor X \rfloor + 1}\right) \qquad j = 1, ..., \lfloor X \rfloor + 1.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

If one of the $[X]$ numbers lies in I_1 or $I_{|X|+1}$ then the theorem holds with $q = t$.

Otherwise, by the pigeonhole principle one of the remaining intervals must contain two of the $|X|$ numbers. This means there exist integers t_1, t_2 satisfying $1 \le t_1 < t_2 \le |X|$ and an integer $i = 2, ..., |X|$ such that $\{t_1\alpha\}$, $\{t_2\alpha\} \in I_i$ such that

$$
|\{t_2\alpha\}-\{t_1\alpha\}|\leq \frac{1}{\lfloor X\rfloor+1}\leq \frac{1}{X}.
$$

Then taking $q = t_2 - t_1$ and $a = [t_2\alpha] - [t_1\alpha]$ completes it.

KORKARYKERKER POLO

\bullet (Hardy and Littlewood) $G(k) \leq (k-2)2^{k-1} + 5$.

 \bullet (Hardy and Littlewood) $G(k) \leq (k-2)2^{k-1} + 5$. (Hua) $G(k) \leq 2^{k} + 1$.

KO K K Ø K K E K K E K V K K K K K K K K K

 \bullet (Hardy and Littlewood) $G(k)$ \leq $(k-2)2^{k-1}$ + 5.

KO K K Ø K K E K K E K V K K K K K K K K K

• (Hua)
$$
G(k) \le 2^k + 1
$$
.

The bound has been improved many times.

In Conclusion

Thank you.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @