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0.2 Abstract

J-Functions parameterize elliptic curves, and they are modular func-
tions of weight 0 of the upper half of the complex plane C. What’s
more, J-invariants connect number theory with the Monster Group,
which is shown in q-expansion with 196884 as the coefficient of the
third term. J-functions was the foundation for Andrew Wiles to
prove one of the Millennium problems: Fermat’s Last Theorem.
This paper will cover the basics of J-Functions: Function proper-

ties, Q-expansion, proofs of why eπ
√
163 is close to an integer, and

its connection with elliptic curves.

0.3 Introduction

J-Functions, in other words the Klein’s function not to be mixed
up with other functions such as the Leverett J-Function, are com-
posed of functions such as Fourier, eta-Dedekind functions. The
J-Function:

J (ω1, ω2) =
g32 (ω1, ω2)

∆ (ω1, ω2)
=

λ−12g32 (ω1, ω2)

λ−12∆(ω1, ω2)
=

g32 (λω1, λω2)

∆ (λω1, λω2)
= J (λω1, λω2)

Another Expression:

j(τ) = 1728 · g2(τ)
3

g2(τ)3 − 27g3(τ)2

g2(τ) = 60G4(τ)

g3(τ) = 140G6(τ)

G4(τ) =
π4

45
E4(τ)

G6(τ) =
2π6

945
E6(τ)

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn

E6(τ) = 1− 504
∞∑
n=1

n5qn

1− qn

where q = e2πiτ Note: τ ∈ C
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0.3.1 Why the J-Functions has weight 0

j(τ) = 1728 · g2(τ)
3

g2(τ)3 − 27g3(τ)2

j(τ) = 1728
g2(τ)

3

∆(τ)

g2(τ) itself has weight 4, and g2(τ)
3 has weight 12, which makes

up the numerator. The discriminant for the denominator has weight
12. Holistically, the j-function itself has weight 0.

g2(τ) and g3(τ) are infinite sums over points of a lattice.

0.4 Q-expansion

j(τ) =
1

q
+744+196884q+21493760q2+864299970q3+· · · := 1

q
+

∞∑
n=0

c(n)qn

where τ is a complex variable of the upper-half of the complex plane.

If we plug in q = eπ
√
163 to the q-series, we get a negative number

that is very close to the an integer, approx. −26253751640768000,

satisfying a complex variable τ that equals to 1+
√
−163
2

. Plugging

in q = eπ
√
163 gives us an integer as such that we could disregard

the terms after the 2nd or 3rd term since the output numbers are
infinitely small.

0.4.1 The Monster

196884 was the dimension that Robert Griess used to construct the
Monster. Conway and Norton noted in the Monstrous Moonshine
that...

196884 = 196883 + 1

21493760 = 21296876 + 196883

864299970 = 842609326 + 2 · 21296876 + 2 · 196883 + 2 · 1

0.4.2 Special J-Values

J(i) = J
(
1 + i

2

)
= 1J(

√
2i) =

(
5

3

)3

J(2i) =
(
11

2

)3

J(2
√
2i) =

125

216
(19+13

√
2)3
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0.5 Regions

The J-function is a
holomorphic (to be defined afterwards) function H → C, taking on
every value of the upper half of the complex plane exactly once when
restricted to the shaded region from the figure above.

τ 7→ aτ + b

cτ + d
, ad− bc = 1

|τ | ≥ 1

−1

2
< ℜ(τ) ≤ 1

2

0.6 Symbols

SL(2,R), which is a two by two matrix with determinant one, acts
on the upper half of the complex plane C as shown in the operation
below. (

a b
c d

)
· τ =

aτ + b

cτ + d

0.6.1 Holomorphism

Holomorphic functions are extensively studied in complex analysis.
J-Functions are holomorphic, meaning that they are complex differ-
entiable on Cn
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f ′ (z0) = lim
z→z0

f(z)− f (z0)

z − z0
This is similar to the real function when we have limits, except

that the input value is a complex variable in this case.

0.6.2 Definition

In complex analysis, if a function is holomorphic, then the function
is continuous. Moreover, if we let j be a function, then it is holomor-
phic iff it is complex differentiable everywhere on U . Interestingly,
’Holo’ means whole and ’morphic’ means shape.

0.6.3 Complex Functions

A complex function is holomorphic iff they have a convergent power
series expansion at each point on C. For example, we could observe
from the q-expansion for j-functions that the terms n or convergent,
or getting smaller as n approaches to infinity.

Basic Operations
f + g

f − g

fg

f/g

These four operations listed above makes the function holomor-
phic. And also the composite function as well in the complex plane.

a0 + a1z + a2z
2·

The following polynomial with the complex variable converges iff
|z| < R

0.6.4 Revisit

Definition: A function is holomorphic on an open set U if
it is complex differentiable on every point of U .

Remark:
According to [0.6] and [0.6.1], j-invariants are defined to

be holomorphic after SL(2,R) acts on the complex plane C
of a linear transformation.
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0.7 J-Functions and Elliptic Curves

y2 = x3 + ax+ b

∆ = −16
(
4a3 + 27b2

)
̸= 0

0.8 Definition

An elliptic curve is also called the Weierstrass equation,
and it does not have cusps, intersections, nor isolated
points iff the discriminant that does not equal to 0.

j(E) = 1728
4a3

4a3 + 27b2

Definition

The above definition explains the fact of why j-functions
are function to parameterize elliptic curves. The follow-
ing theorem states that two elliptic curves are isomor-
phic if and only if their j-invariant is equivalent.
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0.9 J-invariants and Elliptic Curves

Another form of the elliptic function is the Legendre
form.

y2 = x(x− 1)(x− λ)

The j-inv. in this case is...

j = 256

(
λ2 − λ+ 1

)3
λ2(λ− 1)2

Remark:
Definition of Homomorphism: A mapping of f from

a group (G, o) to another group (G′, o′) satisfying...

f(aob) = f(a)o′f(b)

satisfying
a, b ∈ G

f(a), f(b) ∈ G′

Definition of Isomorphism: 1. f is Homomorphic 2.
f is onto 3. f is one-to-one

An Elliptic curve is isomorphic to a torus topologically
speaking. In other words, elliptic curves are equivalent
to a torus in the complex plane.
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0.10 J-Functions are surjective

0.10.1 Proof

j : H → C

The diagram from above illustrates this as such that at
least one element in the codomain has to be mapped to
an element in the domain.

Theorem: The j-invariant is surjective
Proof:
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0.10.2 Continued

[Proof]
Here’s a graphic form of my proof, hopefully visually
understandable.
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0.10.3 Continued

Explanation: In order to prove that j-functions are sur-
jective, we have to show that the j-function is ’closed’
and ’open’. First and foremost, in order to prove that
the j-function is open, we have to prove that j(H) is non-
constant (H is a complex variable of the upper-half of the
complex plane). As illustrated in my graphic, to prove
that j(H) is non-constant, we have to show that the limit
of the imaginary terms approaching infinity of j(H) is in-
finity. However, not only does proving the limit suffices,
but also proving that j(H) is holomorphic, meaning that
it is differentiable on every point of the complex plane.
We prove this by understanding the definition of holo-
morphic functions (complex differentiable as z → z0).
For the latter part, we still need to prove that j(H) is
closed. According to my graphic illustration above, we
have the series j (τ1) , j (τ2) , . . . → ω (omega is part of
the complex plane) that spans infinitely to the nth j(tao)
term. We have omega (w) and sigma to be part of the
complex plane. To prove that j(H) is closed, we need to
show that J(sigma)=omega. Another note here: for the
j(tao) series that we have to prove that it converges to
omega, we need to incorporate the Bolzano-Weierstrass
theorem.

11



0.11 J-Functions and the Monster

Previously, I have mentioned that J-functions offer a link
between the number theory field and also Group Theory,
specifically the Monster. The connection between the J-
Function and the Monster is known as a special case
of the Monstrous Moonshine. Interestingly, the ’Moon-
shine’ term was specifically coined by Professor Andrew
Ogg, a Emeritus professor Berkeley, with a celebration
of a bottle of whiskey—facts stated according to Pro-
fessor Robin Hartshorne’s personal note, whose also a
Emeritus Professor at Berkeley (Robin Hartshorne, my
podcast candidate).

V♮ =
∞⊕

n=−1

Vn

The equation listed above is the Moonshine Module
that Igor Frenkel, James Lepowsky, and Arne Meurman
constructed in 1988. The equation represnts the sum
of representations of the Monster. Interestingly, the di-
mensions of each Vn aligns with the coefficients of the
q-expansion in j-invariants. Conway and Norton con-
jectured that ”the existence of an infinite dimensional
graded representation of M, whose graded traces Tg are
the expansions of precisely the functions on their list.”
Despite the fact that the Conway, Norton conjecture
existed for a while, Richard Borcherds has eventually
proved the conjecture (listed on the next page).

12



0.12 Continued

Theorem [Borcherds]: Let V = V♮ =
⊕∞

n∈Z Vn be a Moon-
shine Module constructed by Frenkel, Lepowsky, and
Meurman. For any g ∈ M , the McKay-Thompson se-
ries

Tg(q) =
∞∑

n=−1

tr (g | Vn) q
n

is a hauptmodul for a genus 0 subgroup of SL2(R).
If we let g=1, the identity of the Monster, then each of

the coefficients of the j-function after Fourier Expansion
aligns with the representations of Vn.

T1(q) =
1

q
+ 196884q + 2149360q2 + · · · = j(τ)− 744

Now, you may be wondering. How did Borcherds
prove this?

Borcherds incorporated the fundamental properties of
the j-function in order to prove the Moonshine.

Borcherds’ Theorem: p = e2πiz and q = e2πiτ for z, τ ∈
H

p−1 ∏
m>0,n∈Z

(1− pmqn)c(mn) = j(p)− j(q)

j(q)− 744 =
∞∑

n=−1

c(n)qn = q−1 + 196884q + · · ·

j(p) := j(z) j(q) := j(τ)
Proof:
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Multiplying the left side of Borcherds’ equation by p
and taking the natural logarithmn...

ln

 ∏
m>0,n∈Z

(1− pmqn)c(mn)


=

∑
m>0

∑
n∈Z

ln (1− pmqn)c(mn)

=
∑
m>0

∑
n∈Z

c(mn) ln (1− pmqn)

After Laurent Expansion...

∑
m>0

∑
n∈Z

∑
k>0

−c(mn)
(pmqn)k

k
= −

∑
m>0

∑
n∈Z

∑
k>0

c(mn)
pmkqnk

k

Let m0 = mk and n0 = nk

∑
m>0

∑
n∈Z

∑
k>0

c(mn)
pm0qn0

k

There are series of simplifying and other operations,
which I will not state in this paper due to its longevity
and complication. However, we arrive to be at this equa-
tion after applying m-th Hecke operator, the linear op-
erator, and Fourier Expansion to the left hand side of
Borcherds’ formula.

∑
m≥−1

gm(j(q))p
m

(Left hand side of Borcherds’ formula)
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0.13 Continued

The ultimate step that we want to come forth to is to
show that

j(p)− j(q) =
1

p
+ 744 +

∑
c(m)pm − j(q)

(right hand side of Borcherds’ formula)
as such that the right hand side is equivalent to the

left hand side of Borcherds’ formula.
Using the binomial theorem and further simplifica-

tions to manipulate the right hand side, we ultimately
show that the right and left hand side of Borhcerds’ the-
orem is equivalent as the polynomials of j(q) are equal.

Note: The actual proof is notably profound. I have
only illustrated a brief picture of what Borcherds’ proof
looks like.
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