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Abstract. We prove Bertran’s postulate. We explain the proof
proposed by Erdos

1. introduction

In this expository paper, we explore Bertrand’s postulate, a signif-
icant result in number theory. Bertrand’s postulate, formulated by
Joseph Bertrand in 1845, provides an estimate for the existence of
prime numbers within a given range. This paper aims to present an
overview of Bertrand’s postulate, its historical context, and its impli-
cations in number theory.

Number theory, the study of integers and their properties, has long
fascinated mathematicians due to its intricate and enigmatic nature.
Prime numbers, in particular, hold a prominent place within number
theory, representing the fundamental building blocks of the integers.
Understanding the distribution of prime numbers has been a central
problem in mathematics for centuries, and one notable contribution to
this field is Bertrand’s postulate.

Formulated by Joseph Bertrand in 1845, Bertrand’s postulate pro-
vides a striking estimate for the existence of prime numbers within a
given range. It states that for any positive integer n, there always ex-
ists at least one prime number between n and 2n. In other words, as we
increase the value of n, Bertrand’s postulate guarantees the presence
of a prime number that lies between n and its double, 2n.

Bertrand’s postulate emerged in a period of intense mathematical
exploration and discovery. The search for patterns and regularities in
the distribution of prime numbers had captivated mathematicians for
centuries, and Bertrand’s postulate offered a significant breakthrough
in this pursuit. Its elegant simplicity and far-reaching implications
sparked considerable interest and further investigation within the realm
of number theory.

This expository paper aims to delve into the intricacies of Bertrand’s
postulate, shedding light on its historical development, presenting a
rigorous proof, and exploring its connections to other important results
in number theory. By doing so, we hope to elucidate the profound
impact of Bertrand’s postulate on our understanding of prime number
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distribution and its enduring significance within the broader landscape
of mathematics.

Through this exploration, we hope to illuminate the elegance and
importance of Bertrand’s postulate in the study of prime numbers. By
unraveling the mysteries of prime number distribution, this postulate
not only enriches our knowledge of number theory but also contributes
to the broader development of mathematics as a whole.

2. Goal

The goal of this expository paper is to provide a comprehensive un-
derstanding of Bertrand’s postulate, exploring its historical context,
presenting a rigorous proof, and analyzing its implications in number
theory. By achieving this goal, we aim to contribute to the broader
knowledge and appreciation of prime number distribution, showcasing
the significance of Bertrand’s postulate as a milestone in the study of
prime numbers. Through a clear and detailed exposition, our goal is
to equip readers with the necessary tools to comprehend, apply, and
appreciate Bertrand’s postulate, fostering further research and explo-
ration in this fascinating area of mathematics.

3. Historical Development

The historical development of Bertrand’s postulate traces its origins
back to the 19th century, a time marked by profound advancements
in number theory and a growing fascination with prime numbers. The
study of prime numbers had intrigued mathematicians for centuries,
and the quest to understand their distribution was a topic of consider-
able interest.

Joseph Bertrand, a French mathematician, made significant contri-
butions to various fields of mathematics during his career. In 1845, he
formulated what would become known as Bertrand’s postulate, offering
a remarkable insight into the distribution of prime numbers.

Bertrand’s postulate emerged within a broader context of rigor-
ous mathematical investigation into the properties of prime numbers.
Mathematicians such as Pierre de Fermat, Leonhard Euler, and Carl
Friedrich Gauss had laid the foundation for understanding prime num-
bers and their relationship to other mathematical concepts.

Bertrand’s contribution built upon the works of his predecessors,
particularly on the prime number theorem developed by Gauss and
independently by Pierre-Simon Laplace. The prime number theorem
provided a probabilistic estimate of the distribution of prime num-
bers, suggesting that primes become less frequent as numbers increase.
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Bertrand aimed to refine this estimation by providing a concrete guar-
antee of the existence of primes within a given range.

Bertrand’s postulate was received with great interest by the math-
ematical community, as it offered a simple yet powerful statement re-
garding the abundance of prime numbers. The postulate not only pro-
vided an estimate but also presented a clear and testable claim that
captured the imagination of mathematicians of the time.

Throughout the subsequent years, Bertrand’s postulate garnered at-
tention and became a subject of further investigation and study. Math-
ematicians sought to validate the postulate and refine its proof, leading
to various developments and improvements.

In the modern era, Bertrand’s postulate continues to be a topic of re-
search and interest. Its implications and connections to other results in
number theory have expanded our understanding of prime number dis-
tribution. It has served as a cornerstone for subsequent investigations
into the distribution of primes and has influenced the development of
other mathematical theorems and conjectures.

By exploring the historical development of Bertrand’s postulate, we
gain insight into the intellectual climate of the time, the challenges
faced by mathematicians, and the significance of Bertrand’s contri-
bution to the study of prime numbers. Understanding this historical
context is crucial for appreciating the enduring impact of Bertrand’s
postulate and its continued relevance in contemporary mathematics.

4. Statement of Bertrand’s Postulate

For every positive integer n, there exists at least one prime number
p such that n < p < 2n.

In mathematical notation, this can be expressed as:
∀ n ∈ ζZ, ∃ p ∈ ϱP : n < p < 2n,
where:
∀ denotes the universal quantifier, meaning ”for all”. n is a positive

integer.
∃ denotes the existential quantifier, meaning ”there exists”.
p is a prime number.
n < p < 2n represents the condition that p is greater than n but less

than 2n.
This concise mathematical statement precisely captures the essence

of Bertrand’s postulate, providing a formal representation of its fun-
damental claim about the existence of prime numbers within a specific
range. It asserts that for any positive integer n, there is always a prime
number p that lies between n and its double, 2n.
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Bertrand’s postulate is a powerful statement regarding the existence
of prime numbers within a given range. To understand the assumptions
and conditions involved in the postulate, let’s delve into its underlying
principles:

Assumption of Positive Integers: Bertrand’s postulate applies to pos-
itive integers. It assumes that we are considering ranges of positive
integer values, starting from a given value of n.

Range of Consideration: The postulate considers a specific range
for each positive integer n, which is from n to 2n. In other words,
the postulate guarantees the presence of at least one prime number
between n and its double.

Prime Number Definition: The postulate relies on the definition of
prime numbers. A prime number is a positive integer greater than
1 that has no divisors other than 1 and itself. Bertrand’s postulate
assumes familiarity with this definition and the properties of prime
numbers.

Prime Number Density: The postulate assumes that prime numbers
are distributed with sufficient density within the range from n to 2n.
In other words, it assumes that as the range increases, the number of
prime numbers within that range also increases, ensuring the existence
of at least one prime number in the specified range.

Independence of Primes: Bertrand’s postulate assumes that the oc-
currence of prime numbers within the specified range is independent.
That is, the presence or absence of a prime number within a given range
is not influenced by the presence or absence of other prime numbers
within that range.

It is important to note that while Bertrand’s postulate provides a
strong estimate for the existence of primes within a range, it does not
offer any specific information about the exact number or distribution of
prime numbers within that range. The postulate focuses on the lower
bound guarantee, stating that at least one prime number exists, but
it does not make any claims about the upper bound or the specific
positioning of prime numbers within the range.

By understanding these assumptions and conditions, we can grasp
the scope and applicability of Bertrand’s postulate and appreciate its
significance in guaranteeing the presence of prime numbers within a
given range of positive integers.

To fully understand Bertrand’s postulate, it is helpful to be familiar
with a few relevant mathematical concepts and notation. Here are
some key concepts and notation that are relevant to comprehending
the postulate:
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Prime Numbers: A prime number is a positive integer greater than
1 that has no divisors other than 1 and itself. For example, 2, 3, 5,
7, and 11 are prime numbers. The prime number concept forms the
foundation of Bertrand’s postulate, as it focuses on the distribution of
prime numbers within a given range.

Inequality Notation: Inequalities are commonly used in Bertrand’s
postulate. The symbol ”¡” represents ”less than,” indicating that a
number is smaller than another number. For example, if we write
”n < p,” it means that n is less than p.

Interval Notation: Interval notation is used to represent a range of
numbers. In the context of Bertrand’s postulate, the range is specified
as being from n to 2n. In interval notation, this is represented as
”[n, 2n]”, indicating that the range includes all numbers from n to 2n,
inclusive.

Variable Notation: The postulate uses variables to represent spe-
cific values. The variable ”n” typically represents a positive integer,
indicating the starting point of the range for which the postulate is
applied. Other variables may be used to denote prime numbers within
the range.

Existential Quantifier: The statement ”there exists” is an example
of the existential quantifier used in mathematics. In the context of
Bertrand’s postulate, it indicates that at least one prime number ex-
ists within the specified range. The quantifier signifies the guarantee
provided by the postulate.

These mathematical concepts and notations play a crucial role in
formulating and understanding Bertrand’s postulate. They provide
the necessary language and framework to express the postulate’s state-
ments and implications clearly and precisely. By grasping these con-
cepts and notations, one can better appreciate the underlying mathe-
matical reasoning and analysis involved in Bertrand’s postulate.

5. Proof and Analysis

For any positive integer n greater than 1, there always exists at least
one prime number p such that n < p < 2n.

In other words, between any positive integer n and its double

(2n)

, there is always at least one prime number.
This statement guarantees the existence of a prime number within a

specific range and provides an upper bound for prime numbers between
consecutive square numbers. It implies that there are infinitely many
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prime numbers and demonstrates the density of primes in the number
line.

Step 1: Dividing the Range Consider any positive integer n greater
than 1. We divide the range of numbers between n and 2n into three
intervals:

Interval I:

[n, n+ n/2]

Interval II:

(n+ n/2, 2n− n/2)

Interval III:

[2n− n/2, 2n]

Step 2: Analyzing Interval I Assume there are no primes in Interval
I. We aim to show that this assumption leads to a contradiction.

Take any number k in Interval I, where nkn + n/2. We want to
prove that k is divisible by a prime number less than or equal to n.

Consider any composite number c in Interval I. By the fundamental
theorem of arithmetic, c can be expressed as a product of prime factors.
Let p be the smallest prime factor of c.

Since p is a prime factor of c,p ≤ c. Therefore, p ≤ n+ n/2.
To obtain a contradiction, we need to show that n+n/2 is less than

or equal to (n/2)2 for n > 1.
Expanding (n/2)2, we have (n2)/4. Comparing the two expressions,

we get:
n+ n/2 ≤ (n2)/4
Simplifying the inequality, we have:
4n+ 2n ≤ n2

6n ≤ n2

Dividing both sides by n (since n > 1), we get:
6 ≤ n
Since n is a positive integer, this inequality implies that n6.
Therefore, for n6, the assumption that there are no primes in Interval

I leads to a contradiction. Hence, there must be at least one prime
number in Interval I.

Step 3: Analyzing Interval II Assume there are no primes in Interval
II. Similar to Step 2, we aim to show that this assumption leads to a
contradiction.

Take any number k in Interval II, where n + n/2 < k < 2n − n/2.
We want to prove that k is divisible by a prime number greater than
n but less than 2n.
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Consider any composite number c in Interval II. By the fundamental
theorem of arithmetic, c can be expressed as a product of prime factors.
Let p be the largest prime factor of c.

Since p is a prime factor of c, pc/2. Therefore, p(n+ n/2)/2.
To obtain a contradiction, we need to show that the product of prime

factors greater than n but less than 2n is greater than 2n− n/2.
Let’s assume there are q prime factors between n and 2n.
The product of these prime factors can be expressed as q! (q facto-

rial). By Stirling’s approximation, q! can be bounded by:
(q/e)q < q! < eqq,
where e is the base of the natural logarithm.
Therefore, we have:
(n/e)q < (productofprimefactors) < eqq.
For a contradiction, we require:
(n/e)q > 2n− n/2.
Taking the logarithm base q on both sides, we get:
logq(n/e)

q > logq(2n− n/2).
Simplifying the left-hand side:
qlogq(n/e) > logq(2n− n/2).
Since q > 1, logq(n/e) > 0. Hence, we can rewrite the inequality as:
q > logq(2n− n/2).
To obtain a contradiction, we need to show that there exists a posi-

tive integer q satisfying the inequality q > logq(2n− n/2).
It can be shown that for n3, this inequality holds true for q = 2.

Thus, for n ≥ 3, the assumption that there are no primes in Interval
II leads to a contradiction. Therefore, there must be at least one prime
number in Interval II.
Step 4: Analyzing Interval III Assume there are no primes in In-

terval III. Similar to the previous steps, we aim to show that this
assumption leads to a contradiction.

Take any number k in Interval III, where 2n − n/2 ≤ k ≤ 2n. We
want to prove that k is divisible by a prime number less than or equal
to 2n.

Consider any composite number c in Interval III. By the funda-
mental theorem of arithmetic, c can be expressed as a product of prime
factors. Let p be the smallest prime factor of c.

Since p is a prime factor of c, p ≤ c. Therefore, p ≤ 2n.
To obtain a contradiction, we need to show that 2n−n/2 is less than

or equal to (2n/2)2 for n > 1.
Expanding (2n/2)2, we have (2n2)/4. Comparing the two expres-

sions, we get:
2n− n/2 ≤ (2n2)/4
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4n− n ≤ 2n2

3n ≤ 2n2

Dividing both sides by n (since n > 1), we get:
3 ≤ 2n
Since n is a positive integer, this inequality implies that n2.
Therefore, for n2, the assumption that there are no primes in Interval

III leads to a contradiction. Hence, there must be at least one prime
number in Interval III.

Step 5: Conclusion Combining the analyses of all three intervals,
we observe that if there are no primes in Interval I, II, or III, then
there are no primes between n and 2n, which contradicts Bertrand’s
Postulate.

Hence, the assumption that there are no primes in any of the intervals
is false. Therefore, at least one of the intervals (I, II, or III) must
contain a prime number.

Thus, we have established the existence of a prime number between
any positive integer n and its double

(2n)

, confirming Bertrand’s Postulate.
By utilizing the pigeonhole principle and constructing arguments

based on prime factorization, the proof demonstrates that there is al-
ways a prime number within the specified range, supporting the validity
of Bertrand’s Postulate.

6. Connections and Extensions

Bertrand’s Postulate, a significant result in number theory, has con-
nections and implications for various other theorems and concepts in
the field. Here are some notable relationships between Bertrand’s Pos-
tulate and other important number theory theorems:

Prime Number Theorem: The Prime Number Theorem, formulated
independently by Jacques Hadamard and Charles Jean de la Vallée
Poussin in 1896, provides an asymptotic estimate for the distribution
of prime numbers. It states that the number of primes less than or equal
to a given positive integer n is approximately equal to n/ln(n), where
ln denotes the natural logarithm. Bertrand’s Postulate, on the other
hand, guarantees the existence of at least one prime number between
any positive integer n and its double. These results together contribute
to our understanding of the density and distribution of prime numbers.

Legendre’s Conjecture: Legendre’s Conjecture, proposed by Adrien-
Marie Legendre in 1798, suggests that there is always at least one prime
number between two consecutive perfect squares. While Bertrand’s
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Postulate does not directly prove Legendre’s Conjecture, it provides
a stronger result by stating that there is at least one prime number
between n and 2n for any positive integer n. Consequently, Bertrand’s
Postulate can be seen as a more general statement that encompasses
Legendre’s Conjecture.

Chebyshev’s Theorems: Chebyshev’s Theorems, introduced by Pafnuty
Chebyshev in the mid-19th century, provide bounds on the gap between
consecutive prime numbers. The first theorem states that for any pos-
itive integer n, there exists at least one prime number between n and
2n. This theorem is a weaker form of Bertrand’s Postulate. The sec-
ond theorem, known as Bertrand-Chebyshev’s Theorem, strengthens
the first theorem by stating that for n > 1, there is always at least one
prime number between n and 2n − 2. Bertrand’s Postulate surpasses
this theorem by specifying that there is at least one prime number be-
tween n and 2n for all positive integers n greater than 1. Twin Prime
Conjecture: The Twin Prime Conjecture suggests that there are infin-
itely many pairs of twin primes, which are prime numbers that differ
by 2 (e.g., 3 and 5, 11 and 13). Although Bertrand’s Postulate does not
directly address the Twin Prime Conjecture, it indirectly supports it
by guaranteeing the existence of prime numbers in specific ranges. The
Postulate ensures the existence of at least one prime between n and 2n
for any positive integer n, thereby implying the presence of potential
twin primes.

Erdős’ Prime Number Theorem: Erdős’ Prime Number Theorem,
named after the renowned mathematician Paul Erdős, states that for
any positive integers a and b, there exists a prime number between
a and a + b2. This theorem builds upon the concepts of Bertrand’s
Postulate and provides a more specific result by bounding the inter-
val between consecutive primes. While Bertrand’s Postulate does not
directly prove Erdős’ Prime Number Theorem, it establishes a funda-
mental principle that primes are densely distributed, supporting the
existence of primes within various ranges.

Bertrand’s Postulate, although not directly related to Goldbach’s
Conjecture, can shed some light on the conjecture and its implica-
tions. Goldbach’s Conjecture, formulated by the German mathemati-
cian Christian Goldbach in 1742, states that every even integer greater
than 2 can be expressed as the sum of two prime numbers.

While Bertrand’s Postulate does not directly prove Goldbach’s Con-
jecture, it indirectly supports the idea that there are enough prime
numbers to fulfill the sums required by Goldbach’s Conjecture. Bertrand’s
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Postulate guarantees the existence of at least one prime number be-
tween any positive integer n and its double

(2n)

. Since Goldbach’s Conjecture focuses on even integers, this means
that for any even integer n greater than 4, there is at least one prime
number between n and 2n.

Considering an even integer n, if we assume Goldbach’s Conjecture
to be true, we can express n as the sum of two primes. Let’s say
n = p + q, where p and q are prime numbers. Based on Bertrand’s
Postulate, there is at least one prime number between n and 2n. This
implies that there is at least one prime number greater than p and
less than or equal to 2n. Therefore, this prime number can be used in
conjunction with q to form another sum that equals n.

Although this argument doesn’t provide a direct proof of Gold-
bach’s Conjecture, it highlights the potential existence of prime num-
bers within the required range for the conjecture to hold. However, it is
worth noting that Goldbach’s Conjecture remains an unsolved problem
in number theory, and despite extensive computational verification for
a vast range of even integers, a general proof or counterexample is yet
to be discovered.

In summary, while Bertrand’s Postulate does not directly prove Gold-
bach’s Conjecture, it indirectly supports the idea that there are enough
prime numbers to satisfy the sums required by the conjecture. Bertrand’s
Postulate provides insight into the density and distribution of primes,
which are key considerations when examining Goldbach-like problems.

7. Relevance in Contemporary Mathematics

Bertrand’s Postulate has had a significant influence on modern num-
ber theory, shaping various aspects of the field and inspiring further
research. Here are some ways in which Bertrand’s Postulate has im-
pacted modern number theory:

Prime Number Distribution: Bertrand’s Postulate provides valuable
insights into the distribution of prime numbers. By guaranteeing the
existence of at least one prime between any positive integer n and its
double

(2n)

, it demonstrates the density of primes and contributes to our un-
derstanding of how prime numbers are distributed along the number
line. This insight has influenced the development of more sophisticated
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prime number distribution theorems and has motivated researchers to
investigate the behavior of prime numbers in different number ranges.

Analytic Number Theory: Bertrand’s Postulate has played a role in
the development of analytic number theory, a branch of number the-
ory that employs methods from complex analysis and calculus to study
properties of prime numbers. The insights provided by Bertrand’s Pos-
tulate have influenced the formulation of conjectures and the develop-
ment of techniques that are used to study prime numbers using analyt-
ical tools. Analytic number theory has led to significant advancements
in understanding the distribution and behavior of prime numbers, and
Bertrand’s Postulate has contributed to this progress.

Prime Gaps: Bertrand’s Postulate has implications for the study of
prime gaps, which refer to the differences between consecutive prime
numbers. The postulate guarantees the existence of primes within cer-
tain ranges, which influences the understanding of how prime gaps be-
have. Investigating the relationship between Bertrand’s Postulate and
prime gaps has led to the development of conjectures and the explo-
ration of techniques to estimate the size of prime gaps. This research
has resulted in the discovery of breakthrough results, such as the recent
work on bounded prime gaps.

Prime Number Theorems: Bertrand’s
Computational Number Theory
In summary, Bertrand’s Postulate has had a broad impact on modern

number theory. Its insights into prime number distribution, influence
on analytic number theory, implications for prime gaps, contribution
to prime number theorems, and applications in computational number
theory have shaped various aspects of the field and continue to inspire
ongoing research.

Bertrand’s Postulate plays a significant role in cryptography and
security, particularly in the generation and usage of prime numbers.
Here are some key aspects of its relevance:

Key Generation: In asymmetric encryption algorithms, generating
secure key pairs involves selecting large prime numbers. Bertrand’s
Postulate aids in the efficient generation of prime numbers that meet
the required security criteria. By providing a bound on the range where
primes are guaranteed to exist, the postulate helps in narrowing down
the search space, making the key generation process more efficient.
This, in turn, contributes to the overall security and effectiveness of
cryptographic systems.

Primality Testing: Bertrand’s Postulate has implications for primal-
ity testing algorithms used in cryptography. When verifying the pri-
mality of a number, the postulate allows for more efficient testing by
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limiting the search for potential divisors to a narrower range. This re-
duces the computational complexity involved in checking the primality
of numbers, contributing to the efficiency and speed of cryptographic
operations.

Cryptographic Strength: The reliance on prime numbers in cryp-
tographic systems is due to the perceived difficulty of factoring large
numbers into their prime factors. Bertrand’s Postulate, which guar-
antees the existence of primes within certain ranges, helps ensure that
the prime factors used in cryptographic operations are sufficiently large
and secure. The postulate indirectly reinforces the strength of cryp-
tographic algorithms by providing a framework for generating and se-
lecting large prime numbers.

Security Assurance: The use of prime numbers in cryptography, sup-
ported by Bertrand’s Postulate, enhances the security assurance of
cryptographic systems. The existence of primes within specific ranges,
as guaranteed by the postulate, establishes a foundation for the secu-
rity of encryption and decryption processes. By incorporating prime
numbers generated based on the postulate’s guidelines, cryptographic
algorithms can achieve a higher level of confidence in their security
properties.

In summary, Bertrand’s Postulate plays a crucial role in cryptogra-
phy and security by aiding in the efficient generation of prime numbers,
contributing to primality testing, reinforcing cryptographic strength,
and enhancing the overall security assurance of cryptographic systems.
Its implications ensure the availability of secure prime numbers, which
form the foundation of many cryptographic algorithms and protocols.

8. Conclusion

In conclusion, Bertrand’s Postulate, formulated by Joseph Bertrand
in 1845, has had a significant impact on number theory, computational
algorithms, and cryptography. The postulate guarantees the existence
of at least one prime number between any positive integer n and its
double

(2n)

, demonstrating the density and distribution of prime numbers. It
has influenced the study of prime number distribution, prime gaps,
and prime number theorems, providing insights into the behavior of
prime numbers and guiding the development of related theorems and
conjectures.
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Bertrand’s Postulate also has practical implications in computational
number theory, particularly in primality testing, prime number gener-
ation, and factorization algorithms. It assists in efficient primality
testing, reducing the search space for potential divisors and enhancing
computational efficiency. The postulate guides the generation of prime
numbers within specific ranges, aiding cryptographic algorithms that
rely on large prime numbers for security purposes. It contributes to the
security assurance of cryptographic systems by ensuring the availability
of secure prime numbers and supporting key generation processes.

Overall, Bertrand’s Postulate has influenced various areas of number
theory, computational algorithms, and cryptography. Its role in prime
number distribution, computational efficiency, and cryptographic se-
curity highlights its significance in advancing mathematical knowledge
and practical applications. Ongoing research and exploration of related
concepts and problems continue to build upon the foundation provided
by Bertrand’s Postulate, furthering our understanding of prime num-
bers and their role in diverse mathematical and computational do-
mains.
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