Integer Partitions and Applications to Number Theory

By Daniel Shin Euler Circle IRPW

July 2023

Introduction

What are integer partitions?

Representations of Integer Partitions - Notation

Standard Notation

$$1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 9 = 38$$
$$a_1 + a_2 + a_3 + \dots + a_k$$

Multiplicity Notation

 $1^{6}2^{2}3^{1}4^{4}9^{1}$

$$a_1^{p_1} + a_2^{p_2} + a_3^{p_3} + \dots + a_k^{p_k}$$

Representations of Integer Partitions - Diagrams

Ferrers Diagram

Young Diagram

Special Partitions

Conjugate Partitions Restricted Partitions

Conjugate Partitions

4+4+3+3+2+1+1=18

7 + 5 + 4 + 2 = 18

Self-Conjugate Partitions

7+6+4+3+2+2+1=25

7+6+4+3+2+2+1=25

The partition and its conjugate are congruent.

Distinct Parts Partitions

While the number 10 has 42 total partitions, it only has 10 distinct parts partitions:

10	=	10,
	=	9 + 1,
	=	8 + 2,
	=	7 + 3,
	=	7 + 2 + 1,
	=	6 + 4,
	=	6 + 3 + 1,
	=	5 + 4 + 1,
	=	5 + 3 + 2,
	=	4 + 3 + 2 + 1.

Odd Parts Partitions

$$\begin{split} 10 &= 9 + 1, \\ &= 7 + 3, \\ &= 7 + 1 + 1 + 1, \\ &= 5 + 5, \\ &= 5 + 3 + 1 + 1, \\ &= 5 + 1 + 1 + 1 + 1 + 1, \\ &= 3 + 3 + 3 + 1, \\ &= 3 + 3 + 1 + 1 + 1 + 1 + 1, \\ &= 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1, \\ &= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. \end{split}$$

Glaisher's Theorem

The number of distinct parts partitions and odd parts partitions of any positive integer will always be the same.

10 = 10,	=9+1,
= 9 + 1,	=7+3,
= 8 + 2,	= 7 + 1 + 1 + 1,
= 7 + 3,	= 5 + 5,
= 7 + 2 + 1,	= 5 + 3 + 1 + 1,
= 6 + 4,	= 5 + 1 + 1 + 1 + 1 + 1,
= 6 + 3 + 1,	= 3 + 3 + 3 + 1,
= 5 + 4 + 1,	= 3 + 3 + 1 + 1 + 1 + 1,
= 5 + 3 + 2,	= 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1,
=4+3+2+1	l. = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Distinct Odd Parts Partitions

The distinct odd parts partitions of 20:

$$20 = 19 + 1,$$

= 17 + 3,
= 15 + 5,
= 13 + 7,
= 11 + 9,
= 11 + 5 + 3 + 1.

Bijection Between Dist. Odd and Self-Conjugate

Qualities of Partitions

Partition Classification The Partition Function Congruences of Partitions

Rank of a Partition

The Partition Function

The partition function p(n) is a function that returns the number of partitions of a positive integer n. For example, p(5) = 7 and p(10) = 42. Although no closed-form expression for the partition function exists, it turns out to have a relatively simple generating function. Below is the generating function for the partition function p(n):

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{j=1}^{\infty} \sum_{i=0}^{\infty} q^{ji} = \prod_{j=1}^{\infty} (1-q^j)^{-1}$$

Ramanujan's Congruences

$$p(5k+4) \equiv 0 \pmod{5},$$

$$p(7k+5) \equiv 0 \pmod{7},$$

$$p(11k+6) \equiv 0 \pmod{11}.$$

$$p(17303k + 237) \equiv 0 \pmod{13},$$

$$p(206839k + 2623) \equiv 0 \pmod{17},$$

And so on...

A.O.L. Atkin

 $p(1977147619k + 815655) \equiv 0 \pmod{19}.$

Others

Thank you for watching!

	Partition of the number K			1.1.							ļ		Į								J						ļ			
	K approaches infinity		For	finit	e K.,	these	1 420	stage	e valu	es	1	l	1																	
Totals	S tage X=(K #spaces + 1)	K is a finite number	12	34	1 5	67	8	9	10 1	1 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	1	0	1				1				1	1																		
1	2	1	1		11	1	1				1																			
2	3	2	1 1		11		1					I									<u> </u>									
3	4	3	1 1	1			1				1	I																		L
S	5	4	1 1	21	11		1				1	1						2											1	
7	6	5	1 1	22	2 1	1	1			1	1	1	1					.0			1									
11	7	6	1 1	23	3 3	1	1			1		Ι	1								l									
15	8	7	1 1	23	3 4	3 1	1				1	1					1			1									1	
22	9	8	11	23	3 5	5 4	1			1	1	1	1																	
30	10	9	11	23	3 5	6 7	4	1		1	1	T	1		ſ						1									
42	11	10	1 1	23	3 5	7 9	8	5	1	1	1	Ĩ	1								1									
56	12	11	1 1	23	35	7 10	11	10	5		1	1	Ì								1		1				1			1
77	13	12	11	23	35	7 11	13	15	12 (5 1	1	T	1											1	1		1			
101	14	13	11	23	3 5	7 11	14	18	18 1	4 6	1	1	1												1		1			
135	15	14	1 1	23	35	7 11	. 15	20	23 2	3 16	17	1	Ĩ							1	1		Ĩ		1		Ĩ			
176	16	15	11	23	35	7 11	15	21	263	0 2	19	7	1								1				1		1			(T
231	17	16	11	23	3 5	7 11	15	22	28 3	5 3	34	21	8	1											1		1			
297	18	17	11	23	35	7 11	15	22	29 3	8 44	47	39	24	8	1										1		Ĩ			
385	19	18	11	23	35	7 11	15	22	30 4	0 45	1 58	57	47	27	9	1				1	1		1		1		1			
490	20	19	11	23	35	7 11	15	22	30 4	1 52	65	71	70	54	30	9	1				1				1		1			(
627	21	20	11	23	35	7 11	15	22	30 4	2 54	1 70	82	90	84	64	33	10	1							1		Ĩ			
792	22	21	11	23	35	7 11	15	22	30 4	2 55	173	89	105	110	101	72	37	10	1	1	1		1		1		1			
1002	23	22	11	23	35	7 11	15	22	30 4	2 5	75	94	116	131	136	119	84	40	11	1			1		1		1			(T
1255	24	23	11	23	35	7 11	15	22	30 4	2 50	76	97	123	146	164	163	141	94	44	11	1				1		ľ			
1575	25	24	11	23	35	7 11	15	22	30 4	2 50	5 77	99	128	157	186	201	199	164	108	48	12	1	1	1			1			
1958	26	25	1 1	23	35	7 11	15	22	30 4	2 50	5 77	100	131	164	201	230	248	235	192	120	52	12	1	1						(TT)
2436	27	26	11	23	35	7 11	15	22	30 4	2 50	5 77	101	133	169	212	252	288	300	282	221	136	56	13	1						m
3010	28	27	11	23	35	7 11	15	22	30 4	2 50	5 77	101	134	172	219	267	318	352	364	331	255	150	61	13	1					
3718	29	28	11	23	35	7 11	15	22	30 4	2 50	5 77	101	135	174	224	278	340	393	434	436	391	291	169	65	14	1				
4565	30	29	11	23	35	7 11	15	22	30 4	2 50	5 77	101	135	175	227	285	355	423	488	525	522	454	333	185	70	14	1			
5604	31	30	11	23	3 5	7 11	15	22	30 4	2 50	5 77	101	135	176	229	290	366	445	530	598	638	618	532	377	206	75	15	1	-	
6842	32	31	11	23	3 5	7 11	15	22	30 4	2 50	5 77	101	135	176	230	293	373	460	560	653	732	764	733	612	427	225	80	15	1	
8349	33	32	11	23	35	7 11	15	22	30 4	2 50	5 77	101	135	176	231	295	378	471	582	695	807	887	919	860	709	480	249	85	16	1
10143	34	33	11	23	3 5	7 11	15	22	30 4	2 50	5 77	101	135	176	231	296	381	478	397	725	863	984	1076	1090	1009	811	540	270	91	16
12310	35	34	11	23	3.5	7 11	15	22	30.4	2. 9	77	101	135	176	231	297	383	483	608	747	905	10/00	1204	1291	1297	1175	931	603	297	96