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Abstract

Integer partitions are a fascinating topic in mathematics that deals
with expressing a positive integer as a sum of smaller positive integers.
The concept of partitioning has been studied for centuries and has ap-
plications in various fields, including number theory, combinatorics, and
computer science. The number of distinct partitions of a given integer is
a well-studied problem, and it grows rapidly with the size of the integer.
Understanding the properties and patterns of integer partitions provides
valuable insights into the nature of numbers and the intricate connections
between different areas of mathematics.
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1 Introduction

Among the simplest of the countless operations used in mathematics
is addition: combining numbers into a new, larger number that repre-
sents its constituent parts. This is the core idea of partitioning integers:
splitting positive integers into smaller positive integers of which they are
composed. As this allows to show the ways in which you can build a
number through the summation of smaller numbers, this is a very useful
and practical approach to solving many problems in combinatorics. Fur-
thermore, integer partitions have various applications to number theory
and other aspects of discrete mathematics.

Figure 1: Image courtesy of Wikimedia.

Let’s describe partitions mathematically as well. A partition of an
integer n is defined as any ordered group of positive integers whose sum
is n, or any non-increasing sequence a1, a2, a3, · · · , ak such that

k∑
k=1

aj = n

For example, the number n = 4 has five partitions: 4, 3 + 1, 2 + 2,
2 + 1 + 1, and 1 + 1 + 1 + 1.

Keep in mind that this means that any two partitions are the same if
they contain all of the same elements, regardless of order. For example,
the 2 + 4 + 4 partition of 10 is the same as the 4 + 2 + 4 partition of
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10. Partitions are generally written in descending order, so you will most
likely see this particular partition written as 4 + 4 + 2.

Because the order of elements in a partition is not taken into account,
the simpler notions of combinatorics are insufficient to provide us with
a way of accurately determining the number of partitions for any given
positive integer n. This, of course, leads to the partition function p(n)
that returns the number of partitions of an integer for a given positive
integer n, which will be covered later on in this paper.

This paper will explore integer partitions in depth and discuss its
ties to numerous fields of mathematics. We will go over the diagrams
associated with partitions, several interesting theorems relating to the
diagrams, the partition function p(n), Ramanujan’s congruences, and
more.
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2 Representations of Integer Partitions

Individual integer partitions can be visualized in a number of ways
diagrammatically. The following diagrams help make a particular parti-
tion more clear not only of the partition itself but also of some interesting
properties of partitions, as will be shown later.

2.1 The Ferrers Diagram

To represent a partition of an integer, we must first know the impor-
tant parts of integer partitions: the integer itself, the number of partitions
it is split up into, and the values of each of those partitions. Since order
does not matter for partitions, they’ll need some set order as well, to
distinguish them. To cover all of these, we’ll be arranging a series of
circles, or dots, in a way that represents the full integer followed by each
of its components in decreasing order. For example, the 5 + 3 + 2 + 1
partition of n = 11:

Figure 2: The Ferrers diagram, displaying the partition 5+3+2+1 = 11.

The four rows have 5, 3, 2, and 1 dot each, representing each of the
partitions. The total, n, is represented by all of the dots as a group. The
number of rows is the number of partitions, and the number of columns
is the largest partition in the non-increasing sequence.

2.2 The Young Diagram

Many people actually consider the Young and Ferrers diagrams to be
one and the same. The reason for this is because the Young diagram
is the exact same thing as the Ferrers diagram, but instead of circles or
dots, it uses adjacent grid squares, as demonstrated below:
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Figure 3: A Young diagram of the partition 5 + 3 + 2 + 1 = 11, same as
the Ferrers diagram above.

As you may be able to tell, this diagram is in every way identical
to the previous diagram except for the shape of the individual parts. It
shows the same four rows of 5, 3, 2, and 1, but rather than taking the
form of dots, they are squares. This shows us that we will have the
same information and be able to do the same things regardless of how
we represent it diagrammatically, which leaves the choice of diagram as
more of a simple choice of preference, and changing diagram style will
have no effect.

2.3 Multiplicity Notation

Integer partitions are normally notated as a1 + a2 + a3 + · · · + ak
for a partition of n with k elements, where the non-increasing sequence
a represents the partition and ai ≥ ai+1 for 1 ≤ i ≤ k − 1. However,
another notation exists for partitions called multiplicity notation, and it
is often used for compactness when there is a large number of partitions,
or when a partition has a large number of elements. Multiplicity notation
is shown as a1

p1 +a2
p2 +a3

p3 + · · ·+ak
pk, where the sequence p represents

the respective number of times each element appears in the partition. For
example, the partition 1+1+1+1+1+1+2+2+3+4+4+4+4+9 of 38
can be represented in multiplicity notation as 1622314491. Note that this
does not mean that these numbers are multiplied, this is simply another
way of representing a partition of an integer.

This paper will largely use the standard notation for partitions, but it
also may use multiplicity notation interchangeably. To avoid confusion
with actual multiplication, I have taken the liberty of mentioning the
notation of any partitions I write in multiplicity notation.
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3 Using Partitions Diagrams

For this section, we will be arbitrarily using Young Diagrams to rep-
resent partitions, as either diagram would work perfectly well.

3.1 Conjugate partitions

In integer partitions, the conjugate of any partition is defined as a
non-increasing sequence of the number of elements in the partition that
are k or greater for k ∈ Z+ and k is no greater than the largest part
in the partition. Diagrammatically, this can be represented by reflecting
the partition diagram across its diagonal, like so:

Figure 4: A partition and its conjugate.

In the above figure, the partition 4 + 4 + 3 + 3 + 2 + 1 + 1 = 18 is
“flipped”, turning it into its conjugate partition, 7 + 5 + 4 + 2 = 18.
Note that just as transformations do not affect the area of a shape, a
partition and its conjugate are still partitions of the same number n. As
discussed earlier, each of the numbers in the newly created conjugate
partition refers to the number of elements in the original partition that
are greater than or equal to a number between 1 and the size of the
largest element in the original partition. For k = 1, for example, we have
7 total elements that are 1 or greater. Then, there are 5 elements greater
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than or equal to k = 2, 4 elements greater than or equal to k = 3, and
finally, two elements that are equal to k = 4.

Given a partition A = a1, . . . , ak. Let M = a1. Then the conjugate
B := conj(A) is defined as the non-increasing sequence b1, . . . , bM where
as bj = #{p : ap ≥ j} for 1 ≤ j ≤ M , where # denotes cardinality of the
finite set.

Because a conjugate’s conjugate returns us to the original partition,
this is also true the other way around from the conjugate back to the
original.

3.2 Self-Conjugate Partitions

When a particular partition’s conjugate is exactly the same as the
original partition, it is called a self-conjugate partition. Since conjugate
partitions are formed by a reflection of the partition diagram across its di-
agonal, self-conjugate partitions must be symmetrical along its diagonal
as its axis. One such partition is shown below:

Figure 5: An example of a self-conjugate partition.

Because its conjugate partition just leads back to itself, the 7 + 6 +
4 + 3 + 2 + 2 + 1 partition of 25 is a self-conjugate partition.

4 Restricted Partitions

In the fields of combinatorics and number theory, the study of par-
tition families that fall within specific restrictions is a common area of
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focus. We will go over several such restrictions that are frequently exam-
ined. By imposing certain conditions on partitions, we aim to uncover
unique patterns and properties within these restricted families. These
restrictions may involve constraints on the sizes of the parts, the number
of parts, or the arrangement of parts in a partition. By exploring these
various restrictions, mathematicians gain a deeper understanding of the
intricate relationships and structures that underlie the realm of integer
partitions.

4.1 The Distinct Parts Partition

One example of a restricted partition is the distinct parts partition.
These are the partitions with distinct elements; that is, no element ap-
pears twice in the same partition. These partitions are colloquially known
as strict partitions. The 5 + 1 + 1 partition of 6 is not a distinct parts
partition, whereas the 7 + 4 + 2 + 1 partition of 14 is.

While the number 10 has 42 total partitions, it only has 10 distinct
parts partitions:

10 = 10,

= 9 + 1,

= 8 + 2,

= 7 + 3,

= 7 + 2 + 1,

= 6 + 4,

= 6 + 3 + 1,

= 5 + 4 + 1,

= 5 + 3 + 2,

= 4 + 3 + 2 + 1.

4.2 The Odd Parts Partition

Another restricted partition is the odd parts partition. These parti-
tions are, as you may have guessed, simply the partitions of an integer
that contain only an odd number of parts. Below are the ten odd parts

9



partitions of 10:

10 = 9 + 1,

= 7 + 3,

= 7 + 1 + 1 + 1,

= 5 + 5,

= 5 + 3 + 1 + 1,

= 5 + 1 + 1 + 1 + 1 + 1,

= 3 + 3 + 3 + 1,

= 3 + 3 + 1 + 1 + 1 + 1,

= 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1,

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

4.3 Glaisher’s Theorem

Did you notice that the number of odd parts partitions of n = 10 is
equal to the number of distinct parts partitions? This is actually true
of all positive n. In 1883, English mathematician and astronomer James
Whitbread Lee Glaisher proved that the number of odd parts partitions
and distinct parts partitions were equal regardless of n.

4.4 The Distinct Odd Parts Partition

The distinct odd parts partition is the intersection of the distinct
parts partitions and the odd parts partitions, made up only of distinct
odd parts. All positive integers except for 2 have at least one distinct odd
parts partition. Here are the distinct odd partitions of 20, for example:

20 = 19 + 1,

= 17 + 3,

= 15 + 5,

= 13 + 7,

= 11 + 9,

= 11 + 5 + 3 + 1.

The distinct odd parts partitions are very interesting because we can
prove that they have a one-to-one correspondence with self-conjugate par-
titions, which were discussed in Section 3.2. Let us revisit self-conjugate
partitions for a moment.
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Any partition is self-conjugate if reflecting its Ferrers diagram across
its diagonal does not change the partition at all. This means that on
either side of the diagonal, the diagram must be a mirror image of itself:
any detail that appears on one side must be apparent on the other.

5 Rank of a partition

Integer partitions are classified by their rank. This rank is determined
by the side length of the Durfee Square of the partition, which is the
largest square that fits in a Ferrers diagram representation of a partition
starting from the top left. The rank can also be represented as a positive
integer s where s is the largest number such that there are at least s
elements of size s in the partition.

Figure 6: The Durfee squares of sizes 4 and 2 in partitions, respectively.

In the above figure, the 7+ 6+ 4+ 4+ 3+ 2+ 2 partition of 28 has a
Durfee square of side length 4 because there are four elements that are
≥ 4: 7, 6, 4, and 4. Since this does not work for the next number, 5, this
is the rank of our partition. Similarly, the 5 + 4 + 2 + 1 partition of 12
to its right has a Durfee square of side length 2 because there are more
than two elements larger than 2, but not three ore more elements larger
than 3. Thus, it has a Durfee square of size 2 and thus an equal rank.

However, as it turns out, there is yet another definition of the rank
of a partition. In 2005, mathematician and physicist Freeman Dyson
suggested the notion of the “Rank of the Partition”, which would be
calculated as the number of elements subtracted from the largest element
in the partition. Thus, the values for the rank of the partition in this
definition can be negative, and range from −(n − 1) to (n − 1). This
alternate method of classification is helpful for determining particular
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congruences relating to integer partitions. Below is a helpful illustration
for calculating this rank using a Ferrers diagram.

Figure 7: Image courtesy of Wikimedia.

6 The Partition Function

The partition function p(n) is a function that returns the number of
partitions of a positive integer n. For example, p(5) = 7 and p(10) = 42.
Although no closed-form expression for the partition function exists, it
turns out to have a relatively simple generating function. Below is the
generating function for the partition function p(n):

∞∑
n=0

p(n)qn =
∞∏
j=1

∞∑
i=0

qji =
∞∏
j=1

(1− qj)−1

There is also the partition function q(n) which produces the number
of strict partitions, or distinct parts partitions, for a positive integer n.
This function’s generating function also turns out to be relatively simple:

∞∑
n=0

q(n)xn =
∞∏
k=1

(1 + xk) =
∞∏
k=1

1

1− x2k−1

Euler’s pentagonal number theorem can be used to create the gener-
ating function for p(n). It relates the product and series representations
of the Euler function, shown below:
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(1− x)(1− x2)(1− x3) · · · =
∞∏
n=1

(1− xn) =

∞∑
k=−∞

(−1)k xk(3k−1)/2 = 1 +
∞∑
k=1

(−1)k
(
x

k(3k+1)
2 + x

k(3k−1)
2

)
=

1− x− x2 + x5 + x7 − x12 − x15 + . . .

[Wil00]
The exponents of the expression form a series of integers known as the

pentagonal numbers, which as it turns out, helps us create a recurrence
for calculating a formula for p(n):

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · ·
or,

p(n) =
∑
k ̸=0

(−1)k−1p(n− gk)

where gk represents the (k − 1)th pentagonal number.

6.1 Ramanujan’s Congruences

In his 1919 paper, Indian mathematician Srinivasa Ramanujan pub-
lished his discovery and proof of three congruences relating to integer
partitions, and they are as follows:

p(5k + 4) ≡ 0 (mod 5), (1)

p(7k + 5) ≡ 0 (mod 7), (2)

p(11k + 6) ≡ 0 (mod 11). (3)

This means that:

1. If a number is 4 more than a multiple of 5, then the number of its
partitions is a multiple of 5.

2. If a number is 5 more than a multiple of 7, then the number of its
partitions is a multiple of 7.
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3. If a number is 6 more than a multiple of 11, then the number of its
partitions is a multiple of 11.

Unfortunately, however, this pattern does not continue, and further
potential congruences such as p(13k+7) ≡ 0 (mod 13) have been proven
to be false. However, much later, additional congruences for prime mod-
uli in integer partitions were discovered, but they were far more complex
and followed no distinguishable pattern.

In the 1960s, British mathematician Arthur Oliver Lonsdale Atkin
(A.O.L. Atkin) discovered the following congruences:

p(17303k + 237) ≡ 0 (mod 13), (4)

p(206839k + 2623) ≡ 0 (mod 17), (5)

p(1977147619k + 815655) ≡ 0 (mod 19). (6)

Further studies yielded proof of a much larger amount of similar con-
gruences of integer partitions, and mathematicians such as R.L. Weaver
in 2001 and F. Johansson in 2012 succeeded in creating effective algo-
rithms for calculating another 22474608014 congruences.
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