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Group Decomposition

Definition 1.11 A maximal normal subgroup N of G is a proper
normal subgroup N such that if N ≤ K and K ⊴ G then K = N or
K = G .
Definition 1.8 A simple group is a nontrivial group G such that
the only normal subgroups of G are the trivial subgroups.
Theorem 1.12 A normal subgroup N ⊴ G is maximal iff G/N is
simple.
Definition 1.13 Let G be a group. We call a series A1 ≤ · · · ≤ An

of subgroups of G such that A1 = {e} and An = G a composition
series for G if each term (other than An) is a maximal normal
subgroup of the next. If you take Ai+1/Ai for each i you get a
decomposition for G .
Theorem 1.9 Any two decompositions of any group G are the
same up to reordering.



The Group Extension Problem

Definition 2.2 Take any two groups K and Q. A group G such
that K ⊴G and G/K ∼= Q is called an extension of K by Q. More
presicely, if there’s a normal subgroup K ′ ⊴ G that’s isomorphic to
K , and if G/K ′ ∼= Q, then we say G is an extension of K by Q.
Definition 2.3 The Group Extension Problem, formulated by O.
Hölder, is the problem of, for given groups K and Q, finding all
extensions of K by Q.



Transversals

Definition 2.8 If G is an extension of K by Q, we call a function
l : Q → G a transversal if for any coset a ∈ G/K , l(a) ∈ a.



Realizing Data

Definition 2.9 We call an ordered triple (Q,K , θ) data if Q is a
group, K is an abelian group, and θ : Q → Aut(K ) is a
homomorphism. We say that a group G realizes this data if G is
an extension of K by Q and, for every transversal l : Q → G ,

θx(a) = θ(x)[a] = l(x) + a− l(x).

(Note that we will be using additive notation for the operations in
G and K , breaking convention. We’ll still use multiplicative
notation for Q, though.) We also denote θx(a) by xa.



Factor Sets

Definition 2.12 If G realizes data (Q,K , θ) and l : Q → G is a
transversal such that l(1) = 0, then the factor set f : Q ×Q → K
(also called a cocycle) arising from the transversal l is defined so
that f (x , y) = l(x) + l(y)− l(xy). f essentially measures how ‘far
away’ l is from being a homomorphism.



Commutative Diagrams

Definition 2.16 Consider any diagram of functions between sets.
We say that the diagram commutes if, for any two fixed sets A
and C on the map, the composition of any chain of functions
along the diagram from A to C is always the same.
Example 2.17 The diagram below commutes iff h = g ◦ f :

C

A B

h

f

g



Equivelant Extensions

Definition 2.18 Take any homomorphism ϕ : G → H. We denote
ker ϕ, called the kernel of ϕ to be the set of all x ∈ G such that
ϕ(x) = e. We denote ϕ(G ), or the image of ϕ to be the set of all
x ∈ H such that there’s an a ∈ G so that ϕ(a) = x . Notice that
ker ϕ⊴ G and ϕ(G ) ≤ H.
Definition 2.19 We call a chain of homomorphisms between
groups an exact sequence if the image of one is the kernel of the
next, and we call it a short exact sequence if it’s of the form

0 K G Q 1i π

The existance of such a sequence (for K , Q, and G ) is an
alternative way of saying that G is an extension of K by Q.
Definition 2.20 We say that two extenions G and G ′ are
equivalent if there is an isomorphism γ : G → G ′ such that the
following diagram commutes:



G

0 K Q 1

G ′

i π

i ′ π′

γ

γ is called an isomorphism of extensions.



Coboundaries

Theorem 2.21 For any two factor sets f and f ′ arising from
transversals of the same group extension G realizing data
(Q,K , θ), there’s a function h : Q → K with h(1) = 0 such that

f ′(x , y)− f (x , y) = xh(y)− h(xy) + h(x).

Definition 2.22 We call g : Q × Q → K a coboundary if there’s
a function h : Q → K with h(1) = 0 such that

g(x , y) = xh(y)− h(xy) + h(x).

Theorem 2.23 Let G and G ′ be extensions of K by Q. G and G ′

are equivalent iff they realize the same data (Q,K , θ) and there are
factor sets f of G and f ′ of G ′ so that f − f ′ is a coboundary.



The 2nd Cohomology Group

Definition 2.24 We denote Z 2(Q,K , θ) to be the set of all factor
sets, and B2(Q,K , θ) to be the set of all coboundaries.
It turns out that Z 2(Q,K , θ) forms an abelian group under +,
where (f + g)(x , y) = f (x , y) + g(x , y). B2(Q,K , θ) forms a
subgroup.
Definition 2.25 The second cohomology group, denoted
H2(Q,K , θ), is defined to be the quotient group
Z 2(Q,K , θ)/B2(Q,K , θ). This is well-defined since all subgroups
of abelian groups are normal.



Bijection between Equivalent Extensions and H2

Theorem 2.26 Let E be the set of equivalence classes of
extensions G realizing data (Q,K , θ). If you define
ϕ : H2(Q,K , θ) → E so that ϕ(f +B2) = Gf , then ϕ is a bijection.
Proof. First of all, we need to check well-definedness since it could
depend on the choice of representative f . We know that if
g ∈ f + B2(Q,K , θ) then f and g differ by a coboundary, so since
f and g are factor sets of Gf and Gg respectively, we know that Gf

and Gg are equivalent.



Bijection between Equivalent Extensions and H2

Conversely, if Gf and Gg are equivalent, then there are factor sets
f ′ of Gf and g ′ of Gg that are in the same coset. But by Theorem
(same group differ by a coboundary, will be numbered later) we
know that g ′ and g lie in the same coset, and so do f and f ′, so
indeed g ∈ f + B2(Q,K , θ). This shows that ϕ is well-defined and
injective. Surjectivity is a theorem in the paper, so then ϕ is a
bijection.□
So not only have we found out that Gf and Gg are equivalent when
f and g differ by a coboundary, we can create a group structure on
them where Gf + Gg = Gf+g , making ϕ an isomorphism!



Conclusion

To conclude, we split extensions up based on realization of data,
defined what it means for them to be equivalent, and found a neat
correspondence between equivalent extensions (realizing data) and
the second cohomology group.


