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Group Decomposition

Definition 1.11 A maximal normal subgroup N of G is a proper
normal subgroup N such that if N < K and K < G then K = N or
K=G.

Definition 1.8 A simple group is a nontrivial group G such that
the only normal subgroups of G are the trivial subgroups.
Theorem 1.12 A normal subgroup N < G is maximal iff G/N is
simple.

Definition 1.13 Let G be a group. We call a series A; < --- < A,
of subgroups of G such that A; = {e} and A, = G a composition
series for G if each term (other than A,) is a maximal normal
subgroup of the next. If you take A;;1/A; for each i you get a
decomposition for G.

Theorem 1.9 Any two decompositions of any group G are the
same up to reordering.



The Group Extension Problem

Definition 2.2 Take any two groups K and Q. A group G such
that K< G and G/K = Q is called an extension of K by Q. More
presicely, if there's a normal subgroup K’ < G that’s isomorphic to
K, and if G/K' = @, then we say G is an extension of K by Q.
Definition 2.3 The Group Extension Problem, formulated by O.
Holder, is the problem of, for given groups K and @, finding all
extensions of K by Q.



Transversals

Definition 2.8 If G is an extension of K by Q, we call a function
I : @ — G a transversal if for any coset a € G/K, I(a) € a.



Realizing Data

Definition 2.9 We call an ordered triple (Q, K, 0) data if Q is a
group, K is an abelian group, and 6 : Q@ — Aut(K) is a
homomorphism. We say that a group G realizes this data if G is
an extension of K by Q and, for every transversal [ : Q@ — G,

0x(a) = 0(x)[a] = I(x) + a — I(x).

(Note that we will be using additive notation for the operations in
G and K, breaking convention. We'll still use multiplicative
notation for Q, though.) We also denote 6,(a) by xa.



Factor Sets

Definition 2.12 If G realizes data (Q,K,0) and /: Q — G is a
transversal such that /(1) = 0, then the factor set f : Q X Q@ — K
(also called a cocycle) arising from the transversal [ is defined so
that f(x,y) = I(x) + I(y) — I(xy). f essentially measures how ‘far
away' [ is from being a homomorphism.



Commutative Diagrams

Definition 2.16 Consider any diagram of functions between sets.
We say that the diagram commutes if, for any two fixed sets A
and C on the map, the composition of any chain of functions
along the diagram from A to C is always the same.

Example 2.17 The diagram below commutes iff h = g o f:

C

A—— B



Equivelant Extensions

Definition 2.18 Take any homomorphism ¢ : G — H. We denote
ker ¢, called the kernel of ¢ to be the set of all x € G such that
¢(x) = e. We denote ¢(G), or the image of ¢ to be the set of all
x € H such that there's an a € G so that ¢(a) = x. Notice that
ker < G and ¢(G) < H.

Definition 2.19 We call a chain of homomorphisms between
groups an exact sequence if the image of one is the kernel of the
next, and we call it a short exact sequence if it's of the form

0— K -—'"36-—"T"5Q—>1

The existance of such a sequence (for K, Q, and G) is an
alternative way of saying that G is an extension of K by Q.
Definition 2.20 We say that two extenions G and G’ are
equivalent if there is an isomorphism ~ : G — G’ such that the
following diagram commutes:



G/

~ is called an isomorphism of extensions.



Coboundaries

Theorem 2.21 For any two factor sets f and ' arising from
transversals of the same group extension G realizing data
(Q,K,0), there's a function h: Q — K with h(1) = 0 such that

f'(x,y) = f(x,y) = xh(y) — h(xy) + h(x).

Definition 2.22 We call g : Q x Q@ — K a coboundary if there's
a function h: Q — K with h(1) = 0 such that

g(x,y) = xh(y) — h(xy) + h(x).

Theorem 2.23 Let G and G’ be extensions of K by Q. G and G’
are equivalent iff they realize the same data (Q, K, 6) and there are
factor sets f of G and f’ of G’ so that f — f’ is a coboundary.



The 2nd Cohomology Group

Definition 2.24 We denote Z%(Q, K, ) to be the set of all factor
sets, and B%(Q, K, 6) to be the set of all coboundaries.

It turns out that Z%(Q, K, #) forms an abelian group under +,
where (f + g)(x,y) = f(x,y) + g(x,y). B*(Q, K,0) forms a
subgroup.

Definition 2.25 The second cohomology group, denoted
H?(Q, K, #), is defined to be the quotient group
7%(Q,K,0)/B%(Q, K,#). This is well-defined since all subgroups
of abelian groups are normal.



Bijection between Equivalent Extensions and H,

Theorem 2.26 Let E be the set of equivalence classes of
extensions G realizing data (Q, K, 0). If you define

é: H*(Q, K,0) — E so that ¢(f + B?) = Gy, then ¢ is a bijection.
Proof. First of all, we need to check well-definedness since it could
depend on the choice of representative . We know that if

g € f+ B%(Q,K,0) then f and g differ by a coboundary, so since
f and g are factor sets of Gr and G4 respectively, we know that Gr
and G, are equivalent.



Bijection between Equivalent Extensions and H,

Conversely, if Gr and G are equivalent, then there are factor sets
" of Gr and g’ of G4 that are in the same coset. But by Theorem
(same group differ by a coboundary, will be numbered later) we
know that g’ and g lie in the same coset, and so do f and f’, so
indeed g € f + B?(Q, K,0). This shows that ¢ is well-defined and
injective. Surjectivity is a theorem in the paper, so then ¢ is a
bijection.[]

So not only have we found out that Gr and G, are equivalent when
f and g differ by a coboundary, we can create a group structure on
them where Gf + Gg = Gz, making ¢ an isomorphism!



Conclusion

To conclude, we split extensions up based on realization of data,
defined what it means for them to be equivalent, and found a neat
correspondence between equivalent extensions (realizing data) and
the second cohomology group.



