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Abstract

In this paper we will talk about groups and basic group theory knowledge. We will mention how the
Group Extension Problem relates to classifying all (finite) groups. Although the Group Extension Problem
is still unsolved, we’ll explore the cases where this has already been solved and show an example. Then, we’ll
look at some different ways to approach it in some other cases, from brute force to more elegant solutions.

1 Introduction

Out of all the objects in math, groups are one of the most fundamental. They show up everywhere ranging from
physics to Galois theory to algebraic topology, quite a lot of places. They can describe symmetries of anything
from a concrete object like a triangle, to an abstract object like a field or ring, or even another group! (Called
an automorphism group.) But before we can use them we have to define them first.

Definition 1.1 A group is a set G equipped with a binary operation · : G × G → G (that is, if g, h ∈ G
then g · h ∈ G) that satisfies a few special properties: Firstly, associativity: (a · b) · c = a · (b · c). Next, there’s
an element e ∈ G such that

e · x = x · e = x,

and so that for every element a ∈ G there’s an element a−1 ∈ G such that

a · a−1 = a−1 · a = e.

e is called the identity element and a−1 is called the inverse of a.

Example 1.2 Imagine all the ways of flipping around a triangle that leave it in the same position, that
is, all the ways of shuffling the points on it (called a permutation) that leave them the same distance apart.
Well, you could rotate it by certain amounts, reflect it by some different lines, things like that. The operation is
composition, denoted ◦, where g ◦h(x) = g(h(x)). The outputs are indeed in the group (this is called closure)
because if you apply one distance-preserving permutation after another, the distances are still preserved and
the overall effect is still a permutation. Associativity is true because function composition is always associative:

(f ◦ g) ◦ h(x) = f(g(h(x))) = f ◦ (g ◦ h)(x).

Next, we always count the do-nothing action e to be a permutation, and of course it preserves distances. We
know that

e ◦ g = g ◦ e = g

because e is doing nothing. For any distance-preserving permutation a, we can set a−1 to be the reverse of a,
that is if a(x) = y then a−1(y) = x. We can see that a−1 is a distance-preserving permutation such that

a ◦ a−1 = a−1 ◦ a = e.
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Here are some diagrams showing that if T is the vertical reflection and R is the 120◦ rotation counterclockwise,
then R ◦ T is another reflection:
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Because groups are so fundamental, it would be really useful to classify them. Similarly to how you can
decompose integers via divisors into primes, you can also decompose groups via what are called normal sub-
groups into what are called simple groups.

Definition 1.3 If you have a group G and a subset H such that, under the same operation of G, H forms a
group on its own, then we say H is a subgroup of G (denoted H ≤ G). We say H is a normal subgroup of
G, denoted H ⊴ G, if for any x ∈ H and g ∈ G, g · x · g−1 ∈ H. Taking gxg−1 for an element x ∈ G is called
conjugating by g.

Notice that if g · x = x · g for all x ∈ H and g ∈ G, then H is automatically a normal subgroup of G.
Or, if g · h = h · g for all h, g ∈ G, then all subgroups of G are normal.

Definition 1.4 We say a group G is abelian if g · h = h · g for all g, h ∈ G.

Definition 1.5 Let H ≤ G. Let ∼ be the equivalence relation so that x ∼ y if y−1x ∈ H. We define the
set G/H to be the collection of all equivalence classes under ∼. The elements of G/H are called left cosets of
H, and the number of left cosets is called the index of H in G. We denote the equivalence class of an element
g by [g], or gH. If H ⊴G, then this set is a group under the operation · defined by aH · bH = abH (otherwise
the operation is not well-defined). This group is called the quotient group.

Example 1.6 If you take the integers Z under addition, the odd numbers are not a subgroup because there
exist two odd numbers that don’t sum to an odd number (of course, they never sum to an odd number but
existence is enough). Also, the nonnegative numbers are not a subgroup because although the sum of two of
them is always nonnegative, the negative of a nonnegative number is not always nonnegative (only in the case
of 0). However, if you check all the properties, you’ll see that the even numbers (denoted 2Z) are a subgroup!
So then 2Z⊴ Z since Z is abelian, and if you equivalence the integers by x ∼ y if −y + x ∈ 2Z, then there are
two equivalence classes: 2Z itself, and the odd numbers, or 2Z+ 1. We know that 0 + 0 = 0, 0 + 1 = 1+ 0 = 1,
and 1 + 1 = 2 ∼ 0. If we label the even numbers e and the odd numbers o, we have that e+ e = o+ o = e and
e+ o = o+ e = o, and, checking the conditions, you can see that this is indeed another group (denoted Z/2Z)!
Basically, 2Z and Z/2Z are factor groups of Z.

Example 1.7 As for our triangle example, again denoting the 120◦ rotation counterclockwise R and the
vertical reflection T , it turns out all the symmetries are e, R, R2 = R◦R, T , RT = R◦T , and R2T = R◦R◦T .
Now, e, R, and R2 form a normal subgroup because TRT−1 = TRT = R2, and vice versa, and we know that
TeT−1 = e. It turns out that if you do this for anything, not just T , it still stays inside the subgroup, so this
subgroup is indeed normal. If we take e and T , then while that forms a subgroup, it’s not a normal one because
RTR−1 = R2T .

Notice how those subgroups have 2 and 3 elements respectively, both of which divide 6, the number of ele-
ments of the entire group. This is no coincidence:

Theorem 1.8 Let H be a subgroup of G. Then the number of elements in H, denoted |H| divides |G|.

Remark. This theorem, called Lagrange’s theorem, will be useful later.

Proof. Consider the set G/H. The notation aH suggests that [a] = {ah : h ∈ H}. This is in fact true. We
know that a−1ah = h, so ah ∼ a and ah ∈ [a]. But if g ∈ [a] then a−1g = h for some h ∈ H, so g = ah. Next,
you can check that if ah = ah′ then h = h′ (hint: a−1ah = h), so |H| = |aH|. This shows that |G| is just |H|
multiplied by the number of cosets of H, that is |H||G/H| = |G|. In particular, Lagrange’s theorem holds true.□

Definition 1.9 The order of an element g ∈ G is the smallest positive integer n such that gn = e. If no
such n exists, we say g has infinite order. We also define the order of a group to be its cardinality, or the
number of elements it has.

So Lagrange’s theorem says that the order of a subgroup divides the order of a group. It turns out that
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the order of an element g is equivalent to the order of the subgroup ⟨g⟩, or the subgroup of powers of g (as
we’ve seen with R and T ; their orders are 3 and 2 respectively.) Thus Lagrange’s theorem also tells us that the
order of an element divides the order of a group.

Now we’ll define simple groups.

Definition 1.10 A simple group is a group G containing non-identity elements such that the only normal
subgroups of G are G itself and {e}.

The task of classifying (finite) simple groups was completed in 1981 with the efforts of hundreds of mathe-
maticians (see [2]). What remains is to talk about how all (finite) groups decompose into simple groups. One
thing that’s nice is that, analogous to how prime factorizations of integers are unique, there’s a theorem called
the Jordan-Hölder theorem stating that decompositions of groups are unique too!

Theorem 1.11 Any two decompositions of any group G are the same up to reordering.

Now, to find the decomposition of a group, you just keep going down, keep factoring each new factor G into K
and G/K for some (nontrivial) normal subgroup, until you get down to simple groups.

Definition 1.12 A trivial subgroup of a group G is a subgroup that’s either G itself or just {e}. Note
that these are both normal subgroups.

Here’s a bit more precise way of decomposing:

Definition 1.13 A maximal normal subgroup N of G is a normal subgroup not equal to G such that
if N ≤ K and K ⊴G then K = N or K = G. That is, there are no subgroups in between.

Lemma 1.14 A normal subgroup N ⊴G is maximal iff G/N is simple.

Definition 1.15 Let G be a group. We call a series A1 ≤ · · · ≤ An of subgroups of G such that A1 = {e} and
An = G a composition series for G if each term (other than An) is a maximal normal subgroup of the next.
If you take Ai+1/Ai for each i you get a decomposition for G, and what the Jordan Hölder theorem really
says is that any composition series of G gives the same simple group factors up to reordering.

Definition 1.16 Take any element e. The trivial group is the set {e} with an operation defined by e · e = e.
Notice that this product is true if you take e to be the identity element of any group G, so the subgroup {e} is
always the trivial group.

Basically, the trivial group is analogous to 1 and simple groups are analogous to primes.

Example 1.17 In the case of the trivial group, the only decomposition series is A1 = {e} and nothing else.
This leads to the empty factorization for the trivial group, which makes sense knowing that, in fact, G/G ∼= {e}
and G/{e} ∼= G. This is analogous to how anything to the power of 0 is 1.

Now, this does lead to problems with some infinite groups. For example, similarly to how 0 doesn’t factor
into primes because there’s always a factor of 0, Z always has a factor of itself when you try to factor it. Of
course, it’s not literally contained inside itself, but it has a normal subgroup, infinitely many in fact, that are
what’s called isomorphic to it.

Definition 1.18 Let ϕ : G → H be a function between two groups. We call ϕ a homomorphism if, for any
a, b, c ∈ G such that a · b = c, ϕ(a) · ϕ(b) = ϕ(c) as well. In other words, for any a, b ∈ G, ϕ(a · b) = ϕ(a) · ϕ(b).
We call ϕ a bijection if when ϕ(g) = ϕ(h), g = h (called injectivity) and for any h ∈ H, there’s a g ∈ G such
that ϕ(g) = h (called surjectivity). Bijections are basically one-to-one correspondences. If ϕ is a bijection in
addition to being a homomorphism, we call ϕ an isomorphism. Next, we say that G and H are isomorphic,
denoted G ∼= H, if there’s an isomorphism between them. What isomorphic basically means is that two groups
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are the same up to relabeling elements, and we only really care about groups to that extent.

Example 1.19 Let’s try this for the integers and the even numbers. Take ϕ : Z → 2Z so that ϕ(x) = 2x. It’s
not hard to see that ϕ is a bijection, and since 2(a + b) = 2a + 2b, we know that ϕ is an isomorphism. So Z
factors into Z and another group with two elements. It turns out that all normal subgroups, even subgroups of
Z are isomorphic to Z except {0} whose quotient group is isomorphic to Z. Thus, try as you might, you will
indeed always have a factor isomorphic to Z when you factor it down.

Since we can’t decompose some infinite groups, for the rest of the paper we’ll focus more on finite groups.

Okay, so we have a way of uniquely factoring finite groups into simple groups. We know that prime fac-
torizing integers has a lot of useful applications, but what about groups? One example is it’s used in the proof
of the unsolvability of the quintic. What does that mean? So, you know how there’s a formula for the roots
of a quadratic using the four basic operations along with radicals (specifically square roots) and, of course, the
coefficients. Now, there’s also a such formula for cubics, and even quartics! But mathematicians have really
struggled to find a quintic formula and they still can’t find one to this day! Why? Because it doesn’t exist.
Now, before we dive into this, we’ll need a few definitions:

Definition 1.20 The cyclic group Cn is defined to be Z/nZ, where nZ is the normal subgroup of multi-
ples of n.

Definition 1.21 We define a symmetric group Sn to be the group of permutations of n elements under
composition.

Definition 1.22 A transposition is a permutation that switches two elements and leaves everything else
where it is.

Definition 1.23 We define An ≤ Sn, the alternating group, to be the subgroup of permutations that
can be represented as a product (composition) of an even number of transpositions. Note that all permutations
can be represented as a product of transpositions, and that the inverse of a product of transpositions is the
product in reverse order, and so one can check that An ⊴ Sn.

Theorem 1.24 There’s no formula for the roots of a quintic polynomial using the four basic operations,
radicals, and the coefficients.

Proof. It’s not just that there’s no formula, there’s a specific quintic polynomial whose roots can’t be ex-
pressed with the three things mentioned which has to do with the decomposition of S5. To see this, first, it
turns out that Sn/An

∼= C2 unless n = 1 (in which case A1 = S1 is the trivial group). If n ≥ 5 then An is
simple, and so the complete decomposition of Sn is An and C2.

If the roots of our polynomial could be expressed with the three things mentioned, then that would mean
the decomposition of S5 would have to involve only cyclic groups Cp for p prime (we won’t really get into why
because that’s a story for another paper). But A5 is not of that form (or An for any n ≥ 5), so there’s no
formula for quintics.□

This also shows there’s no formula for n-degree polynomials when n ≥ 5 because we could just multiply
our quintic polynomial by x a bunch of times and that would only add to the roots.

The proof we’ve outlined leads to the notion of a solvable group.

Definition 1.25 A group G is called solvable if G decomposes into cyclic groups Cp for p prime (more
generally if it can factor into abelian groups, e.g. now Z is solvable since it’s already abelian).

Example 1.26 As we just saw, S5 (or Sn for n ≥ 5) is not solvable. However, S1 through S4 are solvable groups.
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So that’s one example of where this decomposition approach, and especially the Jordan-Hölder theorem, shows
up.

2 The Group Extension Problem

One not-so-nice thing about group decomposition that’s not true in our integer analogy is that different groups
can have the same decomposition! For example, the direct product C2 ×C2, also denoted K4, decomposes into
C2 and C2. But C4 also does, so those are two different groups with the same decomposition.

Definition 2.1 The direct product G × H of two groups G and H is the set of all pairs (g, h) where
g ∈ G and h ∈ H under the operation

(g1, h1) · (g2, h2) = (g1 · g2, h1 · h2).

Definition 2.2 Take any two groups K and Q. A group G such that K ⊴ G and G/K ∼= Q is called an
extension of K by Q. More presicely, if there’s a normal subgroup K ′ ⊴ G that’s isomorphic to K, and if
G/K ′ ∼= Q, then we say G is an extension of K by Q.

Definition 2.3 The Group Extension Problem, formulated by O. Hölder, is the problem of, for given
groups K and Q, finding all extensions of K by Q.

Now, it turns out that the case is a lot more complicated when K is nonabelian, so we’ll start by focusing
on the case where K is abelian.

Example 2.4 One case of a group extension G is a semidirect product. But before we define that, we’ll
need to define automorphism groups.

Definition 2.5 Let G be a group. An automorphism of G is an isomorphism from G to itself. We define
the automorphism group Aut(G) to be the set of all automorphisms of G under the operation of composition.

Definition 2.6 We say that G is the inner semidirect product of subgroups K and Q, denoted G = K⋊Q,
if K is normal, K ∩Q = {e}, and lastly KQ = G (KQ denoting the subset of elements that can be expressed
as an element of K times an element of Q).

Definition 2.7 If K and Q are groups and θ : Q → K is a homomorphism, then the outer semidirect
product K ⋊θ Q is defined so that the underlying set is again all ordered pairs (k, q) where k ∈ K and q ∈ Q.
Then, the operation on G is

(k1, q1) · (k2, q2) = (k1 · θ(q1)[k2], q1q2).

It turns out that inner semidirect products and outer semidirect products are equivalent, so we just call them
semidirect products.

It’s checkable that if G is an inner semidirect product of K and Q, then G/K ∼= Q, so this really is an
extension of K by Q. In outer semidirect products, the isomorphic copy of K is {(k, e) : k ∈ K}, the isomorphic
copy of Q is {(e, q) : q ∈ Q}, the identity is (e, e) and inverses are (k, q)−1 = (θ(q−1)[k−1], q−1). Now, notice
something about this. Assuming K is abelian, if you take any function l : Q → K that sends an element q ∈ Q
to (k, q) for some k ∈ K, then you have that

l(q)(k′, e)l(q)−1 = (k, q)(k′, e)(θ(q−1)[k−1], q−1) = (k · θ(q)[k′], q) · (θ(q−1)[k−1], q−1)

= (k · θ(q)[k′] · θ(q)[θ(q−1)[k−1]], qq−1) = (k · θ(q)[k′] · k−1, e) = (θ(q)[k′] · kk−1, e) = (θ(q)[k′], e).

So, basically, conjugation by l(q) is the same as applying θ(q).

Definition 2.8 If G is an extension of K by Q, we call a function l : Q → G a transversal if for any
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coset a ∈ G/K, l(a) ∈ a. That is, l maps an element of Q into the corresponding coset.

This is one of many resources and background we’ll need to develop in order to tackle the Group Exten-
sion Problem.

Definition 2.9 We call an ordered triple (Q,K, θ) data if Q is a group, K is an abelian group, and θ :
Q → Aut(K) is a homomorphism. We say that a group G realizes this data if G is an extension of K by Q
and, for every transversal l : Q → G,

θx(a) = θ(x)[a] = l(x) + a− l(x).

(Note that we will be using additive notation for the operations in G and K, breaking convention. We’ll still
use multiplicative notation for Q, though.) We also denote θx(a) by xa.

As we just saw, the semidirect product realizes data (Q,K, θ). This actually generalizes.

Theorem 2.10 All extensions G of K by Q realize data (Q,K, θ) for some θ. Furthermore, θ is unique.

Proof. Take any transversal l : Q → G, and let θx(a) = l(x) + a − l(x). Of course, θ can’t be anything
else, so this is the only possible solution. Next, we show θ is independent of the choice of transversal. For any
two transversals l and l′, we want to show that l′(x) + a − l′(x) = l(x) + a − l(x) for any a ∈ K and x ∈ Q.
Since l(x) and l′(x) are both in the coset x, we know that l′(x)− l(x) = k for some k ∈ K. Then,

l′(x) + a− l′(x) = l(x) + k + a− k − l(x) = l(x) + a+ k − k − l(x) = l(x) + a− l(x).

Since conjugation is an automorphism, we know that at least θ : Q → Aut(K), and to see that θ is a homomor-
phism we use the same logic:

l(x) + l(y) + a− l(y)− l(x) = l(xy) + k′ + a− k′ − l(xy) = l(xy) + a+ k′ − k′ − l(xy) = l(xy) + a− l(xy)

for a k′ ∈ K. Thus θ : Q → Aut(K) is a homomorphism and G uniquely realizes the data.□

This means that we can narrow down the problem to finding all extensions realizing data (Q,K, θ), which
is what we’ll do.

Now, there are many extensions of K by Q other than the semidirect product.

Example 2.11 We know that C4 is an extension of C2 by C2, but K4 is the only semidirect product of them.
If there’s a transversal l : Q → G that’s a homomorphism, that automatically means G is a semidirect product,
so for the other cases l can never be a homomorphism. However, we saw above that l(x) + l(y) = l(xy) + k′ for
some k′ ∈ K. This principal leads us to consider the definition of a factor set.

Definition 2.12 If G realizes data (Q,K, θ) and l : Q → G is a transversal such that l(1) = 0, then
the factor set f : Q × Q → K (also called a cocycle) arising from the transversal l is defined so that
f(x, y) = l(x) + l(y)− l(xy). f essentially measures how ‘far away’ l is from being a homomorphism.

2.1 Group Cohomology

Here are the key properties that factor sets satisfy:

Theorem 2.1.13 For any group G realizing data (Q,K, θ) and any transversal l, the factor set f arising
from l satisfies the following properties:

f(1, x) = f(y, 1) = 0,

and
f(x, y) + f(xy, z) = xf(y, z) + f(x, yz).
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The latter is called the cocycle identity.

Proof. The first property is not too hard to check. As for the second property, we know that

f(x, y)+f(xy, z)+l(xyz) = f(x, y)+l(xy)+l(z) = (l(x)+l(y))+l(z) = l(x)+(l(y)+l(z)) = l(x)+f(y, z)+l(yz)

= xf(y, z) + l(x) + l(yz) = xf(y, z) + f(x, yz) + l(xyz).

The result follows from cancellation.□

What’s really interesting, though, is that the converse is also true.

Theorem 2.1.14 For given data (Q,K, θ), any function f : Q × Q → K satisfying the two above proper-
ties is a factor set arising from some transversal l of an extension G realizing the data.

Proof. We first construct G. The underlying set of G is, again, K × Q or (k, q) for k ∈ K and q ∈ Q.
The operation is

(k1, q1) + (k2, q2) = (k1 + q1k2 + f(q1, q2), q1q2).

To start, let’s check that this is a group.

The identity is (0, 1). To see this, we compute:

(0, 1) + (k, q) = (0 + 1 · k + f(1, q), 1 · q) = (k, q).

Next,
(k, q) + (0, 1) = (k + q · 0 + f(q, 1), 1 · q) = (k, q).

Now, to see that the inverse of (k, q) is (−q−1k − q−1f(q, q−1), q−1), we know that

(k, q) + (−q−1k − q−1f(q, q−1), q−1) = (k + q(−q−1k − q−1f(q, q−1)) + f(q, q−1), qq−1)

= (k − k − f(q, q−1) + f(q, q−1), 1) = (0, 1).

Next,

(−q−1k−q−1f(q, q−1), q−1)+(k, q) = (−q−1k−q−1f(q, q−1)+q−1k+f(q−1, q), q−1q) = (−q−1f(q, q−1)+f(q−1, q), 1).

Uh-oh! It looks like we’re stuck. After all, how can −q−1f(q, q−1) + f(q−1, q) simplify to 0? Well, if we plug in
x = q−1, y = q, and z = q−1 to the cocycle identity, we get that

f(q−1, q) = f(q−1, q) + f(1, q−1) = q−1f(q, q−1) + f(q−1, 1) = q−1f(q, q−1).

Thus it does simplify to 0 after all, meaning (−q−1k − q−1f(q, q−1), q−1) is indeed the inverse of (k, q). Next,
as for associativity, we have that

((k1, q1)+(k2, q2))+(k3, q3) = (k1+q1k2+f(q1, q2), q1q2)+(k3, q3) = (k1+q1k2+f(q1, q2)+q1q2k3+f(q1q2, q3), q1q2q3).

For the other direction, we have that

(k1, q1)+((k2, q2), (k3, q3)) = (k1, q1)+(k2+q2k3+f(q2, q3), q2q3) = (k1+q1(k2+q2k3+f(q2, q3))+f(q1, q2q3), q1q2q3)

= (k1 + q1k2 + q1q2k3 + q1f(q2, q3) + f(q1, q2q3), q1q2q3) = (k1 + q1k2 + q1q2k3 + f(q1, q2) + f(q1q2, q3), q1q2q3)

= (k1 + q1k2 + f(q1, q2) + q1q2k3 + f(q1q2, q3), q1q2q3).

Thus associativity holds. Closure is trivial, so G is a group. Identifying k ∈ K with (k, 1), you can check that
this subgroup is isomorphic to K and that G quotient this subgroup is Q, so G really is an extension of K by
Q.

Next, we need to check that G realizes data (Q,K, θ). Take any transversal l′ of G. We want to show that
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qa = l(q)+ a− l(q) for all q ∈ Q and a ∈ K. That is, we want to show that (qa, 1) = l(q)+ (a, 1)− l(q). Firstly,
denote l(q) = (k, q). We have that

(k, q)+(a, 1)−(k, q) = (k+qa, q)+(−q−1k−q−1f(q, q−1), q−1) = (k+qa+q(−q−1k−q−1f(q, q−1))+f(q, q−1), 1) = (qa, 1).

The last step is true since K is abelian.

Next, we define our transversal l so that l(q) = (0, q). The factor set corresponding to l is (f(x, y), 1), but
as before we identify (k, 1) with k so f is a factor set as desired.□

The group G we constructed, which we’ll denote Gf , seems to generically represent f . I mean, the prod-
ucts are the same as in semidirect products except for that extra factor of f . Well, it turns out that these are
all the extensions of K by Q realizing the data!

Theorem 2.1.15 Every extension G realizing data (Q,K, θ) is of the form Gf for some factor set f : Q×Q → K.

Proof. If you take any transversal l of any extension G (realizing the data), you can uniquely represent all
elements of G as k + l(q) for some k ∈ K and q ∈ Q, so denote k + l(q) = (k, q). Then

(k1, q1)+(k2, q2) = k1+l(q1)+k2+l(q2) = k1+q1k2+l(q1)+l(q2) = k1+q1k2+f(q1, q2)+q1q2 = (k1+q1k2+f(q1, q2), q1q2).□

Pretty neat, isn’t it?

We aren’t quite done with our classification, though: How do we know that these extensions are all different?
That is, how do we know that if f ̸= g then Gf ̸= Gg? Well, that’s actually not true, so how do we know when
the extensions are the same? To find out, first we’ll need a notion of equivalent extensions (and some definitions).

Definition 2.1.16 Consider any diagram of functions between sets. We say that the diagram commutes
if, for any two fixed sets A and C on the map, the composition of any chain of functions along the diagram
from A to C is always the same.

Example 2.1.17 The diagram below commutes iff h = g ◦ f :

C

A B
f

g
h

Definition 2.1.18 Take any homomorphism ϕ : G → H. We denote kerϕ, called the kernel of ϕ to be
the set of all x ∈ G such that ϕ(x) = e. We denote ϕ(G), or the image of ϕ to be the set of all x ∈ H such
that there’s an a ∈ G so that ϕ(a) = x. Notice that kerϕ⊴G and ϕ(G) ≤ H.

Definition 2.1.19 We call a chain of homomorphisms between groups an exact sequence if the image of
one is the kernel of the next, and we call it a short exact sequence if it’s of the form

0 K G Q 1i π

The existence of such a sequence (for K, Q, and G) is an alternative way of saying that G is an extension
of K by Q.
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Definition 2.1.20 We say that two extensions G and G′ are equivalent if there is an isomorphism γ : G → G′

such that the following diagram commutes:

G

1 K Q 1

G′

i π

i′ π′

ϕ

γ is called an isomorphism of extensions, and it’s not just an isomorphism between the groups them-
selves, it’s also an isomorphism of “how” they extend K by Q.

We’ll also need to talk a bit about coboundaries.

Theorem 2.1.21 For any two factor sets f and f ′ arising from transversals of the same group extension
G realizing data (Q,K, θ), there’s a function h : Q → K with h(1) = 0 such that

f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x).

Proof. We know that l′(q)− l(q) ∈ K since they’re in the same coset of K, so denote l′(q)− l(q) = h(q). This
defines a function h : Q → K, and it’s not too hard to check that h(1) = 0. Next,

l′(x) + l′(y) = h(x) + l(x) + h(y) + l(y) = h(x) + xh(y) + l(x) + l(y) = h(x) + xh(y) + f(x, y) + l(xy)

= h(x) + xh(y) + f(x, y)− h(xy) + l′(xy).

Thus f ′(x, y) = h(x) + xh(y) + f(x, y)− h(xy), and since K is abelian, the result follows.□

Such an expression on the right is called a coboundary, and is a special type of factor set.

Definition 2.1.22 We call g : Q×Q → K a coboundary if there’s a function h : Q → K with h(1) = 0 such
that

g(x, y) = xh(y)− h(xy) + h(x).

Coboundaries give us a new characterization of equivalent extensions.

Theorem 2.1.23 Let G and G′ be extensions of K by Q. G and G′ are equivalent iff they realize the same
data (Q,K, θ) and there are factor sets f of G and f ′ of G′ so that f − f ′ is a coboundary.

Proof. First off, assume that G and G′ are equivalent. Commutativity of the diagram gives γ(a) = a for
all a ∈ K. Moreover, if x ∈ Q, then for any transversal l : Q → G,

x = π(l(x)) = π′γ(l(x)).

That is, γl : Q → G′ is another transversal. Applying γ to the equation l(x)+ l(y) = f(x, y)+ l(xy) shows that
γf is the factor set determined by the transversal γl. But since f(x, y) ∈ K we know that γf = f , meaning
that f is also a factor set of G′. We can take f ′ = f and h(x) = 0 for all x so that h(1) = 0 and

f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x).

Conversely, suppose that there exist f, f ′ arising respectively from transversals l of G and l′ of G′ (with l(1) =
l′(1) = 0), and a function h : Q → K with h(1) = 0 such that

f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x).
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Each element of G has a unique expression of the form a+ l(x), where a ∈ K and x ∈ Q, and addition is given
by

[a+ l(x)] + [b+ l(y)] = a+ xb+ f(x, y) + l(xy).

There’s a similar description of addition in G′. Define γ : G → G′ by

γ(a+ l(x)) = a− h(x) + l′(x).

We know that x = π(a+ l(x)), while

π′γ(a+ l(x)) = π′(a− h(x) + l′(x)) = π′(l′(x)) = x.

Thus π′γ = π. Next, i′(a) = i(a) = a for all a ∈ K; they’re really embeddings and we just identify the three.
Since l(1) = 0, we have γ(a) = γ(a + l(1)) = a + h(1) + l′(1) = a, for all a ∈ K. Thus all three functions act
as the identity on K, so since i and i′ have domain K, i′ = γi. The other composition cases can be computed
based on this one, and you can see that the diagram commutes. Furthermore, it’s not too hard to check that γ
is a bijection, so what remains is to check that γ is a homomorphism. We see that

γ([a+ l(x)] + [b+ l(y)]) = γ(a+ xb+ f(x, y) + l(xy)) = a+ xb+ f(x, y)− h(xy) + l′(xy).

Next,

γ(a+ l(x)) + γ(b+ l(y)) = a− h(x) + l′(x) + b− h(y) + l′(y) = a− h(x) + xb− xh(y) + f ′(x, y) + l′(xy)

= a+xb+f ′(x, y)−xh(y)+h(xy)−h(x)−h(xy)+ l′(xy) = a+xb+f ′(x, y)−f ′(x, y)+f(x, y)−h(xy)+ l′(xy)

= a+ xb+ f(x, y)− h(xy) + l′(xy).

We got the same result so γ is a homomorphism, completing the proof.□

Definition 2.1.24 We denote Z2(Q,K, θ) to be the set of all factor sets, and B2(Q,K, θ) to be the set of
all coboundaries.

It’s not too hard to check that Z2(Q,K, θ) forms an abelian group under +, where (f+g)(x, y) = f(x, y)+g(x, y).
B2(Q,K, θ) forms a subgroup.

Definition 2.1.25 The second cohomology group, denoted H2(Q,K, θ), is defined to be the quotient
group Z2(Q,K, θ)/B2(Q,K, θ). This is well-defined since all subgroups of abelian groups are normal.

Theorem 2.1.26 Let E be the set of equivalence classes of extensions G realizing data (Q,K, θ). If you
define ϕ : H2(Q,K, θ) → E so that ϕ(f +B2) = Gf , then ϕ is a bijection.

Proof. First of all, we need to check well-definedness since it could depend on the choice of representative
f . We know that if g ∈ f + B2(Q,K, θ) then f and g differ by a coboundary, so since f and g are factor sets
of Gf and Gg respectively, we know that Gf and Gg are equivalent. Conversely, if Gf and Gg are equivalent,
then there are factor sets f ′ of Gf and g′ of Gg that are in the same coset. But by Theorem 2.1.21 we know
that g′ and g lie in the same coset, and so do f and f ′, so indeed g ∈ f + B2(Q,K, θ). This shows that ϕ is
well-defined and injective. Surjectivity is Theorem 2.1.15, thus ϕ is a bijection.□

So not only have we found out that Gf and Gg are equivalent when f and g differ by a coboundary, we
can create a group structure on them where Gf +Gg = Gf+g, making ϕ an isomorphism!

3 Using the Method In Practice

So, to recap, we found a way to split extensions up via homomorphisms θ : Q → Aut(K), and we not only
classified them, but we endowed them with a nice abelian group structure. Here’s an example it to show how
this works:
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Let’s compute all the extensions of C3 by C2. Call the elements of C2 1 and a, and call the elements of
C3 0, g, and 2g. For starters, what are the homomorphisms θ : C2 → Aut(C3)? The automorphisms of C3 are
the ones that either preserve everything, which is the identity e, or invert everything, call that automorphism
t. We know that θ(a) is either e or t, and both of these cases extend to homomorphisms (identity elements
automatically map to identity elements under homomorphisms).

Next, all equivalence classes of factor sets f : C4 × C4 → C3. We only need to determine f(a, a) because we
know the other values are 0. So set f(a, a) = ng for some n = 0, 1, or 2. We can write f(am1 , am2) = nm1m2g.
In the case that θ(a) = e, we know that θ is trivial, so the cocycle identity becomes

f(x, y) + f(xy, z) = f(y, z) + f(x, yz).

For what n is this true? Well, letting x = am1 , y = am2 , and z = am3 , we get

nm1m2g + n(m1 +m2)m3g = nm2m3g + nm1(m2 +m3)g.

Distributing and commuting the terms, we see that this is true no matter what n is. How about the cobound-
aries? We’ll denote them F instead of g since we already have a g. Again, we only need to look at F (a, a) since
the other values are 0. We compute that:

F (a, a) = ah(a)− h(a2) + h(a) = h(a)− 0 + h(a) = 2h(a).

Of course, h(a) could be anything, which means 2h(a) could be anything since h(a) has order dividing 3 thus
2 · 2h(a) = 4h(a) = h(a). But the same was true for f(a, a), so actually the coboundaries are all the factor sets!
Thus H2(C2, C3, θ) is trivial and the operation on the only extension is

(k1, q1) + (k2, q2) = (k1 + q1k2 + f(q1, q2), q1q2) = (k1 + k2, q1q2).

This is the direct product C2 × C3
∼= C6.

If θ(a) = t, then again we let f(a, a) = ng, we note that f(am1 , am2) = nm1m2g, and we figure out for
which n the following equation holds:

nm1m2g + n(m1 +m2)m3g = (−1)m1nm2m3g + nm1(m2 +m3)g.

Plugging in m1,m2,m3 = 1, we get that

ng + 2ng = −ng + 2ng,

or
0 = ng.

This means that n = 0, so Z2(Q,K, θ) is trivial and automatically H2(Q,K, θ) is trivial. As before, the unique
extension is the semidirect product with action θ, which is denoted D3.

Now, one minor problem is that, although we classified equivalent extensions nicely, it turns out that iso-
morphic extensions are not necessarily equivalent. That is, a group G can be an extension of K by Q in
multiple ways. Another problem, this time major, is of course that we’ve only done this in the case that K is
abelian. What if K isn’t abelian?

4 Computing a Case Where K is Nonabelian

There’s no general method for any K and Q including nonabelian K, which is why the Group Extension Prob-
lem is unsolved. Although, it’s not like you can’t do any nonabelian cases. For one thing, if Q is trivial then K
is the only extension of K by Q. Also, if K and Q are small, like say K = D3 and Q = C2 (smallest nonabelian
nontrivial case), then the extensions are not too hard to compute through brute force (once you know the groups
of order 12). In fact, let’s do that!
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To start, the five different groups of order 12 are: C12, C6 × C2, D6, A4, and Q12.

Definition 4.1 The dyciclic groupQ12 has elements {e, a, · · · , a5, x, xa, · · · , xa5} where an·am = an+m (mod 6),
xan · am = xan+m (mod 6), anxam = xam−n (mod 6), and lastly xanxam = am−n+3 (mod 6).

Definition 4.2 The diahedral group D6 is the semidirect product C6 ×θ C2 where θ(1) = 0 and θ(a) is
the inversion automorphism, similarly to D3.

Now, C12 and C6 × C2 can be immediately discarded because abelian groups cannot have nonabelian sub-
groups. If A4 was an extension of D3 by C2, then R would have to be a 3-cycle and T would have to be a
double transposition. But those together actually generate all of A4, so we may discard A4.

Now, what about D6? Well, letting D3 = ⟨R2, T ⟩ and ⟨R3⟩, we see that D6 is actually the direct product
of D3 and C2. But also, if we choose C2 = ⟨RT ⟩, then it turns out conjugacy by RT switches R and R2,
switches T and R2T , but preserves e and R4T , so just a semidirect product. This is an example of how isomor-
phic extensions are not necessarily equivalent, though in it K is nonabelian.

As for Q12, we know that
xanxan = an−n+3 = a3

for all n. So since a3 has order 2, we know that xan has order 4. Thus, since R has order 3 and T has order 2,
T has to be a3 and R has to be a2 or a4. But that means they generate C6, a contradiction. So D6 is the only
extension of D3 by C2.

5 Ways to attack this problem when K is nonabelian

The method we have is only useful when K is abelian- abelian groups are only a small section of all the groups.
And it’s not practical to attack everything through brute force. So let’s explore some theorems that help in
certain cases when K is nonabelian.

First, we’ll need some definitions (and a theorem):

Definition 5.1 We say that K is a Hall subgroup of G, named after P. Hall, if gcd(|K|, |G|/|K|) = 1. That is,
if |K| = n and |G| = mn then gcd(n,m) = 1.

Definition 5.2 Let G be a group and let K and Q be subgroups. If K∩Q = {e} and KQ = G, then we say that
K and Q are complements of each other. Note that if K⊴G then G is an inner semidirect product of K and Q.

Definition 5.3 Let K1,K2 ≤ G. We say that K1 and K2 are conjugate if there’s a g ∈ G such that if
k ∈ K1 then gkg−1 ∈ K2 and a : K1 → K2 defined by a(k) = gkg−1 is a bijection. Compare this to conjugation
by g: it’s the same except with elements instead of subgroups.

Definition 5.4 A p-group G is a group such that every element of G has order a power of p. A Sylow
p-subgroup of a group G is a p-subgroup P such that there’s no p-subgroup P ′ > P . That is, P is maximal.

Definition 5.5 Let G be a group, X a set, and ⋆ : G×X → X an operation. That is, ⋆ takes in a thing from
G and a thing from X and outputs a thing in X. We call ⋆ a group action that G has on X if e ⋆ x = x and
(g · h) ⋆ x = g ⋆ (h ⋆ x).

Definition 5.6 Let ⋆ be a group action of a group G on a set X, and let x ∈ X. The orbit of x, de-
noted orb(x) is the set of all elements in X of the form g ⋆ x for some g ∈ G.

Definition 5.7 Let g ∈ G, x ∈ X, and ⋆ be a group action. We say g fixes x, or x is fixed by g if
g ⋆ x = x. We denote fix(g) to be the set of all x that are fixed by g, and stab(x), called the stabilizer of x to
be the set of all g that fix x. Notice that fix(g) ⊆ X and stab(x) ≤ G (not necessarily normal).
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Theorem 5.8 Let ⋆ be an action of G on X and let x ∈ X. Then |orb(x)||stab(x)| = |G|. This is called
the orbit-stabilizer theorem.

Here’s a result:

Theorem 5.9 Let K be an abelian normal Hall subgroup of a group G. Then K has a complement in
G.

Remark. I know we said that K wouldn’t have to be abelian, and K doesn’t for this theorem to be true,
but we need to prove this first before we can get to that.

Proof. Let |K| = m, let Q = G/K, and let |Q| = n, so that gcd(m,n) = 1. It suffices to prove that
every factor set f : Q×Q → K is a coboundary. Define σ : Q → K by

σ(x) =
∑
y∈Q

f(x, y).

This is well-defined since Q is finite and K is abelian. Sum the cocycle identity

xf(y, z)− f(xy, z) + f(x, yz) = f(x, y)

over all z to obtain
xσ(y)− σ(xy) + σ(x) = nf(x, y)

(as z ranges over all of Q, so does yz). Since gcd(m,n) = 1, there are integers s and t with sm+ tn = 1. Define
h : Q → K by h(x) = tσ(x). Then h(1) = 0 and

xh(y)− h(xy) + h(x) = f(x, y)−msf(x, y).

But since sf(x, y) ∈ K we know that msf(x, y) = 0, thus f is a coboundary.□

Example 5.10 Let’s prove that C15 is the only group of order 15. There’s a theorem we’re going to use
called Cauchy’s Theorem, which is sort of like a converse to Lagrange’s Theorem:

Theorem 5.11 Let G be a group and let p
∣∣|G|. Then G has an element of order p.

Corollary 5.12 A finite group is a p-group iff its order is a power of p.

Now, take any group G of order 15. Using this theorem, we know that G has an element a of order 5 and
an element b of order 3. Since every power of a has order 5 except e and any power of b has order 3 except
e, we know that ⟨a⟩ ∩ ⟨b⟩ = {e} (recall that ⟨g⟩ denotes the subgroup of powers of g). Now, let’s show that if
ax1by1 = ax2by2 then x1 ≡ x2 (mod 5) and y1 ≡ y2 (mod 3), that is ax1 = ax2 and by1 = by2 . Multiplying on
the left by a−x2 and on the right by b−y1 gives

ax1−x2 = by2−y1 .

But since ⟨a⟩ ∩ ⟨b⟩ = {e}, we know that ax1−x2 = by2−y1 = e, so ax1 = ax2 and by1 = by2 . Thus ⟨a⟩⟨b⟩ has 15
elements which means that it must be the whole group G. Thus ⟨a⟩ and ⟨b⟩ are complements. But suppose ⟨a⟩
is not normal. That means that ⟨bab−1⟩ ∩ ⟨a⟩ = {e}. Why? Well, otherwise, they intersect somewhere other
than e, so banb−1 = (bab−1)n = am for some m,n not congruent to 0 mod 5. But we could then raise to the
power of n’s multiplicative inverse mod 5 (since n ̸≡ 0 and 5 is prime), so bab−1 = am. Since conjugation by b2

is just conjugation by b compose conjugation by b and since conjugation by e does nothing, we know that their
intersection is {e} after all. But then by the same logic as earlier, ⟨a⟩⟨bab−1⟩ has 25 elements, a contradiction
since G only has 15.

Thus ⟨a⟩ is normal and G = ⟨a⟩ ⋊ ⟨b⟩. However, it turns out that Aut(C5) = C4, and the only homomor-
phism θ : C3 → C4 is the one that sends everything to e, also called the trivial homomorphism. Why is that
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the only homomorphism? Well, because e is the only element x of C4 such that x3 = e, which holds true for
the elements of C3, and homomorphisms need to preserve that.

Indeed, C5 is a normal Hall subgroup of C15 and C3 is a complement.

Before we can remove the abelianess condition, we have some stuff to mention.

Definition 5.13 Let G be a group. We denote Z(G), called the center of G to be the subset of all ele-
ments z ∈ G that commute with everything, that is for all x ∈ G, zx = xz.

Definition 5.14 Let Q ≤ G. The normalizer of Q in G, denoted NG(Q) is the set of all g ∈ G such
that gQg−1 = Q. Note that NG(Q) ≤ G and Q⊴NG(Q). We also define CG(Q), called the centralizer of Q
in G to be the set of all g ∈ G such that for any q ∈ Q, gq = qg, or gqg−1 = q. Note that CG(Q) ≤ NG(Q) and
that CG(Q) ∩Q = Z(Q).

Theorem 5.15 Let K be a normal subgroup of a finite group G. If P is a Sylow p-subgroup of K for
some prime p, then

G = KNG(P ).

This is called the Frattini Argument.

Theorem 5.16 Let ϕ : G → H be a homomorphism. Then

G/ ker(ϕ) ∼= ϕ(G).

Theorem 5.17 Let N ⊴G and K ≤ G. Then N ⊴NK ≤ G, N ∩K ⊴K, and

NK/N ∼= K/N ∩K.

Theorem 5.18 Let H ⊴G and let T ≤ K such that T ⊴G. Then T ⊴K and

(G/T )/(K/T ) ∼= G/K.

Theorem 5.19 Let N ⊴ G. There is a bijection from the set of subgroups of G containing N to the set
of subgroups of G/N sending K to K/N . Furthermore, K ⊴G is normal iff K/N ⊴G/N .

These are called the four isomorphism theorems, stated in order from first to fourth.

Lemma 5.20 Let P be a p-group. Then the center Z(P ) ̸= 1.

Now we remove the condition that K is abelian.

Theorem 5.21 Let K be a normal Hall subgroup of a group G. Then K has a complement in G.

Proof. Let |K| = m and let |G| = mn so that gcd(m,n) = 1. We prove, by induction on m ≥ 1, that G
contains a subgroup of order n. The base step is trivially true (take {e}). If K contains a nontrivial subgroup
T which is normal in G, then K/T ⊴G/T and

|(G/T )/(K/T )| = (|G|/|T |)/(|K|/|T |) = |G|/|K| = n,

so that K/T is a normal Hall subgroup of G/T (because |K/T |
∣∣|K| = m). If |K/T | = m′, then m′ < m and

[G/T : K/T ] = n. The inductive hypotheses gives a subgroup N/T ≤ G/T of order n. So then |N | = n|T | and
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gcd(n, |T |) = 1 (since |T | divides m), so that T is a normal Hall subgroup of N (with |T | < m and with index
[N : T ] = n). By induction, N and hence G contains a subgroup of order n.

We can now assume that K is a minimal normal subgroup of G. If p is a prime dividing m and if P is a
Sylow p-subgroup of K, then the Frattini argument gives G = KNG(P ). By the second isomorphism theorem,

G/K = KNG(P )/K ∼= NG(P )/(K ∩NG(P )) = NG(P )/NK(P )

so that |NK(P )|n = |NK(P )||G/K| = |NG(P )|. If NG(P ) is a proper subgroup of G then |NK(P )| < m, and in-
duction shows that NG(P ) contains a subgroup of order n. Thus we can assume that NG(P ) = G, that is, P⊴G.

Since K ≥ P and K is a minimal normal subgroup of G, we have that K = P (P ̸= {e} since p
∣∣m.) By

what we’ll see later, Z(P ) ⊴ G as well. Minimality applies again, and Z(P ) = P (we know Z(P ) ̸= 1 because
P is a finite p-group). But that means P = K is abelian, and the proof follows from Theorem 5.9 (since a
complement must have order n).

So we have Q ≤ G has order n. The only order of any possible element in K ∩Q is 1 since gcd(m,n) = 1. But
e is the only element of order 1 of any group, so K ∩ Q = {e}. Then, using similar logic to Example 5.10, we
have that KQ generates mn distinct elements thus all of G. This means that Q is a normal complement of K.□

Note: We said, “by what we’ll see later, Z(P )⊴G as well.” This is why it’s true:

Definition 5.22 Let H ≤ G. We say that H is characteristic, denoted H char G, if every automorphism ϕ
of G preserves H, that is ϕ(H) = H (ϕ(H) is the image of ϕ restricted to H). It’s checkable that conjugation
is an automorphism, so all characteristic subgroups are normal (preserved under conjugation).

Since automorphisms preserve commutativity, we know that Z(G) is characteristic.

Lemma 5.23 If H char G and K char H then K char G. If H ⊴ G and K char H then K ⊴ G (note that if
H ⊴G and K ⊴H this doesn’t necessarily mean K ⊴G).

Proof. As for the first case, take any automorphism ϕ of G. We know that ϕ(H) = H since H char G, so
ϕ|H (denoting ϕ restricted to H) is an automorphism of H. Thus ϕ(K) = ϕH(K) = K and K char G.

As for the other part, take any g ∈ G. Since H ⊴ G we know gHg−1 = H so ϕ, denoting conjugation by
g restricted to H, is an automorphism of H. Thus gKg−1 = ϕ(K) = K and K ⊴G.□

Thus since P ⊴G and Z(P ) char P , we know Z(P )⊴G.

Here’s a further theorem about normal Hall subgroups.

Theorem 5.24 Let K be an abelian normal Hall subgroup of a group G. Then all complements of K are
conjugate.

Proof. Again we denote |K| by m and |G/K| by n, and gcd(m,n) = 1. Let Q1 and Q2 be complements
of K. It’s not too hard to check that there are transversals li : G/K → G, for i = 1, 2, with li(G/K) = Qi

and with each li a homomorphism. It follows that the factor sets fi arising from li (respectively) are identically
zero. If we define h(x) = l1(x)− l2(x), then

0 = f1(x, y)− f2(x, y) = xh(y)− h(xy) + h(x).

Summing over all y ∈ G/K gives the following equation in K:

0 = xa0 − a0 + nh(x),

where a0 =
∑

y∈G/K h(y). Let sm+ tn = 1 and define b0 = ta0. Since K has order m,

−h(x) = smh(x)− h(x) = −tnh(x) = xta0 − ta0 = xb0 − b0
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for all x ∈ G/K. We claim that −b0 +Q1 + b0 = Q2. If l1(x) ∈ Q1, then

−b1 + l1(x) + b0 = −b0 + xb0 + l1(x) = −h(x) + l1(x) = l2(x)− l1(x) + l1(x) = l2(x).□

Again, we’ll need a bit of background before we can remove the abelianess condition.

Definition 5.25 An elementary p-group is a group G with all elements having order 1 or p. An ele-
mentary abelian p-group is an elementary p-group that is abelian.

Definition 5.26 A minimal normal subgroup of a group G is a normal subgroup N ̸= {e} such that
there’s no normal subgroup K ⊴G with {e} < K < N .

Theorem 5.27 If G is a finite solvable group, then every minimal normal subgroup of G is an elementary
abelian p-group for some prime p.

Definition 5.28 Let G be a group. The commutator subgroup of a group G, denoted G′, is the gen-
erating group of the set of commutators, that is the elements of the form aba−1b−1.

This next lemma is called the Dedikind Law:

Lemma 5.29 Let H, K, and L be subgroups of G with H ≤ L. Then HK ∩ L = H(K ∩ L) (we don’t
assume either HK or H(K ∩ L) is a subgroup).

Theorem 5.30 Let P be a Sylow p-subgroup of a finite group G.

(i) If there are r Sylow p-subgroups in the conjugacy class of P , then r is a divisor of |G| and r ≡ 1 (mod p).
(ii) All Sylow p-subgroups are conjugate to P .
(iii) The amount of Sylow p-subgroups of G is a divisor of |G| conjugate to 1 mod p.

That’s called the Sylow Theorem.

Now we can reduce the conditions, but a bit less this time.

Theorem 5.31 Let K be a normal Hall subgroup of a group G. If at least one of K or G/K is solvable,
then all complements of K are conjugate.

Proof. Let |K| = m, let |G/K| = n, and let Q1 and Q2 be complements of K in G. Using induction on
|G|, the base case is trivial.

As for induction, first off, assume that K is solvable. Since K ′ char K and K⊴G, again by Lemma 5.23 K ′⊴G.
Furthermore, Q1K

′/K ′ ∼= Q1/(Q1 ∩ K ′) ∼= Q1 (because Q1 ∩ K ′ ≤ Q1 ∩ K = {e}), so that |Q1K
′/K ′| = n.

We know that K ′ < K since K is solvable. If K ′ = 1, then K is abelian and again the result is Theorem 5.24.
Otherwise, |G/K ′| < |G|, and the inductive hypotheses shows that the subgroups Q1K

′/K ′ and Q2K
′/K ′ are

conjugate in G/K ′. Thus there’s a g ∈ G/K ′ with g(Q1K
′/K ′)g−1 = Q2K

′/K ′, so then gQ1g
−1 ≤ Q2K

′

(where gK ′ = g). But K ′ < K gives |Q1K
′| < |G|, so the subgroups gQ1g

−1 and Q2 of order n are conjugate
in Q2K

′, thus are conjugate in G (showing Q1 and Q2 are conjugate as well).

Now assume that G/K is solvable. Let M/K be a minimal normal subgroup of G/K. Since K ≤ M , the
Dedekind law gives

M = M ∩G = M ∩QiK = (M ∩Qi)K

for i = 1, 2. Note also that M ∩ Qi ⊴ Qi. Then, solvability of G/K gives that M/K is an elementary abelian
p-group for some prime p by Theorem 5.27. If M = G, then G/K is an elementary abelian p-group, and since
M/K is a minimal normal subgroup it’s not too hard to see that |M/K| = p (therefore |G/K| = p). Thus Q1
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and Q2 (∼= G/K) have to be Sylow p-subgroups of G since they’re Hall subgroups, and hence they’re conjugate
by the Sylow theorem.

Thus we can assume that M < G. We know M ∩ Qi is a complement of K in M since M = (M ∩ Qi)K
and (M ∩ Qi) ∩ K ≤ Qi ∩ K = 1. By the inductive hypotheses there is x ∈ M ≤ G with M ∩ Q1 =
x(M ∩Q2)x

−1 = M ∩ xQ2x
−1. If we denote J = M ∩Q1, then J ⊴Q1, and so

Q1 ≤ NG(J).

Two applications of the Dedikind Law give

NG(J) = NG(J) ∩KQ1 = (NG(J) ∩K)Q1

and
J [NG(J) ∩K] ∩Q1 = J([NG ∩K] ∩Q1) = J

(because (NG(J)∩K)∩Q1 ≤ K∩Q1 = 1). Thus Q1/J is a complement of J(NG(J)∩K)/J in NG(J)/J . By sim-
ilar logic and the fact that M∩xQ2x

−1 = M∩Q1, we know that xQ2x
−1/J is a complement of J(NG(J)∩K)/J

in NG(J)/J as well. By the inductive hypotheses, there is y ∈ NG(J)/J with Q1/J = y(xQ2x
−1/J)y−1. It

follows that Q1 = yxQ2x
−1y−1, where yJ = y, as desired.□

It turns out that a theorem called the Feit-Thompson theorem removes the solvability part entirely:

Theorem 5.32 All groups of odd order are solvable (!)

Since |K| and |G/K| = |G|/|K| are relatively prime, by this theorem at least one of them must be odd so
either K or G/K is solvable. Thus we may remove that condition, giving us a unified theorem:

Theorem 5.33 Let K be a normal Hall subgroup of a group G. Then K has a complement in G and all
complements are conjugate.

We mentioned a theorem called the Sylow Theorem, and it is very useful. Its proof is quite nice, so let’s
prove it. We’ll first need a lemma.

Lemma 5.34 Let P be a Sylow-p subgroup of a finite group G.

(i) |NG(P )/P | is coprine to p, that is their gcd is 1.
(ii) If a ∈ G has order some power of P and aPa−1 = P , then a ∈ P .

Proof. (i) If they’re not coprime, the only possibility is that p
∣∣|NG(P )/P |. Then Cauchy’s theorem shows

that NG(P )/P contains some element aP of order P . Thus S⋆ = ⟨aP ⟩ has order p. If you take the union over
S⋆ and call it S, it’s not too hard to check that this is a subgroup (of NG(P )) since it’s just all the elements from
some coset of ⟨aP ⟩. Since |S| = |S⋆||P | = p|P |, we know that S is a p-group. But S > P , so this contradicts
the fact that P is Sylow.

(ii) To start, we know that a ∈ NG(P ) since aPa−1 = P . So suppose a /∈ P . Then aP ̸= P . Since |aP |
∣∣|a|

(which you can check), we know that |aP | is a power of p, so since |aP | ̸= 1 we know |aP | is a multiple of P .
This contradicts (i) by Lagrange’s theorem.□

Proof of Sylow Theorem. (i) Let X = {P1 · · ·Pr} be the set of all conjugates of P , where P is denoted by
P1 here. If we take g ⋆ Pi = gPig

−1, this is a group action of G on X (and X is an orbit). If you take any
Sylow p-subgroup Q of G, you can restrict ⋆ to Q and that would still be a group action. By the orbit-stabilizer
theorem all of the orbits under this action have to have order dividing |Q|, thus a power of p. What would it
mean to say that one of these orbits has size 1? If we call it {Pi}, then any element q ∈ Q would be such that
qPiq

−1 = Pi. But then by our lemma, q ∈ Pi and Q ≤ Pi. But since Q is Sylow we know Q = Pi. Taking Q to
be P1 = P we have that {Pi} can’t be an orbit unless i = 1 (in which case it is), so that’s the only orbit of size
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1. But then since the other orbit sizes are powers of p we know they must be multiples of p, so if you union the
orbits you get that

r = |X| = 1 + kp

for some k (since everything must be in some orbit). That is,

r ≡ 1 (mod p).

We know that the action of G on X has only one orbit by definition of X, so again the orbit-stabilizer theorem
gives r = |X|

∣∣|G|.

(ii) Suppose there were a Sylow p-subgroup Q not conjugate to P , that is Q /∈ X. Then, by what we’ve
seen any orbit size is a power of p not equal to 1, meaning all orbits have size a multiple of p. But that means
r ≡ 0 (mod p), contradicting the previous congruence.

(iii) By (ii), we know X contains all Sylow p-subgroups of G, so r is the amount of them. The result fol-
lows from (i).□

It’s not too hard to check that conjugates of Sylow p-subgroups are Sylow p-subgroups themselves (Hint:
Conjugation is an automorphism), so the Sylow p-subgroups are a conjugacy class.

We’ll also talk a bit about wreath products.

Let’s say you have a chandelier with m arms and n lights arranged on each arm. What is the group of
ways in which you can twist the chandelier around, where you can rotate the arms on it and separately rotate
the lights on each arm (operation is composition)? Well, this is an example of a Wreath Product.

Definition 5.35 Take two groups D and Q, a set {Dω} of isomorphic copies of D indexed by a set Ω, and
take a group action ⋆ that Q has on Ω. You define the wreath product of D and Q, denoted D ≀ Q, to be the
semidirect product of Πω∈ΩDω (this is the direct product) and Q, with an action · defined by q · (dω) = (dqω),
where dqω is the element in Dq−1⋆ω corresponding to dω (since the groups are isomorphic).

What’s basically happening is that Q represents the rotations of the arms, Ω represents the arms, ⋆ repre-
sents the action Q has on the arms, and Dω represents the rotations of the lights on the arm represented by ω.
These rotation groups should all be isomorphic, and our action of Q on K is basically just moving the rotations
on the clusters of lights so they rotate another cluster of lights instead (depending on the permutation q imposes).

Here’s another example where the wreath product comes up as a symmetry group.

Definition 5.36 A graph is a set V , called vertices, combined with an adjacency relation on V denoted
v ∼ u, a relation that is symmetric (v ∼ u implies u ∼ v) and irreflexive (v ̸∼ v).
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Example 5.37 Consider the diagram below.

• •

• • •

• •

• •

•

• •

• •

• • •

• •

The symmetry group of this graph would be all permutations of the vertices that preserve the connections.
The center vertex is the only vertex with six connections, the others have 1 or 3, so it stays where it is. The
slightly outer vertices with 3 connections permute, and each vertex branching out of one of those goes to a
vertex branching out of its image under the permutation. As before, this is a wreath product S2 ≀ S6.

The following theorem (and definition) show how it’s relevant to the Group Extension Problem.

Definition 5.38 The regular wreath product D ≀r Q is the wreath product with Ω = Q and ⋆ defined such that
g ⋆ h = g · h.

Here’s a neat theorem about regular wreath products.

Theorem 5.39 If D and Q are groups (with D not necessarily abelian) then the regular wreath product
contains an isomorphic copy of every extension of D by Q. In other words, there’s an injective homomorphism
from every extension of K by Q to D ≀r Q.

Proof. If G is an extension of D by Q, then there is a surjective homomorphism G → Q with kernel D,
which we denote by a mapping to a. Choose a transversal l : Q → G.

For a ∈ G, define σa : Q → D by σa(x) = l(x)−1al(a−1x). (We treat this as an element of K: Basically,
you choose σa(q) for the coordinate in Dq.) To see that this actually maps into D,

l(x)−1al(a−1x)D = l(x)−1al(a−1)l(x)D = l(x)−1al(a−1)Dl(x) = l(x)−1aa−1Dl(x) = l(x)−1Dl(x) = D.

Thus σa(x) ∈ D. If q ∈ Q, denote σq
a to be q acting on σa ∈ K. Then, if a, b ∈ G we have

σa(x)σ
a
b (x) = σa(x)σb(a−1x) = l(x)−1al(a−1x)l(a−1x)−1bl(b−1a−1x) = l(x)−1abl((ab)−1x) = σab(x).

This leads us to define ϕ : G → D ≀r Q by
θ(a) = (σa, a).
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Our equation above shows that ϕ is a homomorphism:

ϕ(a)ϕ(b) = (σa, a)(σb, b) = (σaσ
a
b , ab) = (σab, ab) = ϕ(ab).

Finally, we show ϕ is injective. If a ∈ kerϕ, then a = 1 and σa(x) = 1 for all x ∈ Q. The second equation gives
σa(x) = l(x)−1al(a−1x) = 1. Since a = 1, we know that a−1 = 1, so the equation says that l(x)−1al(x) = 1.
Thus a = 1.□

Corollary 5.40 If S is a class of finite groups closed under subgroups and semidirect products (i.e. if A ∈ S
and C ≤ A then C ∈ S and if A,B ∈ S then A⋊θ B ∈ S for all θ), then S is closed under group extensions.

Proof. Suppose G is an extension of K by Q, where both D,Q ∈ S. Since S is closed under semidirect
products, it is closed under finite direct products. Hence, K = Πq∈QDq ∈ S. Again since S is closed under
semidirect products, the wreath product D ≀r Q = K ⋊ Q ∈ S. Lastly, since S is closed under subgroups, the
theorem gives G ∈ S.□

For more details about this topic and more different approaches, you could look at [4]. To see a more module-
theoretic approach, read [3]. You can also find more details in [1].
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