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1. ABSTRACT

This paper provides a background to calculus of variations and eventually
solves the brachistochrone curve problem. To solve this, this article proves
the Euler-Lagrange equation, which is an equation derived in the 1750s and
is a condition for stationary points. Then the Beltrami Identity is explained,
which is an identity for the Euler-Lagrange equation when ?)_I; = 0. It is pri-
marily used to solve the brachistochrone curve problem. The brachistochrone
curve problem is our final result and will be proved last. Two methods for
proving this problem are explained to provide more depth. Lastly, some other
variational calculus problems are briefly explained if the reader is interested in
learning more.

2. INTRODUCTION

Calculus of variations is thought to have originated with Newton’s minimal
resistance problem in 1687. The problem aims to find the solid of revolution
that experiences minimal resistance when moving at a constant velocity in the
direction of the axis of the solid’s revolution. In essence, the problem requires

the functional
13
I = / yy dz
1+y”

to be minimized, where y(z) represents the curve that creates our solid of
revolution when rotated about the z-axis, and y'(z) = 2. This problem can
be solved using the Euler-Lagrange equation explained later on which will be
briefly explained in a later section.

In 1696, almost a decade later, the brachistochrone curve problem was in-
troduced by Johann Bernoulli. In a scientific journal, he posed the question
simply as:

“Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time.”

Johann and his brother Jakob both attempted to solve it, and Jakob was able
to derive it successfully. Johann produced an incorrect proof and instead pub-
lished his brother’s solution as his own nearly a year later, at which point it
would be proven by others as well.

For six months after the journal was published, Johann received zero responses.
He extended the deadline and eventually, Isaac Newton caught wind of the
problem and attempted it himself. The next day he submitted his solution,
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which turned out to be correct, and in the end, three others were able to pro-
duce a solution: I’'Hopital, Leibniz, and Von Tschirnhaus.

This problem pioneered the way for others to develop the field, and Leonhard
Euler was the first to do so, along with Joseph-Louis Lagrange. The two de-
veloped the pivotal Euler-Lagrange equation in the 1750s while solving the
tautochrone problem, which explores a curve for which a particle on the curve
will reach the bottom of the curve at the same time as it would if it had started
at any other point along the curve. (Thus one can deduce that none of the
five original solutions to the brachistochrone problem used the Euler-Lagrange
equation; however, this paper highlights a proof of the problem that does use
the equation.) Interestingly enough, however, the tautochrone problem was
first solved in 1659 and later published in 1673 by Christiaan Huygens; how-
ever, Huygens provided a geometric proof and so this problem is not considered
to be the first instance of a variational calculus problem, despite having been
solved decades before the minimal resistance problem.

Many prominent mathematicians made contributions to calculus of variations
later on, including Augustin-Louis Cauchy and Emmy Noether, and in the
20th century Marston Morse applied calculus of variations to a field now called
Morse Theory.

This paper will be focusing on the earlier calculus of variations problems.
Many problems in this field have a solution using the Euler-Lagrange equation,
which will be introduced first. After this the Beltrami Identity, which is used
to solve the brachistochrone, will be explained in detail. The brachistochrone
curve problem will be proved after this. The Beltrami is a modification of the
Euler-Lagrange equation; therefore, the solution provided here for the brachis-
tochrone curve problem is not one of the five original solutions received by
Bernoulli; however, it is subjectively easier to follow and understand. Lastly
some other calculus of variations problems will be suggested for the reader to
look into independently if they are interested in learning more.

3. PRELIMINARIES

As the name suggests, calculus of variations uses variations of functions and
functionals to find the extremals of functionals. To define a functional, we
introduce normed vector spaces:

Definition 1. A normed vector space or normed linear space is a vector
space with a norm. More specifically, it represents a vector space R over some
field F' with a norm || - [|. This will be explained more thoroughly later on in
this section.

Normed vector spaces allow us to define concepts such as distance and con-
tinuity within our space. A vector space must obey the following axioms for
all u,v,w eV and a,b € F":

(D) ut (v4+w)+ (u+v) + w;
(2) u+v=v+u

(3) 3z € V where v+ x = v (z is called the zero vector);
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(4) 3z € V where v + x = 0 (x is called the additive inverse);
(5) a(bv) = ab(v);

(6) 1v =wv;

(7) a(u+v) = au + av;

(8) (a+b)v=av+ bv.

For our vector space to be normed, each v € R must be assigned a norm. A
norm is a function f : R — R that heeds the following axioms for all v € R
and a € F":

(1) f(v) =0 if and only if v = 0;
(2) fla-v)=a- f(v);
3) flz+y) < flz)+ f(y).

A normed vector space is important because it allows us to assign a value such
as distance or time to each vector space. This segues nicely into our definition
for functionals:

Definition 2. A functional [ is a type of function that maps a function in R
to R.

Simply put, functionals are a type of function that assigns a real number to
each function within a class. For instance, if we consider the class of all func-
tions that connect two points A and B, then a functional could be obtained
by associating each function with the total length of the path. A typical func-
tional is notated something like

Jlyl = / F(z,y,y) dz,

where F' € C? (that is, F" and F” exist, both of which are continuous) and is
a function of three variables. Functionals essentially take functions and map
them to numbers, much like a normed vector space.

Functions that are the extremals of the functional are called stationary points
of the functional. More specifically:

Definition 3. (stationary point): A stationary point y of a functional I
is a function that is the extremal of I; that is, I[y] produces a value that is
a local maximum or minimum of the functional when compared to all I[y],
where g represents an infinitesimal change in y that still lies within our family
of curves.

Stationary points can be found using the Euler-Lagrange equation, which is
derived and explained later on.
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4. THE EULER-LAGRANGE EQUATION

We will now attempt to find an equation that must be true for a func-
tion that makes a functional stationary. Our result is known as the Euler-
Lagrange equation and can be used to solve many other problems in calculus
of variations. This includes the tautochrone problem, for which the Euler-
Lagrange equation was originally developed, and the brachistochrone, which
will be proved later on in this paper. Such problems can be solved without the
Euler-Lagrange equation, but using the formula makes it significantly simpler.

Say we have two points A, B € R? where A = (z1,y1) and B = (x3,%2). Find
a function y such that the following functional is stationary:

[:/ F(z,y,y') dz.

1

A and B are our fixed boundary points for this function, so it must also be
the case that y(x1) = y; and y(x2) = y.

So suppose y(x) makes I stationary and satisfies our boundary conditions. Let
n(x) be a function where n(x;) = n(xze) = 0. Then we define

y(x) = y(x) + en(x)

for some e. Notice that because n(z1) = n(z2) =0, y(z1) = y1 and y(x2) = y2
and so g(x) has the same bounds.

Because n(z) is arbitrary, g(x) can represent any arbitrary function so long as
it conforms to the previous restrictions set on n(x) and y(x). g(x) represents a
family of curves, but we will attempt to find the specific curve y(x) that makes

I(e) = / F(z,5.7) du

stationary.
Note that I depends only on €, since x gets integrated out of I, and n and y
are fixed functions of x. Since our objective is to make [ stationary, we need

dI
= oo
de

However, notice that

dl

P

e=0

since then y(z) = y(x), which is stationary as well. We can then use this to
differentiate I:

d

de

/ F(z,y,y)de =0
e=0

1

dr = 0.

e=0

X9 a
_F /
/m1 5% (z,y,9)
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Since = doesn’t depend on € and gets integrated out, we can apply the chain
rule of partial differentiation to get

dx = 0.

e=0

2 rdF 0y OF Oy
[ o

Since g(z) = y(z) + en(x), it follows that

J(z) =y (x) +en'(2),

and so
% _
de n
and
o,
Oe )

Plugging this back into our equation we get

/. [+ o]

Integrating the second term by parts, we get

/:22—577’d$:g—5/ mn’dm—/ﬂﬁf(/n')%[g—;} dx

1 x1

bl [l

By the boundary conditions we previously established,

[1]a; =0

and so this turns into

— /:2 n% [2—5} dx.

Plugging this back into our original equation we get

[ GG

[ G w Gl

de =0

e=0

dr =20

e=0
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At e =0, ¥y =y, so this gives

/ 55+ ax ()l =0

Because n is an arbitrary function, the only way to guarantee this expression
holds is if

(%) =0

, which is the Euler-Lagrange equation.

It is important to note that the Euler-Lagrange equation is a necessary con-
dition for y(z) to make I stationary, but it is not sufficient. Thus one cannot
assume that, if this equation is true, then y(z) must indeed make I stationary.

5. THE BELTRAMI IDENTITY

Now we highlight the Beltrami Identity, which is a special case of the FEuler-
Lagrange equation. This occurs when

OF
%—O

for our functional F' across all x. This identity is rarely used in calculus of
variations, but it happens to be of use in solving the brachistochrone problem,
which will appear later.

Recall that the Euler-Lagrange equation is

oF d <8F> —0

dy  da\dy

Multiplying both sides by 1’ we get

(1) M%g-—yéé<%§>

Using the chain rule to take the total derivative of F' with respect to x, we get

ar _or or, or,
dv — Ox Oy (9y’y

@) oF , dF OF OF ,
dy”  dxr Ox Oy v
Substituting (2) into (1) gives

o Lo (G o

We can simplify the equation in brackets by using the reverse of the product
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rule, giving us

Using our assumption that

we get

L) o

Finally, we integrate both sides with respect to x to get

F
F—y’g—y/:C,

where C' is a constant of integration.

6. THE BRACHISTOCHRONE PROBLEM

We can use our previous findings to determine the shape of a brachistochrone curve,
which is the path of quickest descent from one point to another point of lower
elevation where the only force acting upon our particle is gravity. This problem
was posed by Johann Bernoulli in 1696 and in the end, five mathematicians
provided their solutions to the problem, each of whom determined that the
curve happens to be a cycloid.

Theorem 1. (The Brachistochrone Problem) The curve from one point to
another that takes the shortest amount of time for a particle to slide along it
frictionlessly under the influence of gravity; that is, the brachistochrone curve,
15 a cycloid.

Proof. By rearranging the formula for speed, we obtain t = %; in other words,
time equals distance divided by speed. Thus the time taken to travel a given
curve from P1 to P2 can be found using the integral

P2ds
to :/ -_—.
p1 U

We can rewrite this using the conservation of energy formula, which states
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that the sum of the initial potential and kinetic energy equals the sum of the
final potential and kinetic energy. We have the following formulas for kinetic
and potential energy:

1

KE = —mV?
2

PE = mgh

At P1, our particle is not moving and thus has no kinetic energy. If P1 has
a height h = y, the particle initially has potential energy mgy. If we specify
that P2 has a height of h = 0 (and thus y can be adjusted accordingly), then
our particle at point P2 has a potential energy of 0 and a kinetic energy of
%mVQ. Thus we obtain the equation

1
mgy = §mV2
v =1/2gYy.

Using the Pythagorean Theorem for d.S, we can rewrite

dS = \/dz? + dy?
— V¥ P

and so we can plug these values into our original integral to obtain

P2 T
1 /2
— VIity*© dz,
P V29Y

to
meaning our function to be varied is

1 + y/2
29y

F(y,y') =

o : oF _
Because F'(y,y’') does not explicitly contain z, - = 0 and so we can use the

Beltrami Identity to vary this function rather than the Euler-Legrange equa-
tion.

oF ' _1 _
8—y,—y(y +1)72(2gy)

N

and we can plug this into the Beltrami Identity to get
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V1+y? Yy e

1 + yl2 12

Y
— - C
V29y - V14?2 V1+y7 29y

1
e
V2g9y -/ 1+y?

e ~(1+ (7))

Since the left side of this equation is a constant, we can define

1
=
29C?

1+ () -

This turns into the parametric equations

to get

T = %k2<9—sin0>,

Yy = %kQ(l —cos@).

These parametric equations are that of a cycloid and can be easily verified by
plugging these parametric equations into our previous result. We can find %
by taking the derivatives of y and x with respect to § and dividing them:

d
dy @
dx
dx %
B %kQSinﬁ
~ 1k2(1 - cos®)
B sin 6
1 —cosh’

So we plug this into our differential equation to get



10 CONNOR HUH

(1 (52) Y=o+ 2 5)

B <(1 —cos6)? +1— 00529)
B (1 — cos)?

B <1+C0829—20089+ 1 —C0829>
—Y (1 — cosh)?

_ 2

which matches the right-hand side of our differential equation. 0

This proof may be unsatisfactory to some, however, as it assumes that we
already know that the resulting curve is a cycloid and we derive it from there.
Clearly, it matches up, but how might one obtain the desired result by going
from the differential equation to the parametric equations, and not the other
way around? One way to prove the brachistochrone curve problem without
this knowledge will be shown here.

Previously we had the equation

1+ () -

We will carry on from here.
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1+y*)(y) =k

y+yy =~k
yiy=k —y
2 _ kz_y
Y
! kZ_y
y:
Y
Recall that ¢y = %, SO
dy _ [k -y
dx Y
dr _ | Y
dy k? —y
Y
dr = dy
k? —y

Now we integrate both sides to get

Y
m:/1/k2_ydy.

This may appear convoluted at first but we can solve this using trig substitu-
tion. So let

0
_2..2(Y
y = k”sin (2>
and therefore

dy = k*sin (g) cos (g) do.
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So plugging this in we get

xr = kQ/sin2 <g> de.

The half-angle formula for sin tells us that

) 1 —cos@
sin(=) = :
2 2

Using this, we obtain

x = k2/sin2 (g) de

T = %2 sin? (1 — cosQ) db

r = — [ sin? (1 — cos@) de

2

xz%(@—sinﬁ) +C
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For a constant of integration C'. This is the x for our parametric equation,
and since we set

y = k*sin? (g),

this is our y value. Recall that

1 —cos20
g - L2052

so since in this case, our input for the sine function is g, we get

y:k2<1—2COS@>.

For our z, note that when we previously derived the cycloid, we did not have
a constant of integration.

Well, at point A, x = 0 and this corresponds to # = 0 as it is a parametric
equation. So:

2

x—%(@—sin@) +C

2

0:%(0—s1n0> +C

0=C

Thus since C' = 0, we get our previously desired x. Thus using this method
we get the parametric equation we obtained earlier.

7. OTHER CALCULUS OF VARIATIONS PROBLEMS

While the brachistochrone problem is perhaps the most famous variational
calculus problem, there are plenty others that are far more sophisticated that
one might consider exploring if their interest has been piqued thus far. A few
of them are mentioned below:

(1) The Tautochrone Problem: As explained earlier, this was the problem
that introduced the Euler-Lagrange equation. In short, the problem
aims to find the curve in which a particle slides down it at a time
constant regardless of where on the curve it starts. There are some
simple calculus proofs [03], but the actual variational calculus solution
is a bit more difficult. As mentioned earlier, the solution to this prob-
lem happens to be a cycloid as well. There isn’t a correlation between
this problem and the brachistochrone problem- it is quite miraculous,
actually, that they happen to coincide- but both can be understood
intuitively and readers are encouraged to look further into that [10].
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It may come to one’s attention, however, that cycloids can have an
upwards slope at some point (for a visualization of this one can visit
the Wikipedia page for the brachistochrone curve |01] which contains
a simulation of a cycloid with an upwards slope). For this, we can un-
derstand the tautochrone problem through cycloidal pendulums, which
are isochronous regardless of their amplitude. A simulation of this can
be viewed on the Wikipedia page for the tautochrone curve [08].

Newton’s minimal resistance problem: This problem marks the begin-
ning of variational calculus. Essentially, the problem tries to find the
solid of revolution which experiences the least resistance when traveling
in the direction of the axis of revolution. This can be solved using the
Euler-Lagrange equation (though Newton used other means to find the
answer) and proofs of this can be found in many places online. The
most useful solution the author of this paper was able to find is on
the Wikipedia page [05] which also happens to use variational calculus
(something that many other sites neglect to use since there are other
simpler proofs).

The Fuler-Poisson Equation: The Euler-Poisson equation is just a
generalization of the Euler-Lagrange equation. More specifically, the
Euler-Lagrange equation considered the function

F(z,y,y).

However, the Euler-Poisson equation considers functions that take
higher derivatives and are in the form of

F(x,y,y,..y").
The solution is easily derived from the Euler-Lagrange equation and
uses almost all the same steps until the end. The author highly en-
courages interested readers to attempt the derivation on their own but
an in-depth, clear explanation can be found here [Pro].

The principle of least action: The principle of least action is from
Newtonian mechanics, so for the uninformed reader, this may be more
difficult. This essentially aims to minimize the action of a system, and
once again the Euler-Lagrange equation can be used to determine this.
The author lies within the subset of mathematicians who aren’t well
versed in physics, but for others who may be (or for those who are in-
terested regardless) there are nice explanations on both the Wikipedia
page [12] and in section 3.3 of [Kam17].

Shortest path problem: As its name implies, the shortest path problem
finds the shortest path between two points in R™. This happens to also
be the name of a graph theory problem with the same generic premise
but they differ nonetheless. For our purposes, we aim to find f(z) that
minimizes the functional
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1(f) = / 1] de

where

From this it is not difficult to guess that this can be solved using the
Euler-Lagrange equation. Section 3.3 of [Kam17] contains a nice proof
of this, and this is a relatively simpler problem for readers to try earlier
on.

Other examples can be found in Section 3.3 of [Kam17] or in [06].
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