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Before going into Lp space...

Here are the thing that will be briefly covered in these slides

Outer Measure

Lebesgue Measure

Lebesgue Integral

Norm

Lp space
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Sigma Algebra

Denoted as σ-algebra, they are needed in in order for sets to have
measures and be well defined.

(i) X ∈ Σ and ∅ ∈ Σ .

(ii) If B ∈ Σ, then X \ B ∈ Σ i.e. the complement of B in X is also in Σ.

(iii) Any countable intersection or union of elements of Σ is also in Σ.
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Lebesgue Outer Measure

It is defined as the following:

Definition

m∗(A) = inf {σ(S) |S is a covering of A by closed intervals}
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Lebesgue Outer Measure

Here are some nice properties:

m∗(A) ≥ 0 for any A ⊆ R, and m∗(∅) = 0.

If A and B are disjoint sets, then m∗(A ∪ B) ≤ m∗(A) +m∗(B).

But there are limitations. For example, one drawback of outer measure is
that the union is not always equal to the sum of disjoint sets. We want
the outer measure on a sigma algebra to satisfy this property.
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Lebesgue Measure

Definition

Carathéodory’s criterion
A set E ⊆ Rn is Lebesgue measurable if for every A in R,
λ∗(A) = λ∗(A ∩ E ) + λ∗(A ∩ E c)

In this case, we define the Lebesgue measure of E , denoted m(E ), to be
m(E ) = m∗(E ).
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Lebesgue Integral

Suppose f is a bounded function defined on a measurable set E with finite
measure. We define the upper and lower Lebesgue integrals, respectively,
as

U∗(f )L =

∫
E
sup{ϕ(x) dx : ϕ is simple and ϕ ≥ f },

L∗(f )L =

∫
E
inf{ϕ(x) dx : ϕ is simple and ϕ ≤ f }.

If U∗(f )L = L∗(f )L, then the function f is called Lebesgue integrable over
set E , and the Lebesgue integral of f over set E is denoted by∫

E
f (x) dx .
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Norms

A norm is a function that assigns a non-negative real value to vectors or
functions. In the context of vector spaces, norms provide a measure of the
”length” of a vector. Norm must satisfy certain properties, which are the
following:
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Properties of Norms

A norm in a vector space V is a function ∥ · ∥ : V → R with the following
properties:

(i) ∥v∥ ≥ 0

(ii) ∥v∥ = 0 if and only if v = 0

(iii) ∥cv∥ = |c |∥v∥
(iv) ∥v + w∥ ≤ ∥w∥+ ∥v∥
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Lp space

Definition

For p ≥ 1 we define Lp[a, b] to be Lp[a, b] = space of measurable
functions f where f is

(∫
S |f |

p dµ
)1/p

< ∞.

The Lp-norm of f, written ||f ||p, is
(∫ b

a |f |p
) 1

p
. It is not too complicated

to prove some properties of norms except the last one regarding triangle
inequality.

To verify the final property, we will need to have two inequalities: Holder’s
Inequality and Minkowski’s inequality.
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Holder’s Inequality

Definition

Let f ∈ Lp[a, b] and g ∈ Lq[a, b], where p > 1 and 1
p + 1

q = 1. Then
∥fg∥1 ≤ ∥f ∥p∥g∥q.

Lemma

Let α, β ∈ (0, 1) with α+ β = 1. Then for any nonnegative numbers a
and b,

ab ≤ αa
1
αβb

1
β .
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Minkowski’s Inequality

Definition

∥f + g∥p ≤ ∥f ∥p + ∥g∥p

(i) (∥f + g∥p)p−1 = (∥(|f + g |p−1∥q))
(ii) |f (x) + g(x)|p ≤ |f (x)| · |f (x) + g(x)|p−1 + |g(x)||f (x) + g(x)|p−1

(iii) ∥|f + g |∥p ≤ ∥f ∥p ∥|f + g |∥p−1 ∥g∥p ∥|f + g |∥p−1
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