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1. Abstract

In this paper, we aim to build up necessary tools to define the Lp space and introduce
basic properties of Lp spaces.

2. Introduction

Function spaces are

In general, the Lp spaces are function spaces with a certain way of measure things called
p-norms. These functions must be Lebesgue Integrable, which is a more flexible way of
integrating compared to Riemann Integrals which has their limits. Lebesgue Integrable
functions obey the Convergence Theorem, Fatou’s Lemma, and the Monotone Covergence
Theorem which are used to understand the behaviors of Lebesgue Integrable functions in
the Lp space.

One of the key features of Lp space is the Lp norm. The Lp norm has various properties,
such as homogeneity, triangle inequality, and non-negativity. Using these tools necessary
for the Lp space, this paper will explore some basic properties of Lp spaces such as the
completeness of these spaces, the Hölder and Minkowski inequalities.

3. Motivation of the Lebesgue Integral

3.1. Riemann Integral. Riemann Integrals are defined as the following:

n−1∑
i=0

f(ti)(xi+1 − xi)

Where (xi+1−xi) represents the subintervals and f(ti) represents the corresponding func-
tion value for each interval. We say a function is Riemann Integrable if its lower integral
and upper integral are equal. They are defined as the following:

(1) The lower integral of f is
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a

f(x) dx = sup
P

L(f, P ) = sup{L(f, P ) |P is a partition of [a, b]}.

(2) The upper integral of f is∫ b

a

f(x) dx = inf
P

U(f, P ) = inf{U(f, P ) |P is a partition of [a, b]}.

Although Riemann Integrals can integrate most general functions, there are still numerous
more that cannot. In general, discontinuous functions such as the Dirichlet function cannot
be Riemann Integrable.

The Dirichlet function is defined as the following:

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

and denoted as XQ(x).

Note how for an interval (0, 1), the upper and lower integral are different, where the lower
integral from (0, 1) is 0 and the upper integral from (0, 1) is 1. These are one of the prob-
lems with Riemann integrals. To extend the scope of functions that can be integrated, the
concept of Lebesgue Integrals is needed. Lebesgue integrals, which if intuitively thought,
can be thought as instead of looking at the domain first, we look at the function values and
then look at the corresponding domain of each function value.

Here is a quick diagram of a Lebesgue Integral versus a Riemann Integral

Figure 1. Lebesgue Integral



INTRODUCTION TO Lp SPACES 3

Figure 2. Riemann Integral

However, before we define Lebesgue integrals, we will need to know some basic measure
theory.

4. Basic Measure Theory

Definition 1. Sigma algebra

We need sigma algebra in order for sets to have measures and be well defined.

σ-algebra:
∑

of subsets of X with the following conditions:

(i) X ∈ Σ and ∅ ∈ Σ.
(ii) If B ∈ Σ, then X \B ∈ Σ, i.e., the complement of B in X is also in Σ.
(iii) Any countable intersection or union of elements of Σ is also in Σ.

4.1. Examples.

• Given a finite set X = {a, b, c, d}, then Σ = {∅, {a, b}, {c, d}, X} is a σ-algebra.
• P(X) is a σ-algebra for any set X.

4.2. Lebesgue Outer Measure. The Lebesgue Outer Measure is defined as the fol-
lowing:

Definition 2. m∗(A) = inf {σ(S) |S is a covering of A by closed intervals}

Where its properties are the following:

• m∗(A) ≥ 0 for any A ⊆ R, and m∗(∅) = 0.
• If A and B are disjoint sets, then m∗(A ∪B) ≤ m∗(A) +m∗(B).
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One limitation of the Lebesgue outer measure can be seen in its second property, called sub-
additivity. Unlike conventional Euclidean measure systems such as distances, the Lebesgue
outer measure of the union of two disjoint sets is not always equal to the sum of the outer
measures of the two disjoint sets.

4.3. Lebesgue Measure. Due to the limitation of the outer measure, Lebesgue wanted to
put a limit to the Lebesgue outer measure.

We say a set E is Lebesgue Measurable if it satisfies the Carathéodory’s criterion.

Definition 3. Carathéodory’s criterion

A set E ⊆ Rn is Lebesgue measurable if for every A in R,
λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ Ec),

where λ∗(A) denotes the Lebesgue outer measure of A.

In this case, the Lebesgue outer measure λ∗(A) will be equal to its Lebesgue measure
λ(A). Some properties of Lebesgue measures are the following:

• The Lebesgue measure of the union of two disjoint sets is equal to the sum of the
Lebesgue measures of the two disjoint sets.

• If A is Lebesgue measurable, so is its complement.
• The Lebesgue measure is non-negative.
• Countable unions and intersections of Lebesgue-measurable sets are Lebesgue-measurable.

Now, we can finally define Lebesgue Integrals.

5. Lebesgue Integral

Definition 4. Lebesgue Measure Zero

A subset N of R has null Lebesgue measure and is considered to be a null set in R if and
only if: Given any positive number ε, there is a sequence I1, I2, . . . of intervals in R such that
N is contained in the union of the I1, I2, . . . and the total length of the union is less than ε.

Using this, we can prove that any countable set has measure zero.

Proof. Let xi be a sequence of countable sets and let Xi = (xi − 2−i−1ϵ, xi + 2−i−1ϵ). Then,
X ⊆

⋃
xi ≤

∑
2−iϵ = ϵ ■

Definition 5. Equal Almost Everywhere

We say f equals g almost everywhere on I, written f(x) = g(x) a.e. or f = g a.e., if the
set {x ∈ I | f(x) ̸= g(x)} has Lebesgue measure 0.
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This property is useful later for defining Lp norms.

Definition 6. Lebesgue Integrable Function

The set of Lebesgue integrable functions on [a, b], denoted L[a, b], is defined as:

L[a, b] = {f | f is Lebesgue integrable on [a, b]}.

There are several routes one can take to define the Lebesgue integral. One option is to
approach the integral via simple functions.

Suppose f is a bounded function defined on a measurable set E with finite measure. We
define the upper and lower Lebesgue integrals, respectively, as

U∗(f)L =

∫
E

sup{ϕ(x) dx : ϕ is simple and ϕ ≥ f},

L∗(f)L =

∫
E

inf{ϕ(x) dx : ϕ is simple and ϕ ≤ f}.

If U∗(f)L = L∗(f)L, then the function f is called Lebesgue integrable over set E, and the
Lebesgue integral of f over set E is denoted by∫

E

f(x) dx.

Here, the simple function ϕ is defined as the linear combination of indicator functions
where the indicator function is defined as

1A(x) :=

{
1 if x ∈ A,

0 if x /∈ A.

The simple function is denoted as:

f(x) =
n∑

k=1

ak1Ak
(x),

One important thing to note is that unlike Riemann Integrals, Lebesgue Integrals take
integrals on measurable partitions.

Definition 7. Measurable partitions

A measurable partition of [a, b] is denoted as P = {Ej}nj=1, which represents a finite
collection of subsets of [a, b]. This partition satisfies the following properties:

(i) Each set Ej is measurable set for j.
(ii)

⋃n
j=1Ej = [a, b],

(iii) If i ̸= j,m(Ei ∩ Ej) = 0.
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In summary, a measurable partition of [a, b] is a collection of measurable sets that covers
the interval completely, and any pairwise intersections between distinct sets have Lebesgue
measure zero.

Definition 8. For unbounded Lebesgue function f, we define f to be Lebegsue Integrable if

Suppose f(x) ≥ 0 for all x ∈ [a, b]. For N > 0 define

Nf(x) =

{
f(x) if f(x) ≤ N,

N otherwise.

We say f is Lebesgue integrable on [a, b] if fN is Lebesgue integrable for all N > 0 and

lim
N→+∞

∫ b

a

Nf

is finite. In this case
∫ b

a
f is defined to be

∫ b

a
f = limN→+∞

∫ b

a
Nf .

(ii) Suppose f(x) < 0 for some x ∈ [a, b].

f+(x) =

{
f(x) if f(x) ≥ 0,

0 otherwise.
andf−(x) =

{
−f(x) if f(x) < 0,

0 otherwise.

We say f is Lebesgue integrable on [a, b] if both f+ and f− are Lebesgue integrable on
[a, b]. In this case,

∫ b

a

f =

∫ b

a

f+ −
∫ b

a

f−.

Now that we have defined Lebesgue Integrals, we are almost ready to define Lp spaces.
However, before defining Lp spaces, we need to define what a norm is.

6. Norms

A norm is a function ∥ · ∥ : V → R that assigns a positive real value to the elements of a
vector space V and satisfies the following properties:

i. ∥v∥ ≥ 0
ii. ∥v∥ = 0 if and only if v = 0
iii. ∥cv∥ = |c|∥v∥
iv. ∥v + w∥ ≤ ∥w∥+ ∥v∥

for all v, w ∈ V and c ∈ R.
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Lemma 6.1. Let f ∈ L[a, b]. If f(x) ≥ 0 a.e. on [a, b] and
∫ b

a
f dx = 0, then f = 0 a.e. on

[a, b].

We will now define what an L1 norm is.

Definition 9. L1 norm

For f ∈ L1[a, b], we define the L1-norm of f , written ∥f∥1, to be

∥f∥1 =
∫ b

a

|f | dx.

Proof. Other requirments can be easily checked with the following:

∫ b

a

|f | ≥ 0 for all f ∈ L[a, b].

∫ b

a

|cf | = |c|
∫ b

a

|f |.

Also,

∫ b

a

|f + g| ≤
∫ b

a

(|f |+ |g|) =
∫ b

a

|f |+
∫ b

a

|g|.

Now, we simply need to check (ii) of the definition of norms.

This seems troublesome since if ∥f∥1 = 0, we can only conclude that f = 0 a.e in [a, b]. ■

To resolve this issue, we will need the concept of equivalence relations.

Definition 10. Equivalence Relation

Define ∼ on L[a, b] by f ∼ g if and only if f = g a.e. These are three conditions for an
equivalence relation.

(i) For all f ∈ L[a, b], f ∼ f .
(ii) For all f, g ∈ L[a, b], if f ∼ g, then g ∼ f .
(iii) For all f, g, h ∈ L[a, b], if f ∼ g and g ∼ h, then f ∼ h.

Definition 11. L1[a, b] is defined to be L[a, b] modulo the equivalence relation ∼.

Unlike normal functions where for f and g to be equal, f = g for all x ⊂ (a, b), in L[a, b],
it is enough for f and g to be equal if f = g almost everywhere for x ⊂ (a, b)

Therefore, if ∥f∥1 = 0, then it is enough to say that f = 0 almost everywhere!
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7. Lp spaces

An Lp space may be defined as a space of measurable functions for which the p-th power
of the absolute value is Lebesgue integrable, where functions that agree almost everywhere
are identified.

Definition 12. For p ≥ 1, we define Lp[a, b] to be the space of Lebesgue measurable and
Lebesgue integrable functions f where(∫

S

|f |p dµ
)1/p

< ∞.

Lemma 7.1. Let g ∈ L[a, b]. Suppose f is measurable and |f(x)| ≤ g(x) almost everywhere
in [a, b]. Then f ∈ L[a, b].

Proof. WLOG, we may assume that |f(x)| ≤ g(x) for all x ∈ [a, b]. We must show that
f+ and f− are Lebesgue integrable. Since |f(x)| ≤ g(x), both 0 ≤ f+(x) ≤ g(x) and
0 ≤ f−(x) ≤ g(x) for all x ∈ [a, b].

Since 0 ≤ f(x) ≤ g(x),

0 ≤ Nf(x) ≤ Ng(x)

for each N . Thus, ∫ b

a

Nf(x) dx ≤
∫ b

a

Ng(x) dx ≤
∫ b

a

g(x) dx

for everyN . Here, since
∫ b

a
Nf(x) dx increases withN and

∫ b

a
Nf(x) dx is bounded, limN→∞

∫ b

a
Nf(x) dx

exists and f ∈ L[a, b]. ■

Lemma 7.2. Let f, g ∈ Lp[a, b], and c ∈ R.

(i) cf ∈ Lp[a, b].
(ii) f + g ∈ Lp[a, b].

Proof. ■

(i) If f ∈ Lp[a, b], then |f |p is Lebesgue integrable. As a consequence, |c|p|f |p = |cf |p is
Lebesgue integrable. Hence, cf ∈ Lp[a, b].

(ii) For every x ∈ [a, b],

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p

≤ (2max{|f(x)|, |g(x)|})p = 2p (max{|f(x)|p, |g(x)|p}) ≤ 2p(|f(x)|p + |g(x)|p).

Since 2p(|f(x)|p + |g(x)|p) is Lebesgue integrable(≤ (2max|f(x), g(x)|)p), f + g ∈ Lp[a, b].
Now, let’s see if this Lp norm satisfies the norm properties:

(i) We must show ∥f∥p ≥ 0. Since |f(x)|p ≥ 0 for all x ∈ [a, b],
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(∫ b

a

|f |p
)1/p

≥ 0.

Consequently, ∥f∥p ≥ 0.
(ii) Next, we will show that ∥f∥p = 0 if and only if f = 0 a.e. in [a, b]:

∥f∥p = 0 if and only if

(∫ b

a

|f |p
)1/p

= 0 if and only if

∫ b

a

|f |p = 0 if and only if |f |p = 0 a.e. if and only if f = 0 a.e.

(iii) To see that ∥cf∥p = |c|∥f∥p,

∥cf∥p =
(∫ b

a

|cf |p
)1/p

=

(∫ b

a

|c|p|f |p
)1/p

=

(
|c|p

∫ b

a

|f |p
)1/p

= |c|
(∫ b

a

|f |p
)1/p

= |c|∥f∥p.

(iv) The final property we need to verify is that ∥f + g∥p ≤ ∥f∥p + ∥g∥p. Unlike the first
three, this property isn’t as easy to verify at this time.

To verify the final property, we will need to use two inequalities: Holder’s Inequality and
Minkowski’s inequality.

Lemma 7.3. Let α, β ∈ (0, 1) with α + β = 1. Then for any nonnegative numbers a and b,
we have ab ≤ αa

α+β
· 1
α+β

b.

Proof. Let δ > 0. Consider the graph of y = xδ for x ≥ 0. We will look at the three
possibilities: b < aδ, aδ < b, and aδ = b.

Figure 3. Figure 3.1
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Figure 4. Figure 3.1

(i) Suppose b < aδ. In this case, the horizontal line y = b intersects the graph of y = xδ

to the left of the vertical line x = a. Thus the area of the rectangle formed by the
axes and the lines y = b and x = a, which equals ab, is less than

∫ a

0
xδ dx (the area

under the curve y = xδ) plus
∫ b

0
y

1/δ
dy (the remaining area inside the rectangle but

above the curve y = xδ, integrating with respect to y). That is,

ab ≤
∫ a

0

xδ dx+

∫ b

0

y

1/δ
dy.

(ii) Suppose aδ < b. This time the horizontal line y = b intersects the graph of y = xδ

to the right of the vertical line x = a. Thus the area of the rectangle formed by the

axes and the lines y = b and x = a, which equals ab, is less than
∫ b

0
y

1/δ
dy (the area

of the region in the first quadrant bounded above by the line y = b and below by the
curve y = xδ, integrating with respect to y) plus

∫ a

0
xδ dx (the remaining area inside

the rectangle but above the curve y = xδ).

(iii) Suppose aδ = b as illustrated in Figure 3.2. In this final case, the two lines x = a and
y = b intersect at the point (a, b), which is on the curve y = xδ. Thus the area of the
rectangle formed by the axes and the lines y = b and x = a, which equals ab, equals∫ a

0
xδ dx (the area under the curve y = xδ) plus

∫ b

0
y

1/δ
dy (the remaining area inside

the rectangle but above the curve y = xδ, integrating with respect to y). That is,

ab =

∫ a

0

xδ dx+

∫ b

0

y

1/δ
dy.
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Figure 5. Figure 3.2

In all cases,

ab ≤
∫ a

0

xδ dx+

∫ b

0

y

1/δ
dy =

aδ+1

δ + 1
+

bδ+1

δ + 1
=

1

δ + 1
aδ+1 +

δ

δ + 1
bδ+1.

The lemma follows once we choose δ so that 1
δ+1

= α and δ
δ+1

= β.

■

Proof. (Hölder’s Inequality)
Suppose f ∈ Lp[a, b] and g ∈ Lq[a, b], where 1

p
+ 1

q
= 1. By Lemma 7.3 with α = 1

p
and

β = 1
q
,

|f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q

for every x ∈ [a, b]. By Lemma 7.2, fg ∈ L1[a, b] since |f |p and |g|q are both Lebesgue
integrable.

To prove the inequality

∥fg∥1 ≤ ∥f∥p∥g∥q,
we will first observe that this is easily true if either ∥f∥p = 0 (that is, f = 0 a.e.) or ∥g∥q = 0.
Therefore, we will assume ∥f∥p > 0 and ∥g∥q > 0.

We will first look at the special case where ∥f∥p = ∥g∥q = 1. As noted above, Lemma 7.3
guarantees that

|f(x)g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q;



12 BRANDON YEA

therefore ∫ b

a

|fg| ≤ 1

p

∫ b

a

|f |p + 1

q

∫ b

a

|g|q.

In other words,

∥fg∥1 ≤
(
1

p

)
∥f∥pp +

(
1

q

)
∥g∥qq =

1

p
+

1

q
= 1 = ∥f∥p∥g∥q

(using the assumption that ∥f∥p = ∥g∥q = 1), and we are done in this case.

The more general case follows by setting f̃(x) = f(x)
∥f∥p and g̃(x) = g(x)

∥g∥q .

Then ∥f̃∥p = 1 and ∥g̃∥q = 1. Therefore, from our previous special case, ∥f̃ g̃∥1 ≤ 1.
Hence, ∫ b

a

|fg| ≤ ∥f̃∥p∥g̃∥q = ∥f∥p∥g∥q
or

∥fg∥1 ≤ ∥f∥p∥g∥q.
In other words, ∥fg∥1 ≤ ∥f∥p∥g∥q, as claimed.

The theorem that actually completes the final requirement for showing that ∥ · ∥p is a
norm on Lp[a, b] is the following.

■

Proof. (Minkowski’s Inequality)
Let p ≥ 1. If f, g ∈ Lp[a, b], then

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

We already have this result for the case p = 1, so assume p > 1. This result is trivially
true if |f + g| = 0 a.e. in [a, b]. (Make sure you understand why this is deemed ”trivial”.)
Hence, we will assume |f + g| > 0.

In Proposition 3.2.3, we showed that |f + g|p is Lebesgue integrable. We will look at this
further. Let q = p

p−1
(remember, p > 1). Then 1

p
+ 1

q
= 1. Note that

(∥f + g∥p)p−1 =

∫ b

a

|f + g|p dx =

∫ b

a

|f + g|p−1|f + g| dx =
(
∥|f + g|p−1∥|q

)p−1
.

Therefore, |f + g|p−1 ∈ Lq[a, b] and (∥|f + g|p−1∥|q) = (∥f + g∥p)p−1.

Also,

|f(x) + g(x)|p = |(f(x) + g(x))p| =
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|f(x)(f(x) + g(x))p−1 + g(x)(f(x) + g(x))p−1|

≤ |f(x)||f(x) + g(x)|p−1 + |g(x)||f(x) + g(x)|p−1.

■

8. Conclusion

In general, Lebesgue measures and Lp spaces provide versatile frameworks for studying
general functions and sets. This includes discontinuous functions and non-measurable sets
such as the Vitali sets which the reader can reference a paper by BK Lahiri. Furthermore,
there are lots of other properties of Lp spaces yet not covered in this paper such as dual
spaces and atomic decomposition which the reader is encouraged to explore.
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