Finite Groups of Lie Type

Ayush Jain

ayushj2007@gmail.com Euler Circle

July 2023

Definition

A simple group is a group with only two normal subgroups, the trivial subgroup containing the identity, and the subgroup consisting of the entire group itself

Pertaining to these simple groups, there is a theorem known as the classification theorem, which says that every finite simple group can be classified as one of the following

- 1. a cyclic groups of prime order
- 2. an alternating group of order > 5
- 3. a group of lie type
- 4. one of the 27 sporadic groups

Definition

A group of Lie type refers to the group of rational points on a reductive linear algebraic group with values in a finite field.

One of the first ways these groups were investigated was looking over the classical groups. These can be defined as a special linear, orthogonal, unitary, or symplectic groups. There are many variations of these which can be found by taking quotients making the projective linear groups

A field F can be defined with the following axioms. There exists two binary operations (addition and multiplication) with the following properties

- 1. Associativity of addition and multiplication
- 2. Commutativity of addition and multiplication
- 3. Existence of Multiplicative and Additive identity, denoted by 1 and 0 respectively
- 4. Existence of an additive inverse $\forall a \in F$ denoted by $-a$
- 5. Existence of a multiplicative inverse $\forall b \in F, b \neq 0$ denoted by b^{-1}
- 6. Satisfies Distributive Law

When we look at finite fields, they have many different properties. Let us take a finite field F. Say q is the order of the multiplicative group of the field.

Proposition

A field has no zero divisors

Proposition

The number of elements in F is always in the form p^d where $p \in \mathbb{Z}$ is a prime, and $d \in \mathbb{N}$

Proposition

For any rational prime p and natural number d , there exists a finite field of order p^d and is unique up to isomorphism.

Proposition

For any natural m, the number of solutions to the equation $x^m = 1$ is given by $(m, q - 1)$

Definition

The General Linear Group is the set of all $n \times n$ invertible matrices. We can take the entries over the finite field \mathbb{F}_q with order q, denoted by $GL_n(q)$

There are many interesting subgroups of the general linear group. The center of the group is the set of scalar matrices λI_n , where $\lambda \in \mathbb{F}_q$. Call this set Z. Noticeably, Z is a cyclic subgroup of order $q-1$. Moreover, if we quotient this group with G, the group G/Z is the projective general linear group denoted by $PGL_n(q)$.

Also since $\det(AB) = \det(A) \cdot \det(B)$, this determinant map is a group homomorphism from $GL_n(q)$ onto the multiplicative group of the field, and its kernel is a normal subgroup of index $q - 1$.

This kernel is called the special linear group $SL_n(q)$, and consists of all the matrices of determinant 1. Similarly, we can quotient $SL_n(q)$ by the subgroup of scalars it contains, to obtain the projective special linear group $PSL_n(q)$, sometimes abbreviated to $L_n(q)$.

A fun property is that you can represent the orders of these groups using polynomials. For example, we have

$$
|GL_n(q)| = (q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1})
$$

We know that there are q total elements in the field \mathbb{F}_q , which means there are q^n possible options for the elements of the first row. However, there is one case where all n elements are 0, so we subtract that one case. Similarly, there are q^n options for the second row, but in interest to keep all the rows distinct there's $q^{n} - q$ options, we have $q^{n} - q^{2}$ options to fill out the third row, and so on.

For any matrix with determinant m, since we take entries in a field, we know that $m^{-1} \in \mathbb{F}_q$. If we multiply the first row with the scalar m^{-1} we get all matrices with determinant 1. Conversely, for any matrix with determinant 1, we multiply the first row with m and get one with determinant m. So this means there's a bijection with the matrices with determinant 1 and matrices with any other determinant in \mathbb{F}_q .

$$
|SL_n(q)| = \frac{1}{q-1} |GL_n(q)|
$$

$$
|SL_n(q)| = \frac{1}{q-1} \cdot q^{\frac{n(n-1)}{2}} \prod_{i=0}^n (q^i - 1)
$$

To get the order of $PSL_n(q)$ we need to find out for which scalars λI_n have a determinant of 1. If we use the fact that the determinant is multiplicative, we have that $\det(\lambda I_n) = \lambda^n$, so we need to find the solutions to the equation $\lambda^n = 1$. We know from our knowledge of finite fields that this is equal to $(n, q - 1)$

$$
|PSL_n(q)| = \frac{1}{(n, q-1)} |GL_n(q)|
$$

$$
|PSL_n(q)| = \frac{1}{(n, q-1)} \cdot q^{\frac{n(n-1)}{2}} \prod_{i=0}^n (q^i - 1)
$$

Simplicity of $PSL_n(q)$

One of the interesting results from studying these linear groups is that the Projective Special Linear group is actually simple for any $n > 2$ and $q > 3$. A large part of proving this relies on Iwasawa's Lemma which classifies which groups are simple. We first look over some preliminary results

Theorem (Iwasawa)

If G is a finite perfect group, acting faithfully and primitively on a set Ω , such that the point stabiliser H has a normal abelian subgroup A whose conjugates generate G , then G is simple.

Definition

A transvection is an elementary matrix that represents the addition of a multiple of a row/column added onto another row/column. It is typically generated by taking a identity matrix and replacing one of the zero elements with a non-zero element λ

Lemma

 $SL_n(q)$ is generated by transvections

Proof.

By our definition of transvections, we can say that the above claim is equivalent to saying that the elements of $PSL_n(q)$ can be reduced to the identity matrix using the row operation $r_i \rightarrow r_i + \lambda r_i$. An elementary result of matrices shows that this is possible for any matrix with determinant 1.

Simplicity of $PSL_n(q)$

Definition

A group is said to be perfect if it is equal to it's own commutator subgroup

Lemma

 $PSL_n(q)$ is perfect except for the cases $PSL_2(2)$ and $PSL_2(3)$.

Proof. We can show that every transvection is in fact a commutator of the $PSL_n(q)$. Accordingly, we have

$$
\left[\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & x & 1 \end{pmatrix}\right] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -x & 0 & 1 \end{pmatrix}
$$

with a suitable choice of a basis, we can show that every transvection is a commutator in $PSL_n(q)$. If $n = 2$ and $q > 3$, then \mathbb{F}_q contains a non zero element x with $x^2 \neq 1$, then the commutator

$$
\left[\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}, \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} \right] = \begin{pmatrix} 1 & 0 \\ y(x^2 - 1) & 1 \end{pmatrix}
$$

Which will be an arbitrary element of our abelian group A.

In order to apply this, we take $n \geq 2$ we let $PSL_n(q)$ act on a set Ω of the 1-dimensional subspaces of \mathbb{F}_q^n so that the kernel of action is a set of scalar matrices, and we obtain an action of $PSL_n(q)$ on Ω . This action is primitive.

To study the stabiliser of a point we take 1 space $\langle \langle 1, 0, \ldots, 0 \rangle \rangle$. The stabiliser then consists of matrices with first row $(\lambda, 0, \ldots, 0)$ for some $\lambda \neq 0$.

We can show that the subgroup of matrices with the shape $\begin{pmatrix} 1 & 0_{n-1} \end{pmatrix}$ v_{n-1} I_{n-1} where v_{n-1} is a arbitrary column vector with length $n-1$, is a normal abelian subgroup A. Moreover, all non trivial elements are transvections. With a suitable basis, we can show that every transvection is contained as some conjugate of A.

Using our preliminary results, we can use Iwasawa's Lemma and show that for $n > 2$ and $q > 3$, the group $PSL_n(q)$ is simple