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A Brief Introduction

Definition

A simple group is a group with only two normal subgroups, the trivial
subgroup containing the identity, and the subgroup consisting of the
entire group itself

Pertaining to these simple groups, there is a theorem known as the
classification theorem, which says that every finite simple group can
be classified as one of the following

1. a cyclic groups of prime order

2. an alternating group of order ≥ 5

3. a group of lie type

4. one of the 27 sporadic groups
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Groups of Lie Type

Definition

A group of Lie type refers to the group of rational points on a
reductive linear algebraic group with values in a finite field.

One of the first ways these groups were investigated was looking over
the classical groups. These can be defined as a special linear,
orthogonal, unitary, or symplectic groups. There are many variations
of these which can be found by taking quotients making the projective
linear groups
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Finite Fields

A field F can be defined with the following axioms. There exists two
binary operations (addition and multiplication) with the following
properties

1. Associativity of addition and multiplication

2. Commutativity of addition and multiplication

3. Existence of Multiplicative and Additive identity, denoted by 1
and 0 respectively

4. Existence of an additive inverse ∀a ∈ F denoted by −a

5. Existence of a multiplicative inverse ∀b ∈ F , b ̸= 0 denoted by b−1

6. Satisfies Distributive Law
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Finite Fields

When we look at finite fields, they have many different properties. Let
us take a finite field F . Say q is the order of the multiplicative group of
the field.

Proposition

A field has no zero divisors

Proposition

The number of elements in F is always in the form pd where p ∈ Z is a
prime, and d ∈ N
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Finite Fields

Proposition

For any rational prime p and natural number d, there exists a finite
field of order pd and is unique up to isomorphism.

Proposition

For any natural m, the number of solutions to the equation xm = 1 is
given by (m, q − 1)
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The General Linear Groups

Definition

The General Linear Group is the set of all n× n invertible matrices.
We can take the entries over the finite field Fq with order q, denoted by
GLn(q)

There are many interesting subgroups of the general linear group. The
center of the group is the set of scalar matrices λIn, where λ ∈ Fq. Call
this set Z. Noticeably, Z is a cyclic subgroup of order q − 1.
Moreover, if we quotient this group with G, the group G/Z is the
projective general linear group denoted by PGLn(q).
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The General Linear Group

Also since det(AB) = det(A) · det(B), this determinant map is a group
homomorphism from GLn(q) onto the multiplicative group of the field,
and its kernel is a normal subgroup of index q − 1.

This kernel is called the special linear group SLn(q), and consists of all
the matrices of determinant 1. Similarly, we can quotient SLn(q) by
the subgroup of scalars it contains, to obtain the projective special
linear group PSLn(q), sometimes abbreviated to Ln(q).
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Equations of the Orders of the Groups

A fun property is that you can represent the orders of these groups
using polynomials. For example, we have

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

We know that there are q total elements in the field Fq, which means
there are qn possible options for the elements of the first row. However,
there is one case where all n elements are 0, so we subtract that one
case. Similarly, there are qn options for the second row, but in interest
to keep all the rows distinct there’s qn − q options, we have qn − q2

options to fill out the third row, and so on.
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Equations of the Orders of the Groups

For any matrix with determinant m, since we take entries in a field, we
know that m−1 ∈ Fq. If we multiply the first row with the scalar m−1

we get all matrices with determinant 1. Conversely, for any matrix
with determinant 1, we multiply the first row with m and get one with
determinant m. So this means there’s a bijection with the matrices
with determinant 1 and matrices with any other determinant in Fq.

|SLn(q)| =
1

q − 1
|GLn(q)|

|SLn(q)| =
1

q − 1
· q

n(n−1)
2

n∏
i=0

(qi − 1)
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Equations of the Orders of the Groups

To get the order of PSLn(q) we need to find out for which scalars λIn
have a determinant of 1. If we use the fact that the determinant is
multiplicative, we have that det(λIn) = λn, so we need to find the
solutions to the equation λn = 1. We know from our knowledge of
finite fields that this is equal to (n, q − 1)

|PSLn(q)| =
1

(n, q − 1)
|GLn(q)|

|PSLn(q)| =
1

(n, q − 1)
· q

n(n−1)
2

n∏
i=0

(qi − 1)
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Simplicity of PSLn(q)

One of the interesting results from studying these linear groups is that
the Projective Special Linear group is actually simple for any n > 2
and q > 3. A large part of proving this relies on Iwasawa’s Lemma
which classifies which groups are simple. We first look over some
preliminary results

Theorem (Iwasawa)

If G is a finite perfect group, acting faithfully and primitively on a set
Ω, such that the point stabiliser H has a normal abelian subgroup A
whose conjugates generate G, then G is simple.

Definition

A transvection is an elementary matrix that represents the addition of
a multiple of a row/column added onto another row/column. It is
typically generated by taking a identity matrix and replacing one of
the zero elements with a non-zero element λ
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Simplicity of PSLn(q)

Lemma

SLn(q) is generated by transvections

Proof.

By our definition of transvections, we can say that the above claim is
equivalent to saying that the elements of PSLn(q) can be reduced to
the identity matrix using the row operation ri → ri + λrj . An
elementary result of matrices shows that this is possible for any matrix
with determinant 1.
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Simplicity of PSLn(q)

Definition

A group is said to be perfect if it is equal to it’s own commutator
subgroup

Lemma

PSLn(q) is perfect except for the cases PSL2(2) and PSL2(3).

Proof. We can show that every transvection is in fact a commutator of
the PSLn(q). Accordingly, we have1 0 0

1 1 0
0 0 1

 ,

1 0 0
0 1 0
0 x 1

 =

 1 0 0
0 1 0
−x 0 1


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Simplicity of PSLn(q)

with a suitable choice of a basis, we can show that every transvection is
a commutator in PSLn(q). If n = 2 and q > 3, then Fq contains a non
zero element x with x2 ̸= 1, then the commutator[(

1 0
y 1

)
,

(
x 0
0 x−1

)]
=

(
1 0

y(x2 − 1) 1

)
Which will be an arbitrary element of our abelian group A.
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Application of Iwasawa’s Lemma

In order to apply this, we take n ≥ 2 we let PSLn(q) act on a set Ω of
the 1-dimensional subspaces of Fn

q so that the kernel of action is a set
of scalar matrices, and we obtain an action of PSLn(q) on Ω. This
action is primitive.

To study the stabiliser of a point we take 1 space ⟨⟨1, 0, . . . , 0⟩⟩. The
stabiliser then consists of matrices with first row (λ, 0, . . . , 0) for some
λ ̸= 0.
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Application of Iwasawa’s Lemma

We can show that the subgroup of matrices with the shape(
1 0n−1

vn−1 In−1

)
where vn−1 is a arbitrary column vector with length

n− 1, is a normal abelian subgroup A. Moreover, all non trivial
elements are transvections. With a suitable basis, we can show that
every transvection is contained as some conjugate of A.

Using our preliminary results, we can use Iwasawa’s Lemma and show
that for n > 2 and q > 3, the group PSLn(q) is simple
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