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Abstract

This paper provides an overview of three finite groups of Lie type: General
Linear Groups, Symplectic Groups, and Unitary Groups. These groups are also
classified as classical groups. We prove the simplicity property of their projec-
tive subgroups using Iwasawa’s Lemma. We also discuss important subgroups
of these groups such as Borel Subgroup and Weyl Group.

1 Introduction

A group in mathematics is a non-empty set with a binary operation on its elements
that satisfies three axioms: the operation is associative, the set has an identity
element, and each element of the set has an inverse element.

Definition 1.1 (Group). Let G be a non-empty set and let ∗ be a binary operation
on G, ∗ : G×G 7→ G. Then (G; ∗) is a group if the following axioms are satisfied.

G1 associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

G2 identify element: there exist an identify element e such that a∗ e = e∗a = a
for all a ∈ G.

G3 inverses: for all a ∈ G there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

Some examples of groups include, the set of integers (Z; +) with addition as bi-
nary operation and 0 as identity element; the set of complex numbers (C; +) under
addition operation; a vector space under addition operation; and the trivial group
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that consists of only an identity element. The set of all invertible matrices is also a
group under matrix multiplication operation and is called the general linear group.

We can create relations between various groups using maps. For example, the
groups Z and Z/3Z can be related by a map that maps every element of Z to an
element in Z/3Z by applying mod 3. The map that preserves the group operation
is called homomorphism. When a homomorphism is both surjective and injective, it
is called isomorphism. An isomorphism from a group to itself called automorphism.
An example of an automorphism is the map h : Z 7→ Z where h(u) = −u.

A finite group is a group with a finite number of elements. The order of a group,
denoted by |G| gives the number of elements in the finite group G.

A subgroup is a subset of another group that also qualifies as a group itself. A
subgroup is called normal subgroup if it is invariant under conjugation by any ele-
ment of the parent group. That is a subgroup N of a group G is called a normal
subgroup if gng−1 ∈ N for all g ∈ G and n ∈ N . A group is called simple if its only
normal subgroups are the trivial group and the group itself.

The classification theorem classifies1 all finite simple groups into one of the fol-
lowing groups [1].

• a cyclic group Cp of order p where p is a prime

• An alternating group of order ≥ 5

• A finite group of Lie Type

• One of the 27 sporadic groups (27th is sometimes referred to as the Tits group)

This paper focuses on the finite groups of Lie Type, which are general linear
groups with elements from finite fields. These groups can be considered as the finite
analogous of Lie Groups. They can be subdivided further into smaller families, one
of which is the classical groups [2]. Not all classical groups are of Lie type, but some
of their subgroups such as the Projective Special Linear group can be categorized as
Lie Type.

1The significant effort to classify all simple groups took 20 years and occupies 5000 pages in the
literature

2



The classical groups we will discuss in this paper are Special Linear, Symplec-
tic, and Unitary groups [9]. They are linear groups and their special automorphism
groups of bilinear (Symplectic) and sesquilinear forms (Unitary).

The paper is organized as follows: Section 2 offers an introductory overview
of finite fields and vector spaces, along with some important definitions of group
theory. Section 3 discusses General Linear Groups. Section 4 discusses bilinear form
and Symplectic groups. Section 5 describes sequilinear form and Unitary Groups.
We prove the simplicity property of projective subgroup of each of these groups and
also discuss important sub-groups of these groups.

2 Vector Spaces and Finite Fields

First we provide a basic definition and overview of Fields and Vector Spaces,
which is the space we will be using.

Definition 2.1. A field is a set F with two binary operations (namely addition and
multiplication), and the following axioms:

• Associativity of addition and multiplication

• Commutativity of addition and multiplication

• Existence of Multiplicative and Additive identity, denoted by 1 and 0 respec-
tively

• ∀a ∈ F existence of an additive inverse denoted by −a

• ∀b ∈ F , b ̸= 0 existence of a multiplicative inverse denoted by b−1

• Satisfies Distributive Law, given by x(y + z) = xy + xz

Definition 2.2. The characteristic of a finite field is the smallest natural number m
such that m times the identity element yields 0. For example, in Z/pZ, the identity
element is 1, and the characteristic is p, since p ∗ 1 = 0

A finite field is a Field F with a finite number of elements. We can show that
the field generated by the element 1 in F (call it F0) is isomorphic to the integers
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modulo a prime p. The field F0 is defined as the prime subfield of F (see [5]).

Since vector space axioms follow from field axioms, the field F0 is a vector space.
And since F is finite, F0 is also finite. Any finite dimensional vector space has a
basis of n vectors, say v1, v2, . . . , vn, and every vector has a unique representation in
the form

∑n
i=1 aivi with ai ∈ F0, so we can say that the field has pn elements.

One of the most important properties of Finite Fields is that the multiplicative
group of non zero elements is cyclic in nature. For the following theorems, let q be
the order of the of the field.

Theorem 2.3. There exists a multiplicative group G of a finite field F such that all
elements of G can be generated by some exponent of g ∈ G.

Proof. Let G be the multiplicative group of the field. Let d be any positive divisor
of q, and f(d) be the number of elements with order d. Suppose that there exists an
element a ∈ G such that a has order d. Let H be the group generated by a. Since d
is the order of a, for all x ∈ H, xd = 1.

Hence H has ϕ(d) elements, which means f(d) = ϕ(d). Using the identity∑
d|q ϕ(d) =

∑
d|q f(q) = q, we have f(q) = ϕ(q) and for any natural number q

the totient function is non zero. This implies that there exists at least one such
element which generates the field.

Theorem 2.4. For any natural m, the number of solutions to the equation xm = 1
is given by (m, q − 1), where (a, b) denotes the greatest common divisor of a and b.

Proof. let u be a generator of the finite field Fq of order q. The multiplicative
subgroup is given by Fq − {0} is a cycle of length q − 1, which means that xn = 1
only when x(n,q−1) = 1. Let (n, q − 1) = t. We know that Fq − {0} = {uk : k =
1, 2, 3, . . . , q − 2}. We want to find elements uk such that (uk)t = ukt = 1. This
happens if and only if q−1 divides kt since u is a generator. You can further observe
that q − 1 divides kt only if k is a multiple of q−1

t
since t divides q − 1. Therefore it

follows that the number of solutions is (n, q − 1)

Theorem 2.5. For any rational prime p and natural number d, there exists a finite
field of order pd and is unique up to isomorphism.

Proof. This is proven in [9, Section 3.2]

4



Definition 2.6. A vector space (also called a linear space) is a set whose elements,
vectors, can be added together and multiplied by numbers called scalars. Scalars are
often real numbers, but can be complex numbers or, more generally, elements of any
field. The operations of vector addition and scalar multiplication must satisfy vector
axioms.

Next we look at some definitions and properties related to groups which we will
use in this paper.

Definition 2.7. The order of an element a in a group S is the smallest natural
number m such that am = 1

Definition 2.8. The order of a group, not to be confused with the order of an el-
ement, is the number of elements in that group. For a group G, this is denoted by |G|

Definition 2.9. The kernel of a group homomorphism ϕ : G → H is defined as

ker ϕ = {g ∈ G : ϕ(g) = eH}

Where eH is the identity of the group H (see [8])

Definition 2.10. A matrix A is said to be invertible if ∃A−1 such that A · A−1 =
A−1 · A = I

Definition 2.11. Let a group G act on a set X. The action is said to be transitive
if ∀x, y ∈ X, ∃g ∈ G such that g · x = y [4] .

Definition 2.12. The group action G × Ω → Ω may preserve a special kind of
partition of Ω known as blocks. A block is a subset δ of Ω such that for any group
element g, one of the following is true

• g · δ = δ

• gδ ∩ δ = ϕ

Definition 2.13. A primitive group action is the action that is transitive and has
no non trivial group blocks.
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3 The General Linear Group

Definition 3.1. Let V be a vector space with its element taken from the finite field
Fq of order q. Then the general linear group is the set of all the linear maps from V
to itself which are invertible.

Another way to define this group would be the set of all n× n invertible square
matrices with entries from Fq. The general linear group is denoted by GLn(q).

Let the center of this group be Z. Z is a normal subgroup of all scalar matrices
in the form λIn, where λ ∈ Fq and λ ̸= 0. We can show that Z is a cyclic group of
order q− 1. If we quotient Z with GLn(q), we get a group called Projective General
Linear group, abbreviated as PGLn(q).

We can create a homomorphism from the general linear group to the multiplica-
tive group of the field using determinants. This is due to the multiplicative property
of the determinants.

If we investigate the kernel of action of the homomorphism, we get the special
linear group SLn(q). This consists of all matrices with determinant 1. Similar to the
general linear group, we can quotient it with its subgroup of scalars to obtain the
Projective Special Linear group PSLn(q).

3.1 Orders of the Linear Groups

An interesting result for the classical groups is that one can represent the orders
of its elements using formulas. For example, we can say that

|GLn(q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

We know that for a matrix to be invertible, all the rows must have at least one
entry that is non zero, and all the rows and columns must be distinct that is every
vector defining the space must be linearly independent.

Since there are q total elements in the field Fq, there are qn possible options for
the elements of the first row. However, there is one case where all n elements are
0, so we subtract that one case. Similarly, there are qn options for the second row.
If we want to keep all the rows distinct, we have qn − q options to fill out the third
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row, and so on. This gives us the final formula

|Gln(q)| = q
n(n−1)

2

n∏
i=0

(qi − 1)

Similarly, we can use derive the equations of the orders of some of the subgroups of
the general linear group. For the group SLn(q) we can use the order of the general
linear group itself. For any matrix with determinant m, since we take entries in a
field, we have m−1 ∈ Fq. If we multiply the first row with the scalar m−1 we get
matrices with determinant 1. Conversely, for any determinant with determinant 1,
we multiply the first row with m we get matrices with determinant m. So this means
there’s a bijection between the matrices with determinant 1 and matrices with any
other determinant in Fq. This implies:

|SLn(q)| =
1

q − 1
|Gln(q)|

|SLn(q)| =
1

q − 1
· q

n(n−1)
2

n∏
i=0

(qi − 1)

To get the order of PSLn(q) we need to find out the scalar λIn for which matrices
have a determinant 1. If we use the fact that the determinant is multiplicative, we
have that det(λIn) = λn, so we need to find the solutions to the equation λn = 1.
We know from our knowledge of finite fields that this is equal to (n, q − 1), which
means that the order of PSLn(q) can be given as

|PSLn(q)| =
1

(n, q − 1)
|GLn(q)|

|PSLn(q)| =
1

(n, q − 1)
· q

n(n−1)
2

n∏
i=0

(qi − 1)

3.2 Simplicity of PSLn(q)

An important result of linear groups is that PSLn(q) is simple for n > 2 and
q > 3. The proof of the simplicity of PSLn(q) requires Iwasawa’s Lemma (Theorem
3.6), which gives a method of classification of simple groups [3].

Definition 3.2. A group action ϕ : G × X → X is called faithful if there are no
group elements g such that gx = g for all x ∈ X.
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Definition 3.3. Stabilizer of a point is that permutation in the group which does
not change the given point.

Definition 3.4. For any group G, if we take two elements a, b ∈ G, the commutator
of the two elements if defined as a−1b−1ab and is denoted by [a, b]. The commutator
subgroup is the set of all possible commutators of a group.

Definition 3.5. A group is said to be perfect, if it is equal to its own commutator
subgroup.

Theorem 3.6 (Iwasawa). If G is a finite perfect group, acting faithfully and primi-
tively on a set Ω, such that the point stabiliser H has a normal abelian subgroup A,
whose conjugates generate G, then G is simple.

We want to show that the group PSLn(q) is perfect in order for it to satisfy the
condition of Iwasawa’s Lemma. We can do this by showing that SLn(q) is equal to its
own commutator subgroup. For any two elements a and b, such that a, b ∈ SLn(q),
the group generated by the operation a−1b−1ab is equal to SLn(q).

Definition 3.7. A transvection is an elementary matrix that represents the addi-
tion of a multiple of a row/column added onto another row/column. It is typically
generated by taking a identity matrix and replacing one of the zero elements with a
non-zero element λ

First, we show that SLn(q) can be generated by transvections. And then we show
that every transvection is a commutator of the group. This implies that SLn(q) would
be perfect and therefore, PSLn(q) is perfect.

Lemma 3.8. SLn(q) is generated by transvections

Proof. Using the definition of transvections, we can say that the above claim is equiv-
alent to saying that the elements of SLn(q) can be reduced to the identity matrix
using the row operation ri → ri + λrj.

An elementary result of matrices, Gauss - Jordan Elimination, says that all ma-
trices that are invertible can be reduced to the identity matrix using elementary row
operations as defined above. Since all matrices, by definition, in the group SLn(q)
are invertible, we can say that it can be reduced to the identity matrix using the row
operation ri → ri + λrj.

Next we show that SLn(q) is perfect, except for a few special cases.
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Lemma 3.9. PSLn(q) is perfect for all n, q except for SL2(2) and SL2(3).

Proof. First, we show that every transvection is a commutator of the elements in the
group. An easy calculation shows that1 0 0

1 1 0
0 0 1

 ,

1 0 0
0 1 0
0 x 1

 =

 1 0 0
0 1 0
−x 0 1


so with a suitable choice of a basis, we can say that if n > 2, then every commutator
is a transvection in SLn(q). Hence, the result follows from the lemma 3.8.

We now define abelian subgroup A, with the following property: if n = 2 and
q > 3, then Fq contains at least one non zero element satisfying x2 ̸= 1. In such cases
the commutator [(

1 0
y 1

)
,

(
x 0
0 x−1

)]
=

(
1 0

y(x2 − 1) 1

)
will be an arbitrary element of the abelian group A.

Now, we apply Iwasawa’s lemma. If we take n ≥ 2 and let SLn(q) act on a set
Ω of the 1-dimensional subspaces of Fn

q so that the kernel of action is a set of scalar
matrices, and thus we obtain an action of PSLn(q) on Ω. This action is primitive
and faithful as PSLn(q) is perfect.

To study the stabiliser of a point we take 1 space ⟨⟨1, 0, . . . , 0⟩⟩. The stabiliser
then consists of matrices with first row (λ, 0, . . . , 0) for some λ ̸= 0.

We can show that the subgroup of matrices with the shape

(
1 0n−1

vn−1 In−1

)
where

vn−1 is a arbitrary column vector with length n− 1, is a part of the normal abelian
subgroup A. Moreover, all non trivial elements are transvections. With a suitable
basis, we can show that every transvection is contained as some conjugate of A.

Therefore, PSLn(q) satisfies all the conditions for Iwasawa’s Lemma when n > 2
and q > 3. Hence the group PSLn(q) is simple if n > 2 and q > 3.

3.3 Subgroups of the General Linear Groups

Some of the important subgroups of the general linear group include B, N , T
subgroups, and the Weyl Group [6].
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This notation is also used in discussing general Lie Groups. Lie Groups have a
B −N pair, which is derived from these subgroups.

The subgroup B, also known as the Borel Subgroup, is the set of all lower tri-
angular matrices (note: they are invertible so a part of GLn(q)). N is a set of all
monomial matrices (matrices consisting of only one non zero entry in every row and
column).

The set T = B ∩ N , called the maximal split torus, consists of all the diagonal
matrices which forms a normal subgroup of N .

The quotient groupW = N/T is called theWeyl Group. This group is isomorphic
to the symmetric group Sn consisting of all permutations of n−tuples of coordinates.

The Subgroup U of all lower uni-triangular matrices (lower trianglular matrices

with diagonal entries 0), has an order of q
n(n−1)

2 . Moreover, B is a semi-direct product

of U and T so B has order q
n(n−1)

2 · (q − 1)n.

The Borel Subgroup can be defined as the stabiliser of a chain of subspaces.

0 = V0 < V1 < V2 < V3 < · · · < VN = V

.
These subspaces are defined by Vi = {(x1, x2, . . . , xi, 0, . . . , 0)} such that dim(Vi) =

i. Such a chain of subspaces is known as a flag and if the chain has a subspace with
each possible dimension then it is known as the maximal flag. Thus B is the stabiliser
of a maximal flag.

The parabolic subgroups are the stabilisers of flags, and the maximal parabolic
subgroup is the stabiliser of the subspaces W such that 0 < W < V . If W has a
dimension k, then we can choose a basis for W such as {e1, e2, . . . , ek} and extend
it in the form {e1, e2, e3, . . . , en} to make a basis for V . The elements which form

the stabiliser of the subspace W then have the shape

(
A 0
C D

)
. Where A and D are

invertible k × k and (n − k) × (n − k) matrices respectively, and C is an arbitrary
matrix with dimensions k × (n− k).
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4 The Bilinear Form and Symplectic Groups

4.1 Bilinear Forms

The symplectic groups are defined using a bilinear form which is defined below.

Definition 4.1. A bilinear form is map V × V → F where V is a vector space and
F is a field. The function B : V × V → F is linear in each argument separately. It
has the following properties

• B(u+ v, w) = B(u,w) +B(v, w)

• B(u, v + w) = B(u, v) +B(u,w)

• B(λu, v) = B(u, λv) = λB(u, v)

An example of such a map is the vector dot product in Rn

Bilinear forms can be classified into 3 different categories: symmetric, skew-
symmetric, alternating.

• If B(u, v) = B(v, u) the map is symmetric

• If B(u, v) = −B(v, u) the map is skew-symmetric

• If B(u, u) = 0 the map is alternating

We can show that any alternating form is also skew-symmetic.

Lemma 4.2. An alternating bilinear form is skew-symmetric

Proof. We have for all w, B(w,w) = 0. So let w = u+ v for some u and v. We can
say such u and v exist since we are in a field, so we can just take u = w and v = 0.
Accordingly, we have

0 = B(u+ v, u+ v)

= B(u, u) +B(u, v) +B(v, u) +B(v, v)

= B(u, v) +B(v, u)

This means that, B(u, v) = −B(v, u).

We can represent the bilinear forms using matrices. Given any vector space V ,
with the basis {e1, e2, e3, . . . , en}, the associated n × n matrix A of a bilinear form
with basis V is given by Aij = B(ei, ej). The associated matrix is symmetric or
skew-symmetric if the bilinear form is symmetric or skew-symmetric, respectively.
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Definition 4.3. A bilinear form is called singular if the associated matrix is not
invertible. Conversely, it is non-singular if the matrix is invertible.

We now look at the properties of vector spaces that characterize the properties
of the bilinear form f .

Definition 4.4. We say a ⊥ b if f(a, b) = 0 i.e. a and b are perpendicular or
orthogonal. Furthermore, for any set S, we say S⊥ = {a ∈ V : a ⊥ s,∀s ∈ S}. S⊥ is
termed as the orthogonal complement of S

A non zero vector perpendicular to itself is called isotropic. Also, we can say that
f(v, v) is the norm of v. The radical of f denoted by rad f is the set V ⊥, and f is
considered non singular if the radical is non zero, and singular otherwise.

Definition 4.5. If f is a form on a vector space V , an isometry of f is a linear
map g : V → V which preserves the form, in the sense that f(ug, vg) = f(u, v) for
all u, v ∈ V . The isometry group is the group of all such maps.

We obtain different classical groups from the isometries of forms that are non
linear. We classify the forms in order to classify the groups. This is done by varying
the basis in a such a way that the corresponding matrix of that form takes a specific
shape. Accordingly, given any bilinear form f , we want to take a basis such that f
is not too complicated. If there are any two vectors a and b, with f(a, b) = λ where
λ ̸= 0, then chose the first two basis vectors as e1 = a and f1 = λ−1b. This means
that

f(e1, f1) = −f(f1, e1) = 1

f(e1, e1) = f(f1, f1) = 0

Now, if we restrict the form to {e1, f1}⊥ and continue, we will find that we get
the basis vectors e1, e2, e3, . . . , em and f1, f2, f3, . . . , fm. This basis is known as a
symplectic basis, and the form f will be termed as a symplectic form. A property
of this bilinear form is that for all basis vectors ei and fj where i ̸= j, we have
f(ei, fj) = 0. Otherwise, we have f(ei, fi) = −f(fi, ei) = 1

4.2 Symplectic Groups

A Symplectic Group is classical groups that is defined as follows

Definition 4.6. The symplectic group Sp2m(q) is the isometry group of a non-
singular alternating bilinear form f on V ∼= Fn

2q
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In other words, it is the subgroup of GL2m(q) consisting of all elements g such
that f(ug, vg) = f(u, g) for all u, v ∈ V . From our knowledge of bilinear forms, we
can say that Sp2m(q) has a symplectic basis {e1, e2, e3, . . . , f1, f2, f3, . . . , fm} such
that all vectors are perpendicular to each other except those in the form ei, fi.

We know that f(λu, λv) = λ2f(u, v) which equals to f(u, v) if and only if λ2 = 1
or λ = ±1. So the only scalars of Sp2m(q) are ±1. If we quotient these out we get
PSp2m(q). This group is also simple in most cases and the proof will be given later.

4.3 Order of the Symplectic Group

Similar to the special linear groups, the symplectic groups also have an equation
that encompasses their orders depending on the finite field that is being used. To
calculate the order, we need to count the number of ways to find a symplectic basis.

We know that e1 can be any non zero vector. Since there are 2m entries, and only 1
vector can be classified as a zero vector, there are q2m−1 ways to choose it. Therefore,
we can say that e⊥1 has dimension 2m − 1, which means it has q2m−1 vectors. This
implies that there are q2m − q2m−1 different vectors v such that f(u, v) ̸= 0. These
come in sets of q − 1 scalar multiples, one for each possible value for f1, implying
that there are q2m−1 different choices of vectors. Doing this for all ei and fi, we get

|Sp2m(q)| =
m∏
i=1

(q2i − 1) · q2i−1

= qm
2

m∏
i=1

(q2i − 1)

4.4 Simplicity of PSp2m(q)

Similar to the special linear group, the projective symplectic group is also simple
for all cases where m > 2 and q > 3. We use a similar strategy as before where we use
Iwasawa’s Lemma to prove the simplicity of the group. We make use of transvections
again, but this time we will be looking over Symplectic Transvection.

Definition 4.7. A symplectic transvection is a linear map in the form

Tv(λ) : x 7→ x+ λf(x, v)v

Where f is a fixed non singular bilinear form (symplectic form) on the vector space
V where v ̸= 0 and λ ̸= 0.
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As provided in [9, Section 3.5.2], the sketch of the proof involve that we show that
the group generated by symplectic transvections S is congruent to the group SP2m(q).
We also want to show that S acts transitively on the set of ordered symplectic bases.
After investigating the stabiliser, it follows that S = SP2m(q). Then we use Iwasawa’s
Lemma to prove that PSp2m(q) is simple.

Lemma 4.8. The set S generated by symplectic transvections acts transitively on
the set of ordered symplectic bases.

Proof. Let v, w be two distinct non-zero vectors. If f(v, w) = λ ̸= 0, then the
transvection maps v to w such that Tv−w(λ

−1) : v 7→ w. Otherwise, we pick an-
other vector x such that f(v, x) ̸= 0 and f(w, x) ̸= 0. We can say that such an x
exists because f is non singular, which means that ∃y, z with f(v, y) = f(w, z) and
f(v, z) ̸= 0 and f(w, y) ̸= 0. Hence a suitable, linear combination of y and z has the
required properties. Next, we can map v to x and x to w, and deduce that S acts
transitively on non zero vectors, which includes the set of symplectic bases.

Suppose we take a fixed vector u, and f(u,w) = f(v, w) = λ ̸= 0. Then,
Tv−w(λ

−1)v 7→ w fixes u. Otherwise, let x = u+ v, so that f(u, x) = 1 and f(v, x) =
f(w, x) = −1, so we can map v to x and x to w while fixing u. We can then use
induction to show that S is transitive on symplectic bases, which means Sp2m(q) is
generated by symplectic transvections.

We have shown that the hypothesis of Iwasawa’s Lemma is true. The above
lemma shows that it is generated by symplectic transvections. When Sp2m(q) acts
on one dimensional spaces, we proved that the stabiliser of a point is transitive to
the q2m−1 points to which it is not orthogonal. It is also transitive to the q2m−1−1

q−1
− 1

points which are orthogonal but not equal to it. If we take vectors v and w both
orthogonal to u, then either f(v, w) = λ ̸= 0 in which case Tv−w(λ

−1) : v 7→ w,
otherwise, there exists a vector x with f(v, x) = 0 = f(w, x) and we can map v via
x to w while fixing u. So the action is primitive.

Moreover, we can show that symplectic transvections Tv(λ) for a fixed vector v
forms a normal abelian subgroup of stabiliser of the point ⟨v⟩.

Lemma 4.9. Sp2(q) ∼= SL2(q)

Proof. As discussed in [7], if we write the elements of V = k2 as row vectors, we can
define

f : V × V → k, (x, y) 7→ det

(
x
y

)
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It is clear that f is a symplectic form. Now if X ∈ GL2(q), then we have

f(xX, yX) = det

(
xX
yX

)
= det

(
x
y

)
· det(X)

Thus f(xX, yX) = f(x, y) if and only if det(X) = 1, which is true for all X ∈
SL2(q).

Now we need to verify that the symplectic transvections are commutators, which
would imply that the group is perfect, meeting the last condition of Iwasawa. This
can be inferred for all q > 3 since Sp2(q) ∼= SL2(q), which means that PSp2m(q) is
simple for all q > 3.

4.5 Subgroups of the Symplectic Groups

We can construct the subgroups of the symplectic groups similar to that of the
general linear group. We take the Borel Subgroup B to be the stabiliser for the
maximal flag of the subspaces

0 < W1 < W2 < · · · < Wm = (Wm)
⊥ < (Wm−1)

⊥ < · · · < (W1)
⊥ < V

We define the subspace Wk as {e1, e2, e3, . . . , ek} where ei is a basis vector of V .
Note: we order the basis of V as {e1, e2, . . . , em, fm, fm−1, . . . , f1} to emphasize the
structure.

We define maps on these basis vectors to fix all the vectors ek and fk except

xij(λ) : fi 7→ fi + λfj

ej 7→ ej − λei

yij(λ) : fi 7→ fi + λej

fj 7→ fj + λei

We can show that the group of unitriangular matrices U is generated by these maps
in conjunction with the symplectic transvections Tei(−λ) : fi 7→ fi − λei.

The torus T is defined by the diagonal maps fi 7→ λfi and ei 7→ λ−1ei. This
means it is the semi-direct product of cyclic groups of order q− 1 and similar to the
general linear groups, B = UT .
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5 Sesquilinear Forms and Unitary Group

5.1 Sesquilinear Forms

A sesquilinear form is a generalization of a bilinear form, and forms the basis of
Unitary Groups.

Definition 5.1. An automorphism is an isomorphism from a field onto itself. The
order of the automorphisms is the number of possible isomorphisms which map the
field to itself.

We will use fields with automorphism of order 2 to describe sesquilinear form.
This field will have order q2 where q is a prime power (see section 2). We define
x̄ = xq for all x ∈ Fq2 . A conjugate symmetric sesquilinear form is defined over a
vector space V as a map f : V × V → F satisfying the following properties.

• f(λu+ v, w) = λf(u,w) + f(v, w)

• f(w, v) = f(v, w)

From the above properties it follows:

f(u, λv + w) = λ̄f(u, v) + f(u,w)

We want to find a basis for sesquilinear forms that is as convenient as possible.
For a sesquilinear form f , if we choose a vector a such that f(a, a) ̸= 0, then
f(a, a) = ¯f(a, a). Moreover, the multiplicative group of the field Fq2 has order
q2 − 1. This means ∃λ ∈ Fq2 such that λλ̄ = λq+1 = f(a, a). Accordingly, we have
vector e1 = λ−1 · a satisfying f(e1, e1) = 1.

Now we restrict the form f just to e⊥1 , which means all vectors b in this restricted
space have f(b, b) = 0. Then, ∀u, v we have

0 = f(u+ λv, u+ λv)

= f(u, u) + λ̄f(u, v) + λf(v, u) + λλ̄f(v, v)

= λ̄f(u, v) + λf(v, u)

Therefore, we can choose 2 values of λ forming a basis from Fq to Fq2 . For the sake
of simplicity, we choose λ1 = 1 and λ2 ̸= λ̄2. If we solve the equations for the values
of f(u, v) and f(v, u), we get that both of them are 0. This means that if the form
is non singular, then we have found a basis where every vector (all of norm 1), is
perpendicular to all other vectors. Such basis is termed as an orthonormal basis.
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5.2 The Unitary Group

Definition 5.2. A unitary group is an isometry groups of a non singular sesquilinear
form over a vector space V . This means it is a subgroup of GLn(q

2) containing all
elements g such that ∀u, v ∈ V f(ug, vg) = f(u, v).

In simpler terms, the unitary group GUn(q) has the property that gḡT = In
∀g ∈ GUn(q) that is the inverse of all elements g is the transpose of the conjugate
of g. This means that if det(g) = λ, and by definition λλ̄ = λq+1, we have that
λq+1 = 1. Now since λ is in a cyclic group of order q2 − 1 = (q + 1)(q − 1), this
statement is equivalent to saying λ is in a unique subgroup of order q + 1. This
subgroup is called the Special Unitary Group and it consists of all g ∈ GUn(q) such
that det(g) = 1.

There are q+1 such λ in Fq2 . We can say that the center of this group Z has order
q + 1 and consists of all scalar matrices λIn. The quotient GUn(q)/Z, denoted by
PGUn(q) is known as the projective general unitary group. Similarly, by finding the
quotient of the Special Unitary group with its center gives us the projective special
unitary group, denoted by PSUn(q)

5.3 Order of the Unitary Group

To find the order of the group we need to find the number of vectors with norm 1.
We defined zn to be the norm 0 vectors, and yn to be the norm 1 vectors, where n is
the dimension of the vector space. The total number of vectors is given by q2n which
can also be written as 1 + zn + yn(q − 1). We can recursively solve for zn to get the
relation zn+1 = zn+yn(q

2−1). Solving the characteristic polynomial of this relation,
we get zn = (qn − (−1)n)(qn + (−1)n). Solving for yn we get yn = qn−1(qn − (−1)n).
We can inductively iterate through n to get the order. Since we want an orthonormal
basis, by choosing one vector at a time, we have

|GUn(q)| =
n∏

i=1

qi−1(qi − (−1)i)

= q
n(n−1)

2

n∏
i=1

(qi − (−1)i)
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5.4 Simplicity of PSUn

The proof of simplicity of PSUnis similar to that for symplectic groups, therefore
we will only write the sketch of the proof. Since PSU2(q) ∼= PSL2(q), we need to
consider n > 2. The Iwasawa’s Lemma in this case is applied to the permutations of
the isotropic spaces with unitary transvections as the generators.

Definition 5.3. A unitary transvection Tv is defined as

Tv(λ) : x 7→ x+ λf(x, v)v

Where λ ̸= 0 and v ̸= 0.

We can show that the unitary transvection Tv(λ) is isometric if and only if λ = 0
or λq−1 = −1. Since λ ̸= 0, we will define the unitary transvections with λq−1 = −1.

The sketch of the proof involves the following steps. Step 1: prove that the
unitary transvections for any fixed v will form an abelian subgroup with stabiliser
⟨v⟩. Step 2: show that the group acts primitively on the set of 1-isotropic spaces.
Step 3: show that the unitary transvections generate SUn(q) in all cases except
SU3(2). Step 4: show that all unitary transvections are commutators of SUn(q) for
n > 3. Using Iwasawa’s lemma, it follows that PSUn(q) is simple for all cases where
n > 3.
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