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1An Introduction to Quantum
Computing

Abstract
In this paper, we will discuss the main ideas in quantum computing that lead up
to Grover’s Algorithm. This will start with an introduction to quantum computing,
followed by some preliminary algorithms to eventually lead up to Grover’s. After
that, I will talk about some proofs in the topic and then try and talk about QAOA.
My hope with this paper is to give an introduction to the mathematics behind this
topic with an understanding of about the level of an introductory Linear Algebra
class and almost no needed understanding of quantum mechanics. Ideally you should
walk

1.1 A Dive into the notation
Before we start talking about quantum computing specifically, it might be best to
talk a little bit about the notation for quantum mechanics. Quantum mechanics
itself is primarily based around complex vector spaces, yet the way physicists rep-
resent them can differ slightly from traditional mathematics.

Basic Mathematical Definitions
Definition 1.1.1. Remember that Complex Numbers, or C, are the set of all
numbers a+ bi where i =

√
−1.

Definition 1.1.2. The Complex Conjugate of a complex number z ∈ C is z̄,
where if z = a+ bi then z̄ = a− bi.

Definition 1.1.3. The Absolute Value of a complex number z is |z| = a2 + b2.

Here are some properties of complex numbers:

1. (z̄) = z

2. z1 + z2 = z̄1 + z̄2
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3. ¯z1z2 = z̄1z̄2

4. |z̄| = |z|

5. |z|2 = zz̄

6. z−1 = z̄
|z|2

Standard Physics Notation and Mathematical Operations
Bra-Ket notation is a indispensable tool that allows us to cleanly and conveniently
denote a systems Quantum state.

Definition 1.1.4 (Ket). We define a ket |ψ⟩ as a column vector in complex vector
space V .

In other words this is an object in the space |ψ⟩ ∈ Cn such that

|ψ⟩ =


z1

z2
...

zn


where zi ∈ C (the complex plane consisting of all numbers a+ bi.

The ket part of the notation is primarily there to distinguish the space from the
other main part of the notation, the bra.

Definition 1.1.5 (Bra). A bra is a row vector in the space

⟨ψ| =
[
z1 z2 · · · zn

]
We can also define the Bra in terms of the Ket, where one is the Hermitian

Conjugate of the other.

Definition 1.1.6. Hermitian Conjugate For any given vector in complex vector
space v ∈ V , v† = v⊤∗ where ⊤ is a transpose and ∗ is the complex conjugate.

It follows then that ⟨ψ| = |ψ⟩† and vice versa.

Definition 1.1.7. Inner Product An innter product is a vector space V over F
defied as

⟨·, ·⟩ : V × V → F

such that the following axioms are satisfied

• Conjugate Symmetry: ⟨x, y⟩ = ⟨y, x⟩
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• Linearity: ⟨ax+ by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩

• Positive-definiteness: x ̸= 0 =⇒ ⟨x, x⟩ > 0

Now it just so happens that the inner product is also just an abstraction over
the dot project. This makes it easier to visualize.

⟨x|y⟩ =
[
x1 x2 · · · xn

]
·


y1

y2
...

yn

 = x1 · y1 + x2 · y2 + · · · + xn · yn

The Tensor Product
Definition 1.1.8 (Tensor Prodcut). A Tensor Product is an operation that takes
two vector spaces of arbitrary size V = {v1, · · · vn}, W = {w1 · · ·wm} and combines
them to make a V ⊗W = {vw1 · · · vwnm} vector space.

A⊗B =


a11B a12B · · ·
a21B a22B · · ·
...

...
. . .



1.2 What is Quantum Computing?
To me, quantum computing is just the manipulation of quantum data by applying
quantum gate operations to it. This will obviously get extended on as we talk
about more and more algorithms, but the core idea and what runs on the hardware
essentially boils down to this.

Understanding Quantum States
”Quantum Computation is a distinctively new way of harnessing nature.
It will be the first technology that allows useful tasks to be performed
in collaboration between parallel universes.” - David Deutsch

To understand Quantum Computing, we must first understand the idea of com-
puting in general. To put it simply, computation is the manipulation of data. The
main difference between classical states and quantum states is that quantum sys-
tems can employ the power of superposition-the states can all exist at once. As we
will see later this is the crucial part behind Quantum Computing, and by utilizing
this fact with the realization that we can manipulate the probability that each one
of these states exists we can begin to form algorithms with it.
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Definition 1.2.1. Bit A physical system with two possible distinguishable states.

We can represent a bit as B = {0, 1}

Definition 1.2.2. Qubit A two-state quantum mechanical system

Mathematically, we can define a qubit as

|ψ⟩ =
[
α

β

]

where α, β ∈ C and |α|2 + |β|2 = 1. α and β both represent the respective
probability that when the Qubit is measured the observed state will be 0 or 1
respectively, preventing us from generating a system that doesn’t make sense where
the probabilities don’t correlate with real life.

The crucial difference here between a Bit and a Qubit is that a Qubit is a vector
where each state is a probability. This as well see, allows us to have both states be
represented at the same time, leading to very strange but powerful phenomenon.

Quits in Bra-Ket notation

With regards to the notation we can define |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
. You can think

about it as a zero indexed notation.
We can expand this idea further by writing things such as

|10⟩ =


0
0
1
0


and further. Essentially, the state of binary bit maps to the index in the vector for
which there is a 1.

Now whats really cool about this notation and the tensor is that they are equiv-
alent. In other words, |1⟩ ⊗ |0⟩ = |10⟩. This can be thought of as bit concatenation,
with their states being preserved under the tensor product. Here the matrix is a
one hot encoding of all the states of log2(number of states) with the binary digit
representing which state has 100% probability based off of a 0 indexed scheme.

Proof. A ■
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Common Qubits

Note that we also have Qubits so important we write special symbols for them

|+⟩ = 1√
2

(|0⟩ + |1⟩)

|−⟩ = 1√
2

(|0⟩ − |1⟩)

|i⟩ = 1√
2

(|0⟩ + i |1⟩)

|−1⟩ = 1√
2

(|0⟩ − i |1⟩)

Unitary Matrices and Quantum Operations
Definition 1.2.3. A Unitary Matrix is a matrix transformation that follows U∗U =
UU∗ = UU−1 = U †U = UU † = I.

Unitary matrices are a subset of the matrix group that preserves the inner prod-
uct and in result the probability amplitudes. Applying a unitary matrix operation
onto a quantum state can shift the probabilities in certain ways. We will see this
in quantum gates as all transformations in quantum computing can be written this
way.

1.3 Some Physics Behind the Idea
When it comes to quantum computation hardware, it is assumed in the quantum
information theorist perspective to be perfect. This means perfect coherence, no
error correction needed, and as many qubits as possible. Although this is very far
from the real world, mathematicians tend to prefer to abstract the details of the
day to day and focus only on the theoretical algorithms.

This being said, here are some of the ways modern quantum architectures work

• Nuclear Magnetic Resonance Quantum Computer
This is a quantum computer that stores its quantum states through nuclear
magnetic resonances.

• Quantum Superconducting
This is arguably the most common type of quantum computing that exists
today. It is where you use superconducting electronics circuits like quantum
dots in order to store the states of quantum systems.
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• Quantum Phonics
Quantum Phonics is where you store the quantum superposition in the quan-
tum properties of light.

• Trapped Ion Quantum Computing
Trapped ion architectures rely on storing the state of Qubits in ionic particles
trapped by electromagnetic fields.

• Topological Quantum Computing
Topological computers are the most mathematical of the bunch. They work by
embedding quanutm information inside the topological properties of particles.
This is a very recent architecture.

Now the cool thing about quantum information is that none of this matters.
All we have to do is abstract the architecture into a idealized form with n qubits
an U unitary transformations, allowing theorists to develop algorithms based off of
mathematical principles and not having to wait for hardware to catch up.

1.4 Quantum Gates

Classical Gates
Definition 1.4.1. Controlled NOT Gate The CNOT gate is a two-qubit gate that
can apply a not operation onto the second qubit if the first qubit is |1⟩. It can be
written as 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Pauli Matrices
The Pauli gates are operations from quantum mechanics we can use that represent
rotations in space.

X-gate

Definition 1.4.2. The Pauli X-gate is the matrix[
0 1
1 0

]

that represents the inversion or NOT gate onto a single Qubit. Similarity this inverts
the spin of a Qubit from |0⟩ to |1⟩ and vice versa.

7



Y-gate

The Y-gate is interesting as it bascially flips the spin of a particle. It can be described
as [

0 −i
i 0

]

Z-gate

The Z-gate is the matrix also flips the spin of a electron.[
1 0
0 −1

]

Hadamard Gates
The Hadamard Gate is utterly crucial for quantum computing. It allows us to
generate a base state with all the states in a equal superposition of each other. We
can think of it as

Definition 1.4.3. Hadamard Gate

1√
2

[
1 1
1 −1

]

We can expand this idea to n-qubits as following

H(n) = H ⊗ H ⊗ · · · ⊗ H︸ ︷︷ ︸
n times

= 1√
2n

2n−1∑
y=0

(−1)xẏ |y⟩

Where
x · y = (x1 ∧ y1) ⊕ (x2 ∧ y2) ⊕ · · · ⊕ (xn ∧ yn).

Now we can apply it to the base to get the super position

1√
2

[
1
0

]
= 1√

2

[
1
1

]

where ( 1√
2)2 + ( 1√

2)2 = 1. This generalizes to

1√
2n

N−1∑
x=0

|x⟩ = 1
2n

2


1
1
...

1


2n times.

See how this one hot encoded state matrix has equal probability for every state?
Thus we have achieved our goal.
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Measurement
Now measurement isn’t in itself a gate, but it can be represetned on a diagram by

where it is the measure operation. Measurement essentially collapses the state of the

Qubit |x⟩ =
[
α

β

]
into |0⟩ or |1⟩. This is how we can observe and gather information

about or quantum system. In quantum superposition, we cannot know information
about the state by the No-Cloning Theorem unless we destroy/measure/collapse
it. We will see here how we can devise algorithms where we can eventually collapse
superpositioned states into |0⟩ or |1⟩ with 100% probability, while some algorithms
only slightly change the probabilities to our favor, meaning we must run it many
times.

Quantum Gate Diagrams
Quantum Gate Diagrams are ways we can represent Quantum Circuits graphically.
We can represent each line on a sheet as a Qubit state as it time evolves over the x
axis. We can then represent a dot as the control bit for a 2-qubit gate. After that
we can represent the unitary transformations as boxes along the qubits. Here are
some examples:

Hadamard: H

N-Hadamard Hn
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2Preliminary Algorithms in
Quantum Computing

Before we talk about Grover’s algorithm, it makes sense to talk about simpler to
understand ones. The original design behind quantum programs was developed by
the Deutch Problem, and so we will start there.

2.1 The Quatum Oracle
Definition 2.1.1. A oracle, O, is an unexposed operation that is used as input to
another algorithm.

This is usually defined as f : Bn → Bm, or a map from n bits to m bits. We dont
have to know what is inside them, only the inputs and outputs. That being said to
analyze the total runtime of algorithms we must account for the time complexity
of the oracle itself as well (for example in Grover’s Algrotihm except that its time
complexity is O(1).

2.2 Deutch Problem
Deutch created a though experiment problem that tries to solve

Given some f(x), f : B → B, is f constant or balanced?

where constant implies f(0) ̸= f(1) and balanced implies f(0) = f(1). This is a
trivial problem, but it requires two comptuatoins of f(x) in order to solve.

Given some quantum oracle, we can write a two-quibit unitary transformation
Uf as Uf : |y⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩. Now for out main goal we can write the algo-
rithm as a Hadamard of |01⟩ followed by Uf followed by a hadamard followed by a
measurement on the first Qubit.

We input the state of both bits, |01⟩. Then we apply the Hadamard

H(x) =


1√
2(|0⟩ + |1⟩) |0⟩

1√
2(|0⟩ − |1⟩) |1⟩

=⇒ |01⟩ = |0⟩ ⊗ |1⟩ → 1
2(|0⟩ + |1⟩)(|0⟩ − |1⟩)
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= 1
2(|00⟩ − |01⟩ + |10⟩ − |11⟩)

Then we need to apply the Unitary Matrix transformation Uf = |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩
Where now 1

2(|00⟩ − |01⟩ + |10⟩ − |11⟩) →

1
2(|0f(x)⟩ − |0⟩ |1 ⊗ f(x)⟩ + |1f(x)⟩ − |1⟩ |1 ⊗ f(x)⟩)

We can then apply another Hadamard transformation on the |x⟩ Qubit only.

→ 1
2[((−1)f(0) + (−1)f(1) |0⟩ + ((−1)f(0) − (−1)f(1) |1⟩] 1√

2
(|0⟩ − |1⟩)

From here, we need only try each of the 4 permutations of f(x), x ∈ B to prove
that if we decompose both bits again the |y⟩ bit in |x⟩ |y⟩ is equal to the answer of
our balanced problem. This works as long as we can map our function to a unitary
matrix.

This is a really perplexing result. We have just shown that we can get the
information of the function by only truing 1 state.

2.3 Deutch-Jonza Problem
The Deutch-Jonza Problem is merely a generalization of Deutch’s problem. It states
that

On good authority that either f : Bn → B, f(x) = c or f(x) = 0 (constant
or balanced) for all values, which ones is it?

Now conventional wisdom states that we should need to try all 2n possibilities, but
the Deutch-Jonza problem only requires one computation, meaning that we can gain
a exponential speedup over the classical algorithm.

It works the exact same way as before, requiring a hadamard transform in the
beginning followed by a unitary oracle transformation followed by another hadmard
transformation. The math works out as followed:
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3Grover’s Algorithm

Grover’s Algorithm is one of the most famous algorithms in quantum computing due
to its universal applicability. It allows the ability to solve any searching problem
given O(

√
N) quantum operations, yet can be generalized much more with the

Quantum Oracle method. For now we will talk about the generalized version and
show how this applies to Quantum search later.

Given an oracle function f : {0, · · · , N − 1} → {0, 1} where N = 2n, is there
an x where f(x) = 1 and what is it?

Mathematically, this rests on two operations, the oracle unitary operator and
the Grover Diffusion Operator.

3.1 Algorithm
The Algorithm itself once again starts with a Hadamard transformation on the |0⟩
vector.

|s⟩ −Hn |0⟩ = 1√
2n

2n−1∑
x=1

|x⟩

We now have a uniform superposition of all the states. We now want to shift our
states so when the function collapses it will be at the x such that the function is
satisfied. Lets define our two unitary matrix operators

Uf : |x⟩ ⊗ |y⟩ 7→ |x⟩ ⊗ |y ⊕ fw(x)⟩

Setting |y⟩ = |−⟩
Uf : |x⟩ ⊗ |−⟩ (−1)fw(x) |x⟩ ⊗ |−⟩

Now if we define fw(x) for searching, we essentially want

fw(x) =
0 x ̸= w

1 x = w
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so then

(−1)fw(x) =
1 x ̸= w

−1 x = w
.

We can also write it as
Uw = I − 2 |w⟩ ⟨w|

This completes our oracle unitary transformation case. Now we must define the
Grover Diffusion Operator.

Definition 3.1.1. Grover Diffusion Operator We can define the operator as UD =
2 ⟨s|s⟩ − I where |s⟩ is our Hadamarded state.

This can also be represnted as

UD = H(2 |0⟩ ⟨0| − I)H

and as a n-qubit state |ψ⟩ as

UD = Hn(2 |0⟩ ⟨0| − I)Hn.

It can also be seen decomposed as

UD =


2
N

− 1 2
N

· · · 2
N

2
N

2
N

− 1 · · · 2
N

...
...

. . .
...

2
N

2
N

· · · 2
N

− 1

 .

These two unitary operators get combined to form Ugrover = UDUw. Whach what
happened when we apply our operator to our base Hadamard state:

Using Grover’s Unitary Kernel we have now slightly nudged the probabilities
closer towards our desired distribution (|x⟩), where x is the binary representation
of our value that satisfies f(x).

Now sine this gate moved the probabilities from 1√
2n to 3√

2n , it follows that we
must do it

√
2n =

√
N times in order to search through everything and collapse

with 100% probability.
Now the proof that this works:
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4QAOA

Quantum Approximate Optimization Algorithm, or QAOA for short, is a method
of computation for solving combinatorial optimization problems.

The main idea behind this algorithm is to approximate a time-evolution unitary
matrix that like Grover’s algorithm nudges the probabilities in the right direction.
We can do this by Trotter-Suzuki decomposition.

U(H, t) = e
−iHt

ℏ

We can then decompose the unitary matrix

eA+B ≈ (eA
n e

B
n )n

and write it as a time-evolution unitary

U(H, t, n) = Πn
j=1Πke

−iHkt

n

leaving us with
H = H1 +H1 + · · · +HN =

∑
k

Hk,

a much simpler form to deal with. If we can write unitary matrices for each individ-
ual Hamiltonian U(H1), · · · , U(HN), then in theory we should be able to approxi-
mate our original Hamiltonian.

This is critical in QAQA as we can then define a cost and mixer Hamiltonian for
and combanatorial problem and combine them together into a U(Hi), thus leading
to a problem where after all the ∑

k U(Hk) gates are applied we reach our desired
stat matrix.
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